1 Divisibility

Given two integers \(a, b\) with \(a \neq 0\). We say that \(a\) divides \(b\), written \(a \mid b\), if there exists an integer \(q\) such that

\[b = qa.\]

When this is true, we say that \(a\) is a factor (or divisor) of \(b\), and \(b\) is a multiple of \(a\). If \(a\) is not a factor of \(b\), we write

\[a \nmid b.\]

Any integer \(n\) has divisors \(\pm 1\) and \(\pm n\), called the trivial divisors of \(n\). If \(a\) is a divisor of \(n\), so is \(-a\). A positive divisor of \(n\) other than the trivial divisors is called a nontrivial divisor of \(n\). Every integer is a divisor of 0.

A positive integer \(p\) other than 1 is called a prime if it does not have nontrivial divisors, i.e., its positive divisors are only the trivial divisors 1 and \(p\). A positive integer is called composite if it is not a prime. The first few primes are listed as

\[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, \ldots\]

Proposition 1.1. *Every composite number \(n\) has a prime factor \(p \leq \sqrt{n}\).*
Proof. Since n is composite, there are primes p and q such that $n = pqk$, where $k \in \mathbb{P}$. Note that for primes p and q, one is less than or equal to the other, say $p \leq q$. Then $p^2 \leq pqk = n$. Thus $p \leq \sqrt{n}$. \qed

Example 1.1. (a) 6 has the prime factor $2 \leq \sqrt{6}$.
(b) 9 has the prime factor $3 = \sqrt{9}$.
(c) 35 has the prime factor $5 \leq \sqrt{35}$.
(d) Is 143 a prime? We find that $\sqrt{143} < \sqrt{144} = 12$. For $i = 2, 3, 5, 7, 11$, check whether i divides 143. We find out $i \nmid 143$ for $i = 2, 3, 5, 7$, and $11 \mid 143$. So 143 is a composite number.
(e) Is 157 a prime? Since $\sqrt{157} < \sqrt{169} = 13$. For each $i = 2, 3, 5, 7, 11$, we find out that $i \nmid 157$. We see that 157 has no prime factor less or equal to $\sqrt{157}$. So 157 is not a composite; 157 is a prime.

Proposition 1.2. Let a, b, c be nonzero integers.
(a) If $a \mid b$ and $b \mid a$, then $a = \pm b$.
(b) If $a \mid b$ and $b \mid c$, then $a \mid c$.
(c) If $a \mid b$ and $a \mid c$, then $a \mid (bx + cy)$ for all $x, y \in \mathbb{Z}$.

Proof. (a) Write $b = q_1a$ and $a = q_2b$ for some $q_1, q_2 \in \mathbb{Z}$. Then $b = q_1q_2b$. Dividing both sides by b, we have $q_1q_2 = 1$. This forces that $q_1 = q_2 = \pm 1$. Thus $b = \pm a$.
(b) Write $b = q_1a$ and $c = q_2b$ for some integers $q_1, q_2 \in \mathbb{Z}$. Then $c = q_1q_2a$. This means that $a \mid c$.
(c) Write $b = q_1a$ and $c = q_2a$ for some $q_1, q_2 \in \mathbb{Z}$. Then
$$bx + cy = q_1ax + q_2ay = (q_1x + q_2y)a$$
for any $x, y \in \mathbb{Z}$. This means that $a \mid (bx + cy)$. \qed
Theorem 1.3. There are infinitely many prime numbers.

Proof. Suppose there are finitely many primes, say, they are listed as follows

\[p_1, p_2, \ldots, p_k. \]

Then the integer

\[a = p_1 p_2 \cdots p_k + 1 \]

is not divisible by any of the primes \(p_1, p_2, \ldots, p_k \) because the remainders of \(a \) divided by each \(p_i \) is always 1, where \(i = 1, \ldots, k \). This means that \(a \) has no prime factors. By definition of primes, the integer \(a \) is a prime, and this prime is larger than all primes \(p_1, p_2, \ldots, p_k \). So it is larger than itself, which is a contradiction.

\[\square \]

Theorem 1.4 (Division Algorithm). For any \(a, b \in \mathbb{Z} \) with \(a > 0 \), there exist unique integers \(q, r \) such that

\[b = qa + r, \quad 0 \leq r < a. \]

Proof. Define the set \(S = \{ b - ta \geq 0 : t \in \mathbb{Z} \} \). Then \(S \) is nonempty and bounded below. By the Well Ordering Principle, \(S \) has the unique minimum integer \(r \). Then there is a unique integer \(q \) such that \(b - qa = r \). Thus

\[b = qa + r. \]

Clearly, \(r \geq 0 \). We claim that \(r < a \). Suppose \(r \geq a \). Then

\[b - (q + 1)a = (b - qa) - a = r - a \geq 0. \]

This means that \(r - a \) is an element of \(S \), but smaller than \(r \). This is contrary to that \(r \) is the minimum element in \(S \). \[\square \]

Example 1.2. For integers \(a = 24 \) and \(b = 379 \), we have

\[379 = 15 \cdot 24 + 19, \quad q = 15, \ r = 19. \]

For integers \(a = 24 \) and \(b = -379 \), we have

\[-379 = -14 \cdot 24 + 5, \quad q = -14, \ r = 5. \]
2 Greatest Common Divisor

For integers a and b, not simultaneously 0, a **common divisor** of a and b is an integer c such that $c \mid a$ and $c \mid b$.

Definition 2.1. Let a and b be integers, not simultaneously 0. A positive integer d is called the **greatest common divisor** of a and b, denoted $\gcd(a, b)$, if

(a) $d \mid a$, $d \mid b$, and

(b) If $c \mid a$ and $c \mid b$, then $c \mid d$.

Two integers a and b are said to be **coprime** (or **relatively prime**) if $\gcd(a, b) = 1$.

Theorem 2.2. For any integers $a, b \in \mathbb{Z}$, not all zero, if

\[b = qa + r \]

for some integers $q, r \in \mathbb{Z}$, then

\[\gcd(a, b) = \gcd(a, r). \]

Proof. Write $d_1 = \gcd(a, b)$, $d_2 = \gcd(a, r)$.

Since $d_1 \mid a$ and $d_1 \mid b$, then $d_1 \mid r$ because $r = b - qa$. So d_1 is a common divisor of a and r. Thus, by definition of $\gcd(a, r)$, d_1 divides d_2. Similarly, since $d_2 \mid a$ and $d_2 \mid r$, then $d_2 \mid b$ because $b = qa + r$. So d_2 is a common divisor of a and b. By definition of $\gcd(a, b)$, d_2 divides d_1. Hence, by Proposition 1.2 (a), $d_1 = \pm d_2$. Thus $d_1 = d_2$. \qed

The above proposition gives rise to a simple constructive method to calculate gcd by repeating the Division Algorithm.

Example 2.1. Find $\gcd(297, 3627)$.

4
3627 = 12 \cdot 297 + 63, \quad \gcd(297, 3627) = \gcd(63, 297)
297 = 4 \cdot 63 + 45, \quad \gcd(63, 297) = \gcd(45, 63)
63 = 1 \cdot 45 + 18, \quad \gcd(45, 63) = \gcd(18, 45)
45 = 2 \cdot 18 + 9, \quad \gcd(18, 45) = \gcd(9, 18)
18 = 2 \cdot 9;

The procedure to calculate \(\gcd(297, 3627) \) applies to any pair of positive integers.

Let \(a, b \in \mathbb{N} \) be nonnegative integers. Write \(d = \gcd(a, b) \). Repeating the Division Algorithm, we find nonnegative integers \(q_i, r_i \in \mathbb{N} \) such that

\[
\begin{align*}
b &= q_0 a + r_0, & 0 \leq r_0 < a, \\
a &= q_1 r_0 + r_1, & 0 \leq r_1 < r_0, \\
r_0 &= q_2 r_1 + r_2, & 0 \leq r_2 < r_1, \\
r_1 &= q_3 r_2 + r_3, & 0 \leq r_3 < r_2, \\
&\vdots & \\
r_{k-2} &= q_k r_{k-1} + r_k, & 0 \leq r_k < r_{k-1}, \\
r_{k-1} &= q_{k+1} r_k + r_{k+1}, & r_{k+1} = 0.
\end{align*}
\]

The nonnegative sequence \(\{r_i\} \) is strictly decreasing. It must end to 0 at some step, say, \(r_{k+1} = 0 \) for the very first time. Then \(r_i \neq 0, 0 \leq i \leq k \). Reverse the sequence \(\{r_i\}_{i=0}^k \) and make substitutions as follows:

\[
\begin{align*}
d &= r_k, \\
r_k &= r_{k-2} - q_k r_{k-1}, \\
r_{k-1} &= r_{k-3} - q_{k-1} r_{k-2}, \\
&\vdots \\
r_1 &= a - q_1 r_0, \\
r_0 &= b - q_0 a.
\end{align*}
\]

We see that \(\gcd(a, b) \) can be expressed as an integral linear combination of \(a \) and \(b \). This procedure is known as the **Euclidean Algorithm**.
We summarize the above argument into the following theorem.

Theorem 2.3. For any integers \(a, b \in \mathbb{Z} \), there exist integers \(x, y \in \mathbb{Z} \) such that
\[
gcd(a, b) = ax + by.
\]

Example 2.2. Express \(\gcd(297, 3627) \) as an integral linear combination of 297 and 3627.

By the Division Algorithm, we have \(\gcd(297, 3627) = 9 \). By the Euclidean Algorithm,
\[
9 = 45 - 2 \cdot 18 = 45 - 2(63 - 45) = 3 \cdot 45 - 2 \cdot 63 = 3(297 - 4 \cdot 63) - 2 \cdot 63 = 3 \cdot 297 - 14 \cdot 63 = 3 \cdot 297 - 14(3627 - 12 \cdot 297) = 171 \cdot 297 - 14 \cdot 3627.
\]

Example 2.3. Find \(\gcd(119, 45) \) and express it as an integral linear combination of 45 and 119.

Applying the Division Algorithm,
\[
119 = 2 \cdot 45 + 29 \quad 45 = 29 + 16 \quad 29 = 16 + 13 \quad 16 = 13 + 3 \quad 13 = 4 \cdot 3 + 1
\]
So \(\text{gcd}(119, 45) = 1 \). Applying the Euclidean Algorithm,
\[
1 = 13 - 4 \cdot 3 = 13 - 4(16 - 13)
= 5 \cdot 13 - 4 \cdot 16 = 5(29 - 16) - 4 \cdot 16
= 5 \cdot 29 - 9 \cdot 16 = 5 \cdot 29 - 9(45 - 29)
= 14 \cdot 29 - 9 \cdot 45 = 14(119 - 2 \cdot 45) - 9 \cdot 45
= 14 \cdot 119 - 37 \cdot 45
\]

Example 2.4. Find \(\text{gcd}(119, -45) \) and express it as linear combination of 119 and -45.

We have \(\text{gcd}(119, -45) = \text{gcd}(119, 45) = 1 \). Since
\[
1 = 14 \cdot 119 - 37 \cdot 45,
\]
we have \(\text{gcd}(119, -45) = 14 \cdot 119 + 37 \cdot (-45) \).

Remark. For any \(a, b \in \mathbb{Z} \), \(\text{gcd}(a, -b) = \text{gcd}(a, b) \). Expressing \(\text{gcd}(a, -b) \) in terms of \(a \) and \(-b \) is the same as that of expressing \(\text{gcd}(a, b) \) in terms of \(a \) and \(b \).

Corollary 2.4. Integers \(a, b \), not all zero, are coprime if and only if there exist integers \(x, y \) such that \(ax + by = 1 \). \(\square \)

Proposition 2.5. If \(a \mid bc \) and \(\text{gcd}(a, b) = 1 \), then \(a \mid c \).

Proof. By the Euclidean Algorithm, there are integers \(x, y \in \mathbb{Z} \) such that \(ax + by = 1 \). Then
\[
c = 1 \cdot c = (ax + by)c = acx + bcy.
\]
Since \(a \mid bc \) and obviously \(a \mid ac \), we have \(a \mid (acx + bcy) \) by Proposition 1.2 (c). Therefore \(a \mid c \). \(\square \)

Theorem 2.6 (Unique Factorization). Every integer \(a \geq 2 \) can be uniquely factorized into the form
\[
a = p_1^{e_1} p_2^{e_2} \cdots p_m^{e_m},
\]
where \(p_1, p_2, \ldots, p_m \) are distinct primes, \(e_1, e_2, \ldots, e_m \) are positive integers, and \(p_1 < p_2 < \cdots < p_s \).

Proof. (Not required) We first show that \(a \) has a factorization into primes. If \(a \) has only the trivial divisors, then \(a \) itself is a prime, and it obviously has unique factorization. If \(a \) has some nontrivial divisors, then

\[a = bc \]

for some positive integers \(b, c \in \mathbb{P} \) other than 1 and \(a \). So \(b < a, c < a \). By induction, the positive integers \(b \) and \(c \) have factorizations into primes. Consequently, \(a \) has a factorization into primes.

Next we show that the factorization of \(a \) is unique in the sense of the theorem.

Let \(a = q_1^{f_1}q_2^{f_2}\cdots a_n^{f_n} \) be any factorization, where \(q_1, q_2, \ldots, q_n \) are distinct primes, \(f_1, f_2, \ldots, f_n \) are positive integers, and \(q_1 < q_2 < \cdots < q_n \). We claim that \(m = n, p_i = q_i, e_i = f_i \) for all \(1 \leq i \leq m \).

Suppose \(p_1 < q_1 \). Then \(p_1 \) is distinct from the primes \(q_1, q_2, \ldots, q_n \). It is clear that \(\text{gcd}(p_1, q_i) = 1 \), and so

\[\text{gcd}(p_1, q_i^{f_i}) = 1 \quad \text{for all} \quad 1 \leq i \leq n. \]

Note that \(p_1 \mid q_1^{f_1}q_2^{f_2}\cdots a_n^{f_n} \). Since \(\text{gcd}(p_1, q_1^{f_1}) = 1 \), by Proposition 2.5, we have \(p_1 \mid q_2^{f_2}\cdots a_n^{f_n} \). Since \(\text{gcd}(p_1, q_2^{f_2}) = 1 \), again by Proposition 2.5, we have \(p_1 \mid q_3^{f_3}\cdots a_n^{f_n} \). Repeating the argument, eventually we have \(p_1 \mid q_n^{f_n} \), which is contrary to \(\text{gcd}(p_1, q_n^{f_n}) = 1 \). We thus conclude \(p_1 \geq q_1 \). Similarly, \(q_1 \geq p_1 \). Therefore \(p_1 = q_1 \). Next we claim \(e_1 = f_1 \).

Suppose \(e_1 < f_1 \). Then

\[p_2^{e_2}\cdots p_m^{e_m} = p_1^{f_1 - e_1}q_2^{f_2}\cdots q_n^{f_n}. \]

This implies that \(p_1 \mid p_2^{e_2}\cdots p_m^{e_m} \). If \(m = 1 \), then \(p_2^{e_2}\cdots p_m^{e_m} = 1 \). So \(p_1 \mid 1 \). This is impossible because \(p_1 \) is a prime. If \(m \geq 2 \), since \(\text{gcd}(p_1, p_i) = 1 \),
we have \(\gcd(p, p^e_i) = 1 \) for all \(2 \leq i \leq m \). Applying Proposition 2.5 repeatedly, we have \(p_1 | p^e_m \), which is contrary to \(\gcd(p_1, p^e_m) = 1 \). We thus conclude \(e_1 \geq f_1 \). Similarly, \(f_1 \geq e_1 \). Therefore \(e_1 = f_1 \).

Now we have obtained \(p^{e_2} \cdots p^{e_m} = q^{f_2} \cdots q^{f_m} \). If \(m < n \), then by induction we have \(p_1 = q_1, \ldots, p_m = q_m \) and \(e_1 = f_1, \ldots, e_m = f_m \). Thus \(1 = q^{f_{m+1}} \cdots q^{f_n} \). This is impossible because \(q_{m+1}, \ldots, q_n \) are primes. So \(m \geq n \). Similarly, \(n \geq m \). Hence we have \(m = n \). By induction, we have \(e_2 = f_2, \ldots, e_m = f_m \).

Our proof is finished.

\[\square \]

Example 2.5. Factorize the numbers 180 and 882, and find \(\gcd(180, 882) \).

Solution. 180/2=90, 90/2=45, 45/3=15, 15/3=5, 5/5=1. Then 360 = \(2^2 \cdot 3^2 \cdot 5 \). Similarly, 882/2=441, 441/3=147, 147/3=49, 49/7=7, 7/7=1. We have 882 = \(2 \cdot 3^2 \cdot 7^2 \). Thus \(\gcd(180, 882) = 2 \cdot 3^2 = 18 \).

3 Least Common Multiple

For two integers \(a \) and \(b \), a positive integer \(m \) is called a common multiple of \(a \) and \(b \) if \(a \mid m \) and \(b \mid m \).

Definition 3.1. Let \(a, b \in \mathbb{Z} \), not all zero. The least common multiple of \(a \) and \(b \), denoted by \(\text{lcm}(a, b) \), is a positive integer \(m \) such that

(a) \(a \mid m \), \(b \mid m \), and

(b) If \(a \mid c \) and \(b \mid c \), then \(m \mid c \).

Proposition 3.2. For nonnegative integers \(a, b \in \mathbb{N} \), not all zero,

\[ab = \gcd(a, b) \cdot \text{lcm}(a, b). \]

Proof. Let \(a = p_1^{e_1} p_2^{e_2} \cdots p_n^{e_n} \) and \(b = p_1^{f_1} p_2^{f_2} \cdots p_n^{f_n} \), where \(p_1 < p_2 < \cdots < p_n \), \(e_i \) and \(f_i \) are nonnegative integers, \(1 \leq i \leq n \). Then by the
Unique Factorization Theorem,
\[\gcd(a, b) = p_1^{g_1}p_2^{g_2}\cdots p_n^{g_n}, \]
\[\text{lcm}(a, b) = p_1^{h_1}p_2^{h_2}\cdots p_n^{h_n}, \]
where \(g_i = \min(e_i, f_i) \), \(h_i = \max(e_i, f_i) \), \(1 \leq i \leq n \). Note that for any real numbers \(x, y \in \mathbb{R} \),
\[\min(x, y) + \max(x, y) = x + y. \]
Thus
\[g_i + h_i = e_i + f_i, \quad 1 \leq i \leq n. \]
Therefore
\[ab = p_1^{e_1+f_1}p_2^{e_2+f_2}\cdots p_n^{e_n+f_n} \]
\[= p_1^{g_1+h_1}p_2^{g_2+h_2}\cdots p_n^{g_n+h_n} \]
\[= \gcd(a, b) \cdot \text{lcm}(a, b). \]

4 Solving \(ax + by = c \)

Example 4.1. Find an integer solution for the equation
\[25x + 65y = 10. \]

Solution. Applying the Division Algorithm to find \(\gcd(25, 65) \):
\[65 = 2 \cdot 25 + 15, \]
\[25 = 15 + 10, \]
\[15 = 10 + 5. \]
Then \(\gcd(25, 65) = 5 \). Applying the Euclidean Algorithm to express 5 as an integer linear combination of 25 and 65:

\[
5 = 15 - 10 \\
= 15 - (25 - 15) \\
= -25 + 2 \cdot 15 \\
= -25 + 2 \cdot (65 - 2 \cdot 25) \\
= -5 \cdot 25 + 2 \cdot 65.
\]

By inspection, \((x, y) = (-5, 2)\) is a solution for the equation

\[
25x + 65y = 5.
\]

Since \(10/5 = 2\), we see that \((x, y) = 2(-5, 2) = (-10, 4)\) is a solution for \(25x + 65y = 10\).

Example 4.2. Find an integer solution for the equation

\[
25x + 65y = 18.
\]

Solution. Since \(\gcd(25, 65) = 5 \), if the equation has a solution, then 5 \(| \) \((25x + 65y)\). So 5 \(| \) 18 by Proposition 1.2 (c). This is a contradiction. Hence the equation has no integer solution.

Theorem 4.1. The linear Diophantine equation

\[
ax + by = c,
\]

has a solution if and only if \(d \ | \ c \), where \(d = \gcd(a, b) \).

Theorem 4.2. Let \(S \) be the set of integer solutions of the nonhomogeneous equation

\[
ax + by = c. \quad (1)
\]

Let \(S_0 \) be the set of integer solutions of the homogeneous equation

\[
ax + by = 0. \quad (2)
\]
If \((x, y) = (u_0, v_0)\) is an integer solution of (1), then \(S\) is given by
\[
S = \{(u_0 + s, v_0 + t) : (s, t) \in S_0\}.
\]
In other words, all integer solutions of (1) are given by
\[
\begin{cases}
 x = u_0 + s \\ y = v_0 + t
\end{cases}, \quad (s, t) \in S_0. \tag{3}
\]

Proof. Since \((x, y) = (u_0, v_0)\) is a solution of NHEq (1), then \(au_0 + bv_0 = c\). For any solution \((x, y) = (s, t)\) of HE (2), we have \(as + bt = 0\). Thus
\[
au_0 + sv_0 + bt = (au_0 + bv_0) + (as + bt) = c.
\]
This means that \((x, y) = (u_0 + s, v_0 + t)\) is a solution of NHEq (1).

Conversely, for any solution \((x, y) = (u, v)\) of NHEq (1), we have \(au + bv = c\). Let \((s_0, t_0) = (u - u_0, v - v_0)\). Then
\[
as_0 + bt_0 = au - au_0 + bv - bv_0 = (au + bv) - (au_0 + bv_0) = c - c = 0.
\]
This means that \((s_0, t_0)\) is a solution of HEq (2). Note that
\[
(u, v) = (u_0 + s_0, v_0 + t_0).
\]
This shows that the solution \((x, y) = (u, v)\) of NHEq (1) is a solution of the form in (3). Our proof is finished. \(\square\)

Proposition 4.3. Let \(d = \gcd(a, b)\). The integer solution set \(S_0\) of
\[
ax + by = 0
\]
is given by
\[
S_0 = \{k(b/d, -a/d) : k \in \mathbb{Z}\}.
\]
In other words,
\[
\begin{cases}
 x = \frac{(b/d)k}{} \\ y = -\frac{(a/d)k}{}
\end{cases}, \quad k \in \mathbb{Z}.
\]

12
Proof. The equation $ax + by = 0$ can be written as $ax = -by$. Write $m = ax = -by$. Then $a \mid m$ and $b \mid m$, i.e., m is a multiple of a and b. Thus $m = k \cdot \text{lcm}(a, b)$ for some $k \in \mathbb{Z}$. Therefore $ax = k \cdot \text{lcm}(a, b)$ implies
\[x = \frac{k \cdot \text{lcm}(a, b)}{a} = \frac{kab}{da} = \frac{kb}{d}. \]
Likewise, $-by = k \cdot \text{lcm}(a, b)$ implies
\[y = \frac{k \cdot \text{lcm}(a, b)}{-b} = \frac{kab}{-db} = -\frac{ka}{d}. \]

\[\square \]

Theorem 4.4. Let $d = \gcd(a, b)$ and $d \mid c$. Let (u_0, v_0) be a particular integer solution of the equation
\[ax + by = c. \]
Then all integer solutions of the above equation are given by
\[\begin{align*}
 x &= u_0 + bk/d, \\
 y &= v_0 - ak/d, \quad k \in \mathbb{Z}.
\end{align*} \]

Proof. It follows from Theorem 4.2 and Proposition 4.3. \[\square \]

Example 4.3. Find all integer solutions for the equation
\[25x + 65y = 10. \]

Solution. Find $\gcd(25, 65) = 5$ and have got a special solution $(x, y) = (-10, 4)$ in a previous example. Now consider the equation $25x + 65y = 0$. Divide both sides by 5 to have,
\[5x + 13y = 2. \]
Since $\gcd(5, 13) = 1$, all solutions for the above equation are given by $(x, y) = k(-13, 5), \ k \in \mathbb{Z}$. Thus all solutions of $25x + 65y = 10$ are given by
\[\begin{align*}
 x &= -10 - 13k, \\
 y &= 4 + 5k, \quad k \in \mathbb{Z}.
\end{align*} \]
Example 4.4.

\[168x + 668y = 888.\]

Solution. Find \(\gcd(168, 668) = 4\) by the Division Algorithm

\[
\begin{align*}
668 &= 3 \cdot 168 + 164 \\
168 &= 164 + 4 \\
164 &= 41 \cdot 4
\end{align*}
\]

By the Euclidean Algorithm,

\[
4 = 168 - 164 = 168 - (668 - 3 \cdot 168) = 4 \cdot 168 + (-1) \cdot 668.
\]

Dividing \(\frac{888}{4} = 222\), we obtain a special solution

\[(x, y) = 222(4, -1) = (888, -222)\]

Solve \(168x + 668y = 0\). Dividing both sides by 4,

\[
42x + 167y = 0 \quad \text{i.e.} \quad 42x = -167y.
\]

The general solutions for \(168x + 668y = 0\) are given by

\[(x, y) = k(167, -42), \quad k \in \mathbb{Z}.
\]

The general solutions for \(168x + 668y = 888\) are given by

\[(x, y) = (888, -222) + k(167, -42), \quad k \in \mathbb{Z}.
\]

i.e.

\[
\begin{aligned}
x &= 888 + 167k \\
y &= -222 - 42k
\end{aligned}, \quad k \in \mathbb{Z}.
\]
Let \(n \) be a fixed positive integer. Two integers \(a \) and \(b \) are said to be **congruent** modulo \(n \), written

\[
a \equiv b \pmod{n}
\]

and read “\(a \) equals \(b \) modulo \(n \)” if \(n \mid (b - a) \).

For all \(k, l \in \mathbb{Z} \), \(a \equiv b \pmod{n} \) is equivalent to

\[
a + kn \equiv b + ln \pmod{n}.
\]

In fact, the difference

\[
(b + ln) - (a + kn) = (b - a) + (l - k)n
\]

is a multiple of \(n \) if and only if \(b - a \) is a multiple of \(n \).

Example 5.1.

\[
3 \equiv 5 \pmod{2}, \quad 368 \equiv 168 \pmod{8}, \quad -8 \equiv 10 \pmod{9},
\]

\[
3 \not\equiv 5 \pmod{3}, \quad 368 \not\equiv 268 \pmod{8}, \quad -8 \not\equiv 18 \pmod{9}.
\]

Proposition 5.1. Let \(n \) be a fixed positive integer.

(a) If \(a_1 \equiv b_1 \pmod{n} \) and \(a_2 \equiv b_2 \pmod{n} \), then

\[
a_1 \pm a_2 \equiv b_1 \pm b_2 \pmod{n}, \quad a_1a_2 \equiv b_1b_2 \pmod{n}.
\]

(b) If \(a \equiv b \pmod{n} \), \(d \mid n \), then \(a \equiv b \pmod{d} \).

(c) If \(d \) divides all integers \(a, b, n \), then

\[
a \equiv b \pmod{n} \iff \frac{a}{d} \equiv \frac{b}{d} \pmod{\frac{n}{d}}.
\]
Proof. (a) Since \(a_1 \equiv b_1 \pmod{n} \) and \(a_2 \equiv b_2 \pmod{n} \), there are integers \(k_1 \) and \(k_2 \) such that

\[
b_1 - a_1 = k_1n, \quad b_2 - a_2 = k_2n.
\]

Then

\[
(b_1 + b_2) \pm (a_1 + a_2) = (k_1 \pm k_2)n,
\]

\[
b_1b_2 - a_1a_2 = b_1b_2 - b_1a_2 + b_1a_2 - a_1a_2
\]
\[
= b_1(b_2 - a_2) + (b_1 - a_1)a_2
\]
\[
= bk' + kna'
\]
\[
= (b_1k_2 + a_2k_1)n.
\]

Thus

\[
a_1 \pm a_2 \equiv b_1 \pm b_2 \pmod{n};
\]

\[
a_1a_2 \equiv b_1b_2 \pmod{n}.
\]

(b) Since \(d \mid n \), we have \(n = dl \) for some \(l \in \mathbb{Z} \). Then

\[
b - a = kn = (kl)d, \quad \text{i.e.,} \quad a \equiv b \pmod{d}.
\]

(c) \(a \equiv b \pmod{n} \) iff \(b - a = kn \) for an integer \(k \), which is iff

\[
\frac{b}{d} - \frac{a}{d} = k \times \frac{n}{d}, \quad \text{i.e.,} \quad \frac{a}{d} \equiv \frac{b}{d} \pmod{\frac{n}{d}}.
\]

\(\square \)

Example 5.2.

\[
6 \equiv 14 \pmod{8} \implies 2 \times 6 \equiv 2 \times 14 \pmod{8},
\]

\[
6 \equiv 14 \pmod{8} \iff \frac{6}{2} \equiv \frac{14}{2} \pmod{\frac{8}{2}}.
\]

However,

\[
2 \times 3 \equiv 2 \times 7 \pmod{8} \nRightarrow 3 \equiv 7 \pmod{8}.
\]
In fact,
\[3 \not\equiv 7 \pmod{8}. \]

Theorem 5.2. If \(\gcd(m, n) = 1 \), then

\[a \equiv b \pmod{m}, \ a \equiv b \pmod{n} \iff a \equiv b \pmod{mn}. \]

More generally,

\[a \equiv b \pmod{m}, \ a \equiv b \pmod{n} \iff a \equiv b \pmod{\text{lcm}(m, n)}. \]

Proof. Let \(l = \text{lcm}(m, n) \). If \(a \equiv b \pmod{m} \) and \(a \equiv b \pmod{n} \), then \(m \mid (b - a) \) and \(n \mid (b - a) \). Thus \(l \mid (b - a) \), i.e., \(a \equiv b \pmod{l} \). Conversely, if \(a \equiv b \pmod{l} \), then \(l \mid (b - a) \). Since \(m \mid l, n \mid l \), we have \(m \mid (b - a), n \mid (b - a) \). Thus \(a \equiv b \pmod{m}, \ a \equiv b \pmod{n} \).

In particular, if \(\gcd(m, n) = 1 \), we have \(\text{lcm}(m, n) = mn \).

Definition 5.3. An integer \(a \) is said to be **invertible** modulo \(n \) if there exists an integer \(b \) such that

\[ab \equiv 1 \pmod{n}. \]

If so, \(b \) is called the **inverse** of \(a \) modulo \(n \).

Proposition 5.4. An integer \(a \) is invertible modulo \(n \) if and only if \(\gcd(a, n) = 1 \)

Proof. “⇒” If \(a \) is invertible modulo \(n \), say, its inverse is \(b \), then there exists an integer \(k \) such that \(ab = 1 + kn \), i.e., \(1 = ab - kn \), which is an integer linear combination of \(a \) and \(n \). Thus \(\gcd(a, n) \) divides \(1 \). Hence \(\gcd(a, n) = 1 \).

“⇐” By the Euclidean Algorithm, there exist integers \(u, v \) such that \(1 = au + nv \). Then \(au \equiv 1 \pmod{n} \).

If \(a \) and \(b \) are invertible modulo \(n \), so is \(ab \).
Another way to introduce modulo integers is to consider the quotient set \mathbb{Z}_n over the equivalence relation \sim_n (or just \sim) defined by $a \sim_n b$ iff $n \mid (b - a)$, i.e.,

$$\mathbb{Z}_n = \{[0], [1], \ldots, [n-1]\} = \mathbb{Z}/\sim_n.$$

There are addition and multiplication on \mathbb{Z}_n, defined by

$$[a] + [b] := [a + b], \quad [a][b] := [ab].$$

The addition and multiplication are well-defined:

$$[a' + b'] = [a + b], \quad [a'b'] = [ab].$$

In fact, if $[a] = [a']$ and $[b] = [b']$, then $a' - a = pn$ and $b' - b = qn$; thus

$$(a' + b') - (a + b) = (p + q)n \quad \text{and} \quad a'b' - ab = (a + pn)(b + qn) - ab = (pb + qa + pqn)n; \quad \text{hence} \quad [a' + b'] = [a + b] \quad \text{and} \quad [a'b'] = [ab].$$

The class $[0]$ is the zero and $[1]$ the unit of \mathbb{Z}_n, i.e., $[a] + [0] = [a]$ and $[a][1] = [1][a] = [a]$.

An element $[a]$ is said to be invertible in \mathbb{Z}_n if there exists an element $[b] \in \mathbb{Z}_n$, called an inverse of $[a]$, such that

$$[a][b] = [ab] = [1].$$

If $[a]$ is invertible, then its inverse is unique, the unique inverse is written as $[a]^{-1}$.

If $[a]$ and $[b]$ are invertible modulo n, so is $[ab]$.

Theorem 5.5 (Fermat’s Little Theorem). *Let p be a prime. If a is an integer such that $p \nmid a$, then*

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof. Consider the map $f_a : \mathbb{Z}_p \to \mathbb{Z}_p$ by $f_a([x]) = [ax]$. Since $p \nmid a$, i.e., $\gcd(p, a) = 1$, so $[a]$ is invertible. Let b be an inverse of a modulo p. Then f_b is the inverse function of f_a. Thus f_a is a bijection.
Let \(\mathbb{Z}_p^* = \{1, [2], \ldots, [p-1]\} \). Since \(f_a([0]) = [0] \), we see that \(f_a(\mathbb{Z}_p^*) = \mathbb{Z}_p^* \). Now we have

\[
[a]^{p-1} \prod_{k=1}^{p-1} [k] = \prod_{k=1}^{p-1} [ak] = \prod_{z \in f_a(\mathbb{Z}_p^*)} z = \prod_{z \in \mathbb{Z}_p^*} z = \prod_{k=1}^{p-1} [k].
\]

Note that \(\prod_{k=1}^{p-1} [k] \) is invertible. It follows that \([a]^{p-1} = [1] \).

Proposition 5.6 (Generalized Fermat’s Little Theorem). Let \(p \) and \(q \) be distinct prime numbers. If \(a \) is an integer such that \(p \nmid a \) and \(q \nmid a \), then

\[
a^{(p-1)(q-1)} \equiv 1 \pmod{pq}.
\]

Proof. By Fermat’s Little Theorem we have \(a^{p-1} \equiv 1 \pmod{p} \). Raising to the power \(q - 1 \), we have

\[
a^{(p-1)(q-1)} \equiv 1 \pmod{p}.
\]

This means that \(p \mid (a^{(p-1)(q-1)} - 1) \). Likewise, \(q \mid (a^{(p-1)(q-1)} - 1) \). Since \(p \) and \(q \) are coprime, we see that \(pq \mid (a^{(p-1)(q-1)} - 1) \), in other words, \(a^{(p-1)(q-1)} \equiv 1 \pmod{pq} \).

Theorem 5.7 (Euler’s Theorem). For integer \(n \geq 2 \) and integer \(a \) such that \(\gcd(a, n) = 1 \),

\[
a^{\varphi(n)} = 1 \pmod{n},
\]

where \(\varphi(n) \) is the number of invertible integers modulo \(n \).

Proof. Let \(\mathbb{Z}_n^* \) denote the set of invertible elements of \(\mathbb{Z}_n \). Note that \([a]\) is invertible, \(f_a : \mathbb{Z}_n \to \mathbb{Z}_n \) by \(f_a([x]) = [ax] \) is bijective, and \(f_a(\mathbb{Z}_n^*) = \mathbb{Z}_n^* \). Then

\[
[a]_{\mathbb{Z}_n^*} \prod_{[x] \in \mathbb{Z}_n^*} [x] = \prod_{[x] \in \mathbb{Z}_n^*} [a][x] = \prod_{[x] \in \mathbb{Z}_n^*} [ax] = \prod_{[y] \in f_a(\mathbb{Z}_n^*)} [y] = \prod_{[x] \in \mathbb{Z}_n^*} [x].
\]

Since \(\prod_{[x] \in \mathbb{Z}_n^*} [x] \) is invertible, it follows that \([a]^{\varphi(n)} = [1] \).
Fermat’s Little Theorem and its generalization are special cases of Euler’s Theorem. In fact, \(\varphi(p) = p - 1 \) and \(\varphi(pq) = (p - 1)(q - 1) \) for distinct primes \(p, q \).

Example 5.3. The invertible integers modulo 12 are the following numbers

\[1, 5, 7, 11. \]

Numbers 0, 2, 3, 4, 6, 8, 9, 10 are not invertible modulo 12.

Theorem 5.8. Let \(\gcd(c, n) = 1 \). Then

\[a \equiv b \pmod{n} \iff ca \equiv cb \pmod{n} \]

Proof. By the Euclidean Algorithm, there are integers \(u, v \) such that

\[1 = cu + nv. \]

Then \(1 \equiv cu \pmod{n} \); i.e., \(a \) and \(u \) are inverses of each other modulo \(n \)

“\(\Rightarrow \): \(c \equiv c \pmod{n} \) and \(a \equiv b \pmod{n} \) imply

\[ca \equiv cb \pmod{n}. \]

This true without \(\gcd(c, n) = 1 \).

“\(\Leftarrow \): \(ca \equiv cb \pmod{n} \) and \(u \equiv u \pmod{n} \) imply that

\[uca \equiv ucb \pmod{n}. \]

Replace \(uc = 1 - vn \); we have \(a - avn \equiv b - bvn \pmod{n} \). This means \(a \equiv b \pmod{n} \).

Example 5.4. Find the inverse modulo 15 for each of the numbers 2, 4, 7, 8, 11, 13.

Solution. Since \(2 \cdot 8 \equiv 1 \pmod{15} \), \(4 \cdot 4 \equiv 1 \pmod{15} \). Then 2 and 8 are inverses of each other; 4 is the inverse of itself.
Write $15 = 2 \cdot 7 + 1$. Then $15 - 2 \cdot 7 = 1$. Thus $-2 \cdot 7 \equiv 1 \pmod{15}$. The inverse of 7 is -2. Since $-2 \equiv 13 \pmod{15}$, the inverse of 7 is also 13. In fact,

$$7 \cdot 13 \equiv 1 \pmod{15}.$$

Similarly, $15 = 11 + 4, 11 = 2 \cdot 4 + 3, 4 = 3 + 1$, then

$$1 = 4 - 3 = 4 - (11 - 2 \cdot 4)
= 3 \cdot 4 - 11 = 3 \cdot (15 - 11) - 11
= 15 - 4 \cdot 11.$$

Thus the inverse of 11 is -4. Since $-4 \equiv 11 \pmod{15}$, the inverse of 11 is also itself, i.e., $11 \cdot 11 \equiv 1 \pmod{15}$.

6 Solving $ax \equiv b \pmod{n}$

Theorem 6.1. The congruence equation

$$ax \equiv b \pmod{n}$$

has a solution if and only if $\gcd(a, n)$ divides b.

Proof. Let $d = \gcd(a, n)$. The congruence equation has a solution if and only if there exist integers x and k such that $b = ax + kn$. This is equivalent to $d \mid b$. \hfill \square

Remark. For all $k, l \in \mathbb{Z}$, we have

$$ax \equiv b \pmod{n} \iff (a + kn)x \equiv b + ln \pmod{n}.$$

In fact, the difference

$$(b + ln) - (a + kn)x = (b - ax) + (l - kx)n$$

is a multiple of n if and only if $b - ax$ is a multiple of n.

21
Theorem 6.2. Let \(\gcd(a, n) = 1 \). Then there exists an integer \(u \) such that \(au \equiv 1 \pmod{n} \); the solutions for the equation \(ax \equiv b \pmod{n} \) are given by

\[x \equiv ub \pmod{n}. \]

Proof. Since \(\gcd(a, n) = 1 \), there exist \(u, v \in \mathbb{Z} \) such that \(1 = au + nv \). So \(1 \equiv au \pmod{n} \), i.e., \(au \equiv 1 \pmod{n} \). Since \(u \) is invertible modulo \(n \), we have

\[ax \equiv b \pmod{n} \iff uax \equiv ub \pmod{n}. \]

Since \(au = 1 - nv \), then \(uax = (1 - nv)x = x - vxn \). Thus

\[ax \equiv b \pmod{n} \iff x - vxn \equiv ub \pmod{n}. \]

Therefore

\[ax \equiv b \pmod{n} \iff x \equiv ub \pmod{n}. \]

\[\Box \]

Example 6.1. Find all integers \(x \) for

\[9x \equiv 27 \pmod{15}. \]

Solution. Find \(\gcd(9, 15) = 3 \). Dividing both sides by 3,

\[3x \equiv 9 \pmod{5} \iff 3x \equiv 4 \pmod{5}. \]

Since \(\gcd(3, 5) = 1 \), the integer 3 is invertible and its inverse is 2. Multiplying 2 to both sides,

\[6x \equiv 8 \pmod{5}. \]

Since \(6 \equiv 1 \pmod{5} \), \(8 \equiv 3 \pmod{5} \), then

\[x \equiv 3 \pmod{5}. \]

In other words,

\[x = 3 + 5k, \quad k \in \mathbb{Z}. \]
Example 6.2.

\[13x \equiv 8 \pmod{15} \]

The inverse of 13 is 7 modulo 15. We have

\[7 \times 13x \equiv 7 \times 8 \pmod{15} \equiv 56 \pmod{15} \equiv 11 \pmod{15}. \]

So \(x \equiv 11 \pmod{15} \).

Example 6.3. Solve the equation \(668x \equiv 888 \pmod{168} \).

Solution. Find \(\gcd(668, 168) = 4 \). Dividing both sides by 4,

\[167x \equiv 222 \pmod{42}. \]

By the Division Algorithm,

\[167 = 3 \times 42 + 41, \quad 42 = 41 + 1. \]

By the Euclidean Algorithm,

\[1 = 42 - 41 = 42 - (167 - 3 \cdot 42) = 4 \cdot 42 - 167. \]

Then \(-167 \equiv 1 \pmod{42}\). The inverse of 167 modulo 42 is \(-1\). Multiplying \(-1\) to both sides, we have \(x \equiv -222 \pmod{42} \). Thus

\[x \equiv -12 \pmod{42} \quad \text{or} \quad x \equiv 30 \pmod{42}; \quad \text{i.e.} \]

\[x = 30 + 42k, \quad k \in \mathbb{Z}. \]

Algorithm for solving \(ax \equiv b \pmod{n} \).

Step 1. Find \(d = \gcd(a, n) \) by the Division Algorithm.

Step 2. If \(d = 1 \), apply the Euclidean Algorithm to find \(u, v \in \mathbb{Z} \) such that \(1 = au + nv \).

Step 3. Do the multiplication \(uax \equiv ub \pmod{n} \). All solutions \(x \equiv ub \pmod{n} \) are obtained. Stop.
Step 4. If $d > 1$, check whether $d \mid b$. If $d \nmid b$, there is no solution. Stop. If $d \mid b$, do the division
\[
\frac{a}{d} x \equiv \frac{b}{d} \pmod{\frac{n}{d}}.
\]
Rewrite a/d as a, b/d as b, and n/d as n. Go to Step 1.

Proof. Since $1 = au + nv$, we have $au \equiv 1 \pmod{n}$. This means that a and u are inverses of each other modulo n. So
\[
a x \equiv b \pmod{n} \iff uax \equiv ub \pmod{n}.
\]
Since $ua = 1 - vn$, then $uax = (1 - vn)x = x - vxn$. Thus
\[
uax \equiv ub \pmod{n} \iff x \equiv ub \pmod{n}.
\]

Example 6.4. Solve the equation $245x \equiv 49 \pmod{56}$.

Solution. Applying the Division Algorithm,
\[
\begin{align*}
245 &= 4 \cdot 56 + 21 \\
56 &= 2 \cdot 21 + 14 \\
21 &= 14 + 7
\end{align*}
\]
Applying the Euclidean Algorithm,
\[
\begin{align*}
7 &= 21 - 14 = 21 - (56 - 2 \cdot 21) \\
&= 3 \cdot 21 - 56 = 3 \cdot (245 - 4 \cdot 56) - 56 \\
&= 3 \cdot 245 - 13 \cdot 56
\end{align*}
\]
Dividing both sides by 7, we have
\[
1 = 3 \cdot 35 - 13 \cdot 8.
\]
Thus $3 \cdot 35 \equiv 1 \pmod{8}$. Dividing the original equation by 7, we have $35x \equiv 7 \pmod{8}$. Multiplying 3 to both sides, we obtain solutions
\[
x \equiv 21 \equiv 5 \pmod{8}
\]
7 Chinese Remainder Theorem

Example 7.1. Solve the system
\[
\begin{align*}
 x &\equiv 0 \pmod{n_1} \\
 x &\equiv 0 \pmod{n_2}
\end{align*}
\]

Solution. By definition of solution, \(x\) is a common multiple of \(n_1\) and \(n_2\). So \(x\) is a multiple of \(\text{lcm}(n_1, n_2)\). Thus the system is equivalent to
\[x \equiv 0 \pmod{\text{lcm}(n_1, n_2)}\].

Theorem 7.1. Let \(S\) be the solution set of the system
\[
\begin{align*}
 a_1x &\equiv b_1 \pmod{n_1} \\
 a_2x &\equiv b_2 \pmod{n_2}
\end{align*}
\] (4)

Let \(S_0\) be the solution set of the homogeneous system
\[
\begin{align*}
 a_1x &\equiv 0 \pmod{n_1} \\
 a_2x &\equiv 0 \pmod{n_2}
\end{align*}
\] (5)

If \(x = x_0\) is a solution of (4), then all solutions of (4) are given by
\[x = x_0 + s, \quad s \in S_0.\] (6)

Proof. We first show that \(x = x_0 + s\), where \(s \in S_0\), are indeed solutions of (4). In fact, since \(x_0\) is a solution for (4) and \(s\) is a solution for (5), we have
\[
\begin{align*}
 a_1x_0 &\equiv b_1 \pmod{n_1} \\
 a_2x_0 &\equiv b_2 \pmod{n_2}
\end{align*}
\] and
\[
\begin{align*}
 a_1s &\equiv 0 \pmod{n_1} \\
 a_2s &\equiv 0 \pmod{n_2}
\end{align*}
\]
i.e., \(n_1\) divides \((b_1 - a_1x_0)\) and \(a_1s\); \(n_2\) divides \((b_2 - a_2x_0)\) and \(a_2s\). Then \(n_1\) divides \([(b_1 - a_1x_0) - a_1s]\), and \(n_2\) divides \([(b_2 - a_2x_0) - a_2s]\); i.e., \(n_1\) divides \([b_1 - a_1(x_0 + s)]\), and \(n_2\) divides \([b_2 - a_2(x_0 + s)]\). This means that \(x = x_0 + s\) is a solution of (4).

Conversely, let \(x = t\) be any solution of (4). We will see that \(s_0 = t - x_0\) is a solution of (5). Hence the solution \(t = x_0 + s_0\) is of the form in (6). \(\square\)
Algorithm for solving the system

\[
\begin{align*}
 a_1x & \equiv b_1 \pmod{n_1} \\
 a_2x & \equiv b_2 \pmod{n_2}
\end{align*}
\]

(7)

Step 1. Reduce the system to the form

\[
\begin{align*}
 x & \equiv c_1 \pmod{m_1} \\
 x & \equiv c_2 \pmod{m_2}
\end{align*}
\]

(8)

Step 2. Set \(x = c_1 + ym_1 = c_2 + zm_2 \), where \(y, z \in \mathbb{Z} \). Find a solution \((y, z) = (y_0, z_0)\) for the equation

\[m_1y - m_2z = c_2 - c_1. \]

Consequently, \(x_0 = c_1 + m_1y_0 = c_2 + m_2z_0 \).

Step 3. Set \(m = \text{lcm}(m_1, m_2) \). The system (7) becomes

\[x \equiv x_0 \pmod{m}. \]

Proof. It follows from Theorem 7.1. \(\square \)

Example 7.2. Solve the system

\[
\begin{align*}
 10x & \equiv 6 \pmod{4} \\
 12x & \equiv 30 \pmod{21}
\end{align*}
\]

Solution. Applying the Division Algorithm,

\[
\gcd(10, 4) = 2, \quad \gcd(12, 21) = 3.
\]

Dividing the 1st equation by 2 and the second equation by 3,

\[
\begin{align*}
 5x & \equiv 3 \pmod{2} \iff x \equiv 1 \pmod{2} \\
 4x & \equiv 10 \pmod{7} \iff 4x \equiv 3 \pmod{7}
\end{align*}
\]

The system is equivalent to

\[
\begin{align*}
 x & \equiv 1 \pmod{2} \\
 x & \equiv 6 \pmod{7}
\end{align*}
\]
Set $x = 1 + 2y = 6 + 7z$, $y, z \in \mathbb{Z}$. Then

$$2y - 7z = 5.$$ Applying the Division Algorithm, $7 = 3 \cdot 2 + 1$. Applying the Euclidean Algorithm, $1 = -3 \cdot 2 + 7$. Then $5 = -15 \cdot 2 + 5 \cdot 7$. We obtain a solution $(y_0, z_0) = (-15, -5)$. Thus

$$x_0 = 1 + 2y_0 = 6 + 7z_0 = -29$$

is a special solution. The general solution for

$$\begin{cases} x \equiv 0 \pmod{2} \\ x \equiv 0 \pmod{7} \end{cases}$$

is $x \equiv 0 \pmod{14}$. Hence the solution is given by

$$x \equiv -29 \equiv -1 \equiv 13 \pmod{14}$$

Example 7.3. Solve the system

$$\begin{cases} 12x \equiv 96 \pmod{20} \\ 20x \equiv 70 \pmod{30} \end{cases}$$

Solution. Applying the Division Algorithm to find,

$$\gcd(12, 20) = 4, \quad \gcd(20, 30) = 10.$$ Then

$$\begin{cases} 3x \equiv 24 \pmod{5} \\ 2x \equiv 7 \pmod{3} \end{cases}$$

Applying the Euclidean Algorithm,

$$\gcd(3, 5) = 1 = 2 \cdot 3 - 1 \cdot 5.$$ Then $2 \cdot 3 \equiv 1 \pmod{5}$. Similarly,

$$\gcd(2, 3) = 1 = -1 \cdot 2 + 1 \cdot 3$$

27
and \(-1 \cdot 2 = 1 \text{ (mod 3)}\). (Equivalently, \(2 \cdot 2 \equiv 1 \text{ (mod 3)}\).) Then, 2 is the inverse of 3 modulo 5; \(-1\) or 2 is the inverse of 2 modulo 3. Thus
\[
\begin{cases}
2 \cdot 3x & \equiv 2 \cdot 24 \pmod{5} \\
-1 \cdot 2x & \equiv -1 \cdot 7 \pmod{3}
\end{cases}
\]
Set \(x = 3 + 5y = 2 + 3z\), where \(y, z \in \mathbb{Z}\). That is,
\[
5y - 3z = -1.
\]
We find a special solution \((y_0, z_0) = (1, 2)\). So \(x_0 = 3 + 5y_0 = 2 + 3z_0 = 8\). Thus the original system is equivalent to
\[
x \equiv 8 \pmod{15}
\]
and all solutions are given by
\[
x = 8 + 15k, \quad k \in \mathbb{Z}.
\]

Example 7.4. Find all integer solutions for the system
\[
\begin{cases}
x & \equiv 486 \pmod{186} \\
x & \equiv 386 \pmod{286}
\end{cases}
\]

Solution. The system can be reduced to
\[
\begin{cases}
x & \equiv 114 \pmod{186} \\
x & \equiv 100 \pmod{286}
\end{cases}
\]
Set \(x = 114 + 186y = 100 + 286z\), i.e.,
\[
186y - 286z = -14.
\]
Applying the Division Algorithm,
\[
\begin{align*}
286 & = 186 + 100, \\
186 & = 100 + 86, \\
100 & = 86 + 14, \\
86 & = 6 \cdot 14 + 2.
\end{align*}
\]
Then \(\gcd(186, 286) = 2 \). Applying the Euclidean Algorithm,

\[
2 = 86 - 6 \cdot 14 \\
= 86 - 6(100 - 86) = 7 \cdot 86 - 6 \cdot 100 \\
= 7(186 - 100) - 6 \cdot 100 = 7 \cdot 186 - 13 \cdot 100 \\
= 7 \cdot 186 - 13(286 - 186) = 20 \cdot 186 - 13 \cdot 286.
\]

Note that \(-\frac{14}{2} = -7 \). So we get a special solution

\[
(y_0, z_0) = -7(20, 13) = (-140, -91).
\]

Thus \(x_0 = 114 + 186y_0 = 100 + 286z_0 = -25926 \). Note that \(\text{lcm}(186, 286) = 26598 \). The general solutions are given by

\[
x \equiv -25926 \equiv 672 \pmod{26598}.
\]

Theorem 7.2 (Chinese Remainder Theorem). Let \(n_1, n_2, \ldots, n_k \in \mathbb{P} \). If \(\gcd(n_i, n_j) = 1 \) for all \(i \neq j \), then the system of congruence equations

\[
x \equiv b_1 \pmod{n_1} \\
x \equiv b_2 \pmod{n_2} \\
\vdots \\
x \equiv b_k \pmod{n_k}.
\]

has a unique solution modulo \(n_1n_2 \cdots n_k \).

Thinking Problem. In the Chinese Remainder Theorem, if

\[
\gcd(n_i, n_j) = 1,
\]

is not satisfied, does the system have solutions? Assuming it has solutions, are the solutions unique modulo some integers?

8 Important Facts

1. \(a \equiv b \pmod{n} \iff a + kn \equiv b + ln \pmod{n} \) for all \(k, l \in \mathbb{Z} \).
2. If $c \mid a$, $c \mid b$, $c \mid n$, then
\[a \equiv b \pmod n \iff a/c \equiv b/c \pmod {n/c}. \]

3. An integer a is called invertible modulo n if there exists an integer b such that
\[ab \equiv 1 \pmod n. \]

If so, b is called the inverse of a modulo n.

4. An integer a is invertible modulo $n \iff \gcd(a, n) = 1$.

5. If $\gcd(c, n) = 1$, then
\[a \equiv b \pmod n \iff ca \equiv cb \pmod n. \]

6. Equation $ax \equiv b \pmod n$ has solution $\iff \gcd(a, n) \mid b$.

7. For all $k, l \in \mathbb{Z}$,
\[ax \equiv b \pmod n \iff (a + kn)x \equiv b + ln \pmod n. \]

9 Final Review

1. Set System,

2. Propositional Logic System

3. Counting

4. Binary Relations

5. Recurrence Relations

6. Graph Theory

7. Elementary Probability

8. Integers and Modulo Integers (Number Theory)