Week 4-5: Binary Relations

1 Binary Relations

The concept of relation is common in daily life and seems intuitively clear. For instance, let \(X \) denote the set of all females and \(Y \) the set of all males. The wife-husband relation \(R \) can be thought as a relation from \(X \) to \(Y \). For a lady \(x \in X \) and a gentleman \(y \in Y \), we say that \(x \) is related to \(y \) by \(R \) if \(x \) is a wife of \(y \), written as \(xRy \). To describe the relation \(R \), we may list the collection of all ordered pairs \((x, y)\) such that \(x \) is related to \(y \) by \(R \). The collection of all such related ordered pairs is simply a subset of the Cartesian product \(X \times Y \). This motivates the following definition of binary relations.

Definition 1.1. Let \(X \) and \(Y \) be nonempty sets. A **binary relation** from \(X \) to \(Y \) is a subset

\[
R \subseteq X \times Y.
\]

If \((x, y) \in R\), we say that \(x \) is related to \(y \) by \(R \), denoted \(xRy \). If \((x, y) \notin R\), we say that \(x \) is not related to \(y \), denoted \(x\not R y \). For each element \(x \in X \), we denote by \(R(x) \) the subset of elements of \(Y \) that are related to \(x \), that is,

\[
R(x) = \{ y \in Y : xRy \} = \{ y \in Y : (x, y) \in R \}.
\]

For each subset \(A \subseteq X \), we define

\[
R(A) = \{ y \in Y : \exists x \in A \text{ such that } xRy \} = \bigcup_{x \in A} R(x).
\]

When \(X = Y \), we say that \(R \) is a **binary relation on** \(X \).

Since binary relations from \(X \) to \(Y \) are subsets of \(X \times Y \), we can define intersection, union, and complement for binary relations. The **complementary relation** of a binary relation \(R \subseteq X \times Y \) is the binary relation \(\overline{R} \subseteq X \times Y \) defined by

\[
x\not R y \iff (x, y) \notin R.
\]
The **converse relation** (or **reverse relation**) of R is the binary relation $R^{-1} \subseteq Y \times X$ defined by

\[yR^{-1}x \iff (x, y) \in R. \]

Example 1.1. Consider a family A with five children, Amy, Bob, Charlie, Debbie, and Eric. We abbreviate the names to their first letters so that

\[A = \{a, b, c, d, e\}. \]

(a) The **brother-sister** relation R_{bs} is the set

\[R_{bs} = \{(b, a), (b, d), (c, a), (c, d), (e, a), (e, d)\}. \]

(b) The **sister-brother** relation R_{sb} is the set

\[R_{sb} = \{(a, b), (a, c), (a, e), (d, b), (d, c), (d, e)\}. \]

(c) The **brother** relation R_{b} is the set

\[\{(b, b), (b, c), (b, e), (c, b), (c, c), (c, e), (e, b), (e, c), (e, e)\}. \]

(d) The **sister** relation R_{s} is the set

\[\{(a, a), (a, d), (d, a), (d, d)\}. \]

The **brother-sister** relation R_{bs} is the inverse of the **sister-brother** relation R_{sb}, i.e.,

\[R_{bs} = R_{sb}^{-1}. \]

The **brother or sister** relation is the union of the **brother** relation and the **sister** relation, i.e.,

\[R_{b} \cup R_{s}. \]

The complementary relation of the **brother or sister** relation is the **brother-sister** or **sister-brother** relation, i.e.,

\[\overline{R_{b} \cup R_{s}} = R_{bs} \cup R_{sb}. \]
Example 1.2. (a) The graph of equation

$$\frac{x^2}{3^2} + \frac{y^2}{2^2} = 1$$

is a binary relation on \(\mathbb{R}\). The graph is an ellipse.

(b) The relation **less than**, denoted by \(<\), is a binary relation on \(\mathbb{R}\) defined by

\[a < b \quad \text{if} \quad a \text{ is less than } b. \]

As a subset of \(\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}\), the relation is given by the set

\[\{(a, b) \in \mathbb{R}^2 : a \text{ is less than } b\}. \]

(c) The relation **greater than or equal to** is a binary relation \(\geq\) on \(\mathbb{R}\) defined by

\[a \geq b \quad \text{if} \quad a \text{ is greater than or equal to } b. \]

As a subset of \(\mathbb{R}^2\), the relation is given by the set

\[\{(a, b) \in \mathbb{R}^2 : a \text{ is greater than or equal to } b\}. \]

(d) The **divisibility relation** \(\mid\) about integers, defined by

\[a \mid b \quad \text{if} \quad a \text{ divides } b,\]

is a binary relation on the set \(\mathbb{Z}\) of integers. As a subset of \(\mathbb{Z}^2\), the relation is given by

\[\{(a, b) \in \mathbb{Z}^2 : a \text{ is a factor of } b\}. \]

Example 1.3. Any function \(f : X \rightarrow Y\) can be viewed as a binary relation from \(X\) to \(Y\). The binary relation is just its graph

\[G(f) = \{(x, f(x)) : x \in X\} \subseteq X \times Y. \]

Proposition 1.2. Let \(R \subseteq X \times Y\) be a binary relation from \(X\) to \(Y\). Let \(A, B \subseteq X\) be subsets.

(a) If \(A \subseteq B\), then \(R(A) \subseteq R(B)\).

(b) \(R(A \cup B) = R(A) \cup R(B)\).
(c) \(R(A \cap B) \subseteq R(A) \cap R(B) \).

Proof. (a) For any \(y \in R(A) \), there is an \(x \in A \) such that \(xRy \). Since \(A \subseteq B \), then \(x \in B \). Thus \(y \in R(B) \). This means that \(R(A) \subseteq R(B) \).

(b) For any \(y \in R(A \cup B) \), there is an \(x \in A \cup B \) such that \(xRy \). If \(x \in A \), then \(y \in R(A) \). If \(x \in B \), then \(y \in R(B) \). In either case, \(y \in R(A \cup B) \). Thus

\[
R(A \cup B) \subseteq R(A) \cup R(B).
\]

On the other hand, it follows from (a) that

\[
R(A) \subseteq R(A \cup B) \quad \text{and} \quad R(B) \subseteq R(A \cup B).
\]

Thus \(R(A) \cup R(B) \subseteq R(A \cup B) \).

(c) It follows from (a) that

\[
R(A \cap B) \subseteq R(A) \quad \text{and} \quad R(A \cap B) \subseteq R(B).
\]

Thus \(R(A \cap B) \subseteq R(A) \cap R(B) \).

\[\square\]

Proposition 1.3. Let \(R_1, R_2 \subseteq X \times Y \) be relations from \(X \) to \(Y \). If \(R_1(x) = R_2(x) \) for all \(x \in X \), then \(R_1 = R_2 \).

Proof. If \(xR_1y \), then \(y \in R_1(x) \). Since \(R_1(x) = R_2(x) \), we have \(y \in R_2(x) \). Thus \(xR_2y \). A similar argument shows that if \(xR_2y \) then \(xR_1y \). Therefore \(R_1 = R_2 \).

\[\square\]

2 Representation of Relations

Binary relations are the most important relations among all relations. Ternary relations, quaternary relations, and multi-factor relations can be studied by binary relations. There are two ways to represent a binary relation, one by a directed graph and the other by a matrix.

Let \(R \) be a binary relation on a finite set \(V = \{v_1, v_2, \ldots, v_n\} \). We may describe the relation \(R \) by drawing a directed graph as follows: For each element \(v_i \in V \), we draw a solid dot and name it by \(v_i \); the dot is called a vertex. For two vertices \(v_i \) and \(v_j \), if \(v_iRv_j \), we draw an arrow from \(v_i \) to \(v_j \), called a directed edge. When \(v_i = v_j \), the directed edge becomes a directed loop.
The resulted graph is a directed graph, called the **digraph** of R, and is denoted by $D(R)$. Sometimes the directed edges of a digraph may have to cross each other when drawing the digraph on a plane. However, the intersection points of directed edges are not considered to be vertices of the digraph.

The **in-degree** of a vertex $v \in V$ is the number of vertices u such that uRv, and is denoted by

$$\text{indeg}(v).$$

The **out-degree** of v is the number of vertices w such that vRw, and is denoted by

$$\text{outdeg}(v).$$

If $R \subseteq X \times Y$ is a relation from X to Y, we define

$$\text{outdeg}(x) = |R(x)| \quad \text{for} \quad x \in X,$$

$$\text{indeg}(y) = |R^{-1}(y)| \quad \text{for} \quad y \in Y.$$

The digraphs of the **brother-sister** relation R_{bs} and the **brother or sister** relation $R_b \cup R_s$ are demonstrated in the following.

Definition 2.1. Let $R \subseteq X \times Y$ be a binary relation from X to Y, where

$$X = \{x_1, x_2, \ldots, x_m\}, \quad Y = \{y_1, y_2, \ldots, y_n\}.$$

The **matrix** of the relation R is an $m \times n$ matrix $M_R = [a_{ij}]$, whose (i, j)-entry is given by

$$a_{ij} = \begin{cases} 1 & \text{if} \quad x_iRy_j \\ 0 & \text{if} \quad x_i\overline{R}y_j. \end{cases}$$

The matrix M_R is called the **Boolean matrix** of R. If $X = Y$, then $m = n$, and the matrix M_R is a square matrix.
Let \(A = [a_{ij}] \) and \(B = [b_{ij}] \) be \(m \times n \) Boolean matrices. If \(a_{ij} \leq b_{ij} \) for all \((i, j)\)-entries, we write \(A \leq B \).

The matrix of the \textit{brother-sister} relation \(R_{bs} \) on the set \(A = \{a, b, c, d, e\} \) is the square matrix

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

and the matrix of the \textit{brother or sister} relation is the square matrix

\[
\begin{bmatrix}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
\end{bmatrix}
\]

Proposition 2.2. For any digraph \(D(R) \) of a binary relation \(R \subseteq V \times V \) on \(V \),

\[
\sum_{v \in V} \text{indeg}(v) = \sum_{v \in V} \text{outdeg}(v) = |R|.
\]

If \(R \) is a binary relation from \(X \) to \(Y \), then

\[
\sum_{x \in X} \text{outdeg}(x) = \sum_{y \in Y} \text{indeg}(y) = |R|.
\]

Proof. Trivial. \(\square \)

Let \(R \) be a relation on a set \(X \). A \textbf{directed path of length} \(k \) from \(x \) to \(y \) is a finite sequence \(x_0, x_1, \ldots, x_k \) (not necessarily distinct), beginning with \(x_0 = x \) and ending with \(x_k = y \), such that

\[
x_0 Rx_1, x_1 Rx_2, \ldots, x_{k-1} Rx_k.
\]

A path that begins and ends at the same vertex is called a \textbf{directed cycle}.

For any fixed positive integer k, let $R^k \subseteq X \times X$ denote the relation on X given by

$$x \mathrel{R^k} y \iff \exists \text{ a path of length } k \text{ from } x \text{ to } y.$$

Let $R^\infty \subseteq X \times X$ denote the relation on X given by

$$x \mathrel{R^\infty} y \iff \exists \text{ a directed path from } x \text{ to } y.$$

The relation R^∞ is called the \textbf{connectivity relation} for R. Clearly, we have

$$R^\infty = R \cup R^2 \cup R^3 \cup \cdots = \bigcup_{k=1}^{\infty} R^k.$$

The \textbf{reachability relation} of R is the binary relation $R^* \subseteq X \times X$ on X defined by

$$x \mathrel{R^*} y \iff x = y \text{ or } x \mathrel{R^\infty} y.$$

Obviously,

$$R^* = I \cup R \cup R^2 \cup R^3 \cup \cdots = \bigcup_{k=0}^{\infty} R^k,$$

where I is the identity relation on X defined by

$$x \mathrel{I} y \iff x = y.$$

We always assume that $R^0 = I$ for any relation R on a set X.

\textbf{Example 2.1.} Let $X = \{x_1, \ldots, x_n\}$ and $R = \{(x_i, x_{i+1}) : i = 1, \ldots, n-1\}$. Then

$$R^k = \{(x_i, x_{i+k}) : i = 1, \ldots, n-k\}, \quad 1 \leq k \leq n/2;$$

$$R^k = \emptyset, \quad k \geq (n + 1)/2;$$

$$R^\infty = \{(x_i, x_j) : i < j\}.$$

If $R = \{(x_i, x_{i+1}) : i = 1, \ldots, n\}$ with $x_{n+1} = x_1$, then $R^\infty = X \times X = X^2$.

\section{Composition of Relations}

\textbf{Definition 3.1.} Let $R \subseteq X \times Y$ and $S \subseteq Y \times Z$ binary relations. The \textbf{composition} of R and S is a binary relation $S \circ R \subseteq X \times Z$ from X to Z
defined by

\[x(S \circ R)z \iff \exists y \in Y \text{ such that } xRy \text{ and } ySz. \]

When \(X = Y \), the relation \(R \) is a binary relation on \(X \). We have

\[R^k = R^{k-1} \circ R, \quad k \geq 2. \]

Remark. Given relations \(R \subseteq X \times Y \) and \(S \subseteq Y \times Z \), the composition \(S \circ R \) of \(R \) and \(S \) is backward. However, some people use the notation \(R \circ S \) instead of our notation \(S \circ R \). But this usage is inconsistent with the composition of functions. To avoid confusion and for aesthetic reason, we write \(S \circ R \) as

\[RS = \{(x, z) \in X \times Z : \exists y \in Y, \ xRy, \ ySz\}. \]

Example 3.1. Let \(R \subseteq X \times Y \), \(S \subseteq Y \times Z \), where

\[X = \{x_1, x_2, x_3, x_4\}, \ Y = \{y_1, y_2, y_3\}, \ Z = \{z_1, z_2, z_3, z_4, z_5\}. \]

Example 3.2. For the brother-sister relation, sister-brother relation, brother relation, and sister relation on \(A = \{a, b, c, d, e\} \), we have

\[R_{bs}R_{sb} = R_b, \quad R_{sb}R_{bs} = R_s, \quad R_{bs}R_s = R_{bs}, \]
\[R_{bs}R_{bs} = \emptyset, \quad R_bR_b = R_b, \quad R_bR_s = \emptyset. \]

Let \(X_1, X_2, \ldots, X_n, X_{n+1} \) be nonempty sets. Given relations

\[R_i \subseteq X_i \times X_{i+1}, \quad 1 \leq i \leq n. \]
We define a relation $R_1 R_2 \cdots R_n \subseteq X_1 \times X_{n+1}$ from X_1 to X_{n+1} by

$$x R_1 R_2 \cdots R_n y,$$

if and only if there exists a sequence $x_1, x_2, \ldots, x_n, x_{n+1}$ with $x_1 = x$, $x_{n+1} = y$ such that

$$x_1 R_1 x_2, \ x_2 R_2 x_3, \ \ldots, \ x_n R_n x_{n+1}.$$

Theorem 3.2. Given relations

$$R_1 \subseteq X_1 \times X_2, \ R_2 \subseteq X_2 \times X_3, \ R_3 \subseteq X_3 \times X_4.$$

We have

$$R_1 R_2 R_3 = R_1 (R_2 R_3) = (R_1 R_2) R_3,$$

as relations from X_1 to X_4.

Proof. For $x \in X_1$, $y \in X_4$, we have

$$x R_1 (R_2 R_3) y \iff \exists x_2 \in X_2, \ x R_1 x_2, \ x_2 R_2 R_3 y$$

$$\iff \exists x_2 \in X_2, \ x R_1 x_2;$$

$$\exists x_3 \in X_3, \ x_2 R_2 x_3, \ x_3 R_3 y$$

$$\iff \exists x_2 \in X_2, \ x_3 \in X_3,$$

$$x R_1 x_2, \ x_2 R_2 x_3, \ x_3 R_3 y$$

$$\iff x R_1 R_2 R_3 y.$$

Similarly, $x (R_1 R_2) R_3 y \iff x R_1 R_2 R_3 y$.

Proposition 3.3. Let $R_i \subseteq X \times Y$ be relations, $i = 1, 2$.

(a) If $R \subseteq W \times X$, then $R (R_1 \cup R_2) = RR_1 \cup RR_2$.

(b) If $S \subseteq Y \times Z$, then $(R_1 \cup R_2) S = R_1 S \cup R_2 S$.

Proof. (a) For each $w R (R_1 \cup R_2) y$, $\exists x \in X$ such that $w R x$ and $x (R_1 \cup R_2) y$. Then $x R_1 y$ or $x R_2 y$. Thus $w R R_1 y$ or $w R R_2 y$. Namely, $w (RR_1 \cup RR_2) y$.

Conversely, for each $(w, y) \in RR_1 \cup RR_2$, we have either $(w, y) \in RR_1$ or $(w, y) \in RR_2$. Then there exist $x_1, x_2 \in X$ such that either $(w, x_1) \in R$, $(x_1, y) \in R_1 \subseteq R_1 \cup R_2$ or $(w, x_2) \in R$, $(x_2, y) \in R_2 \subseteq R_1 \cup R_2$. This means that there exists $x \in X$ such that $(w, x) \in R$, $(x, y) \in R_1 \cup R_2$. Thus $(w, y) \in R (R_1 \cup R_2)$.

The proof for (b) is similar.
Exercise 1. Let \(R_i \subseteq X \times Y \) be relations, \(i = 1, 2, \ldots \).

(a) If \(R \subseteq W \times X \), then \(R (\bigcup_{i=1}^{\infty} R_i) = \bigcup_{i=1}^{\infty} RR_i \).

(b) If \(S \subseteq Y \times Z \), then \((\bigcup_{i=1}^{\infty} R_i) S = \bigcup_{i=1}^{\infty} R_i S\).

For the convenience of representing composition of relations, we introduce the **Boolean operations** \(\land \) and \(\lor \) on real numbers. For \(a, b \in \mathbb{R} \), define

\[
a \land b = \min\{a, b\}, \quad a \lor b = \max\{a, b\}.
\]

Exercise 2. For \(a, b, c \in \mathbb{R} \),

\[
a \land (b \lor c) = (a \land b) \lor (a \land c),
\]

\[
a \lor (b \land c) = (a \lor b) \land (a \lor c).
\]

Proof. We only prove the first formula. The second one is similar.

Case 1: \(b \leq c \). If \(a \geq c \), then the left side is \(a \land (b \lor c) = a \land c = c \). The right side is \((a \land b) \lor (a \land c) = b \lor c = c \). If \(b \leq a \leq c \), then the left side is \(a \land (b \lor c) = a \land c = a \). The right side is \((a \land b) \lor (a \land c) = b \lor a = a \).

If \(a \leq b \leq c \), then the left side is \(a \land (b \lor c) = a \land c = a \). The right side is \((a \land b) \lor (a \land c) = b \lor a = a \).

Case 2: \(b \geq c \). If \(a \leq c \), then \(a \land (b \lor c) = a \land c = a \) and \((a \land b) \lor (a \land c) = a \lor a = a \). If \(b \geq a \geq c \), then \(a \land (b \lor c) = a \land c = a \) and \((a \land b) \lor (a \land c) = a \lor c = a \).

If \(a \geq b \), then \(a \land (b \lor c) = a \land b = b \) and \((a \land b) \lor (a \land c) = b \lor c = b \). \(\square \)

Sometimes it is more convenient to write the Boolean operations as

\[
a \odot b = \min\{a, b\}, \quad a \oplus b = \max\{a, b\}.
\]

For real numbers \(a_1, a_2, \ldots, a_n \), we define

\[
\bigvee_{i=1}^{n} a_i = \bigoplus_{i=1}^{n} a_i = \max\{a_1, a_2, \ldots, a_n\}.
\]

For an \(m \times n \) matrix \(A = [a_{ij}] \) and an \(n \times p \) matrix \(B = [b_{jk}] \), the **Boolean multiplication** of \(A \) and \(B \) is an \(m \times p \) matrix \(A* B = [c_{ik}] \), whose \((i, k)\)-entry is defined by

\[
c_{ik} = \bigvee_{j=1}^{n} (a_{ij} \land b_{jk}) = \bigoplus_{j=1}^{n} (a_{ij} \odot b_{jk}).
\]
Theorem 3.4. Let \(R \subseteq X \times Y \), \(S \subseteq Y \times Z \) be relations, where
\[
X = \{x_1, \ldots, x_m\}, \quad Y = \{y_1, \ldots, y_n\}, \quad Z = \{z_1, \ldots, z_p\}.
\]
Let \(M_R, M_S, M_{RS} \) be matrices of \(R, S, RS \) respectively. Then
\[
M_{RS} = M_R \ast M_S.
\]

Proof. We write \(M_R = [a_{ij}], M_S = [b_{jk}], \) and
\[
M_R \ast M_S = [c_{ik}], \quad M_{RS} = [d_{ik}].
\]
It suffices to show that \(c_{ik} = d_{ik} \) for any \((i, k)\)-entry.

Case I: \(c_{ik} = 1 \).
Since \(c_{ik} = \bigvee_{j=1}^{n} (a_{ij} \land b_{jk}) = 1 \), there exists \(j_0 \) such that \(a_{ij_0} \land b_{j_0k} = 1 \). Then \(a_{ij_0} = b_{j_0k} = 1 \). In other words, \(x_iRy_{j_0} \) and \(y_{j_0}Sz_k \). Thus \(x_iRSz_k \) by definition of composition. Therefore \(d_{ik} = 1 \) by definition of Boolean matrix of \(RS \).

Case II: \(c_{ik} = 0 \).
Since \(c_{ik} = \bigvee_{j=1}^{n} (a_{ij} \land b_{jk}) = 0 \), we have \(a_{ij} \land b_{jk} = 0 \) for all \(j \). Then there is no \(j \) such that \(a_{ij} = 1 \) and \(b_{jk} = 1 \). In other words, there is no \(y_j \in Y \) such that both \(x_iRy_j \) and \(y_jSz_k \). Thus \(x_i \) is not related to \(z_k \) by definition of \(RS \). Therefore \(d_{ik} = 0 \).

\[\square\]

4 Special Relations

We are interested in some special relations satisfying certain properties. For instance, the “less than” relation on the set of real numbers satisfies the so-called transitive property: if \(a < b \) and \(b < c \), then \(a < c \).

Definition 4.1. A binary relation \(R \) on a set \(X \) is said to be

(a) \textbf{reflexive} if \(xRx \) for all \(x \) in \(X \);

(b) \textbf{symmetric} if \(xRy \) implies \(yRx \);

(c) \textbf{transitive} if \(xRy \) and \(yRz \) imply \(xRz \).
A relation R is called an **equivalence relation** if it is reflexive, symmetric, and transitive. And in this case, if xRy, we say that x and y are **equivalent**.

The relation $I_X = \{(x, x) : x \in X\}$ is called the **identity relation**. The relation X^2 is called the **complete relation**.

Example 4.1. Many family relations are binary relations on the set of human beings.

(a) The strict brother relation R_b: $xR_by \iff x$ and y are both males and have the same parents. (symmetric and transitive)

(b) The strict sister relation R_s: $xR_sy \iff x$ and y are both females and have the same parents. (symmetric and transitive)

(c) The strict brother-sister relation R_{bs}: $xR_{bs}y \iff x$ is male, y is female, x and y have the same parents.

(d) The strict sister-brother relation R_{sb}: $xR_{sb}y \iff x$ is female, y is male, and x and y have the same parents.

(e) The generalized brother relation R_b': $xR'_by \iff x$ and y are both males and have the same father or the same mother. (symmetric, not transitive)

(f) The generalized sister relation R_s': $xR'_sy \iff x$ and y are both females and have the same father or the same mother. (symmetric, not transitive)

(g) The relation R: $xRy \iff x$ and y have the same parents. (reflexive, symmetric, and transitive; equivalence relation)

(h) The relation R': $xR'y \iff x$ and y have the same father or the same mother. (reflexive and symmetric)

Example 4.2. (a) The **less than** relation $<$ on the set of real numbers is a transitive relation.

(b) The **less than or equal to** relation \leq on the set of real numbers is a reflexive and transitive relation.

(c) The **divisibility** relation on the set of positive integers is a reflexive and transitive relation.
(d) Given a positive integer \(n \). The **congruence modulo** \(n \) is a relation \(\equiv_n \) on \(\mathbb{Z} \) defined by

\[
a \equiv_n b \iff b - a \text{ is a multiple of } n.
\]

The standard notation for \(a \equiv_n b \) is \(a \equiv b \mod n \). The relation \(\equiv_n \) is an equivalence relation on \(\mathbb{Z} \).

Theorem 4.2. Let \(R \) be a relation on a set \(X \) with matrix \(M_R \). Then

(a) \(R \) is reflexive \(\iff \) \(I \subseteq R \iff \) all diagonal entries of \(M_R \) are 1.

(b) \(R \) is symmetric \(\iff \) \(R = R^{-1} \iff \) \(M_R \) is a symmetric matrix.

(c) \(R \) is transitive \(\iff \) \(R^2 \subseteq R \iff \) \(M_R^2 \leq M_R \).

Proof. (a) and (b) are trivial.

(c) “\(R \) is transitive \(\Rightarrow \) \(R^2 \subseteq R \).”

For any \((x, y) \in R^2\), there exists \(z \in X \) such that \((x, z) \in R\), \((z, y) \in R\). Since \(R \) is transitive, then \((x, y) \in R\). Thus \(R^2 \subseteq R \).

“\(R^2 \subseteq R \Rightarrow \) \(R \) is transitive.”

For \((x, z) \in R\) and \((z, y) \in R\), we have \((x, y) \in R^2 \subseteq R\). Then \((x, y) \in R\). Thus \(R \) is transitive.

Note that for any relations \(R \) and \(S \) on \(X \), we have

\[
R \subseteq S \iff M_R \leq M_S.
\]

Since \(M_R \) is the matrix of \(R \), then \(M_R^2 = M_R M_R = M_{RR} = M_{R^2} \) is the matrix of \(R^2 \). Thus \(R^2 \subseteq R \iff M_R^2 \leq M_R \). \(\square\)

5 Equivalence Relations and Partitions

The most important binary relations are equivalence relations. We will see that an equivalence relation on a set \(X \) will partition \(X \) into disjoint equivalence classes.

Example 5.1. Consider the congruence relation \(\equiv_3 \) on \(\mathbb{Z} \). For each \(a \in \mathbb{Z} \), define

\[
[a] = \{b \in \mathbb{Z} : a \equiv_3 b\} = \{b \in \mathbb{Z} : a \equiv b \mod 3\}.
\]
It is clear that \mathbb{Z} is partitioned into three disjoint subsets

$$[0] = \{0, \pm 3, \pm 6, \pm 9, \ldots\} = \{3k : k \in \mathbb{Z}\},$$
$$[1] = \{1, 1 \pm 3, 1 \pm 6, 1 \pm 9, \ldots\} = \{3k + 1 : k \in \mathbb{Z}\},$$
$$[2] = \{2, 2 \pm 3, 2 \pm 6, 2 \pm 9, \ldots\} = \{3k + 2 : k \in \mathbb{Z}\}.$$

Moreover, for all $k \in \mathbb{Z}$,

$$[0] = [3k], \quad [1] = [3k + 1], \quad [2] = [3k + 2].$$

Theorem 5.1. Let \sim be an equivalence relation on a set X. For each x of X, let $[x]$ denote the set of members equivalent to x, i.e.,

$$[x] := \{y \in X : x \sim y\},$$

called the **equivalence class** of x under \sim. Then

(a) $x \in [x]$ for any $x \in X$,

(b) $[x] = [y]$ if $x \sim y$,

(c) $[x] \cap [y] = \emptyset$ if $x \not\sim y$,

(d) $X = \bigcup_{x \in X} [x]$.

The member x is called a **representative** of the equivalence class $[x]$. The set of all equivalence classes

$$X/\sim: \{[x] : x \in X\}$$

is called the **quotient set** of X under the equivalence relation \sim or modulo \sim.

Proof. (a) It is trivial because \sim is reflexive.

(b) For any $z \in [x]$, we have $x \sim z$ by definition of $[x]$. Since $x \sim y$, we have $y \sim x$ by the symmetric property of \sim. Then $y \sim x$ and $x \sim z$ imply that $y \sim z$ by transitivity of \sim. Thus $z \in [y]$ by definition of $[y]$; that is, $[x] \subset [y]$. Since \sim is symmetric, we have $[y] \subset [x]$. Therefore $[x] = [y]$.

(c) Suppose $[x] \cap [y]$ is not empty, say $z \in [x] \cap [y]$. Then $x \sim z$ and $y \sim z$. By symmetry of \sim, we have $z \sim y$. Thus $x \sim y$ by transitivity of \sim, a contradiction.

(d) This is obvious because $x \in [x]$ for any $x \in X$. \square
Definition 5.2. A **partition** of a nonempty set X is a collection

$$\Pi = \{A_j : j \in J\}$$

of subsets of X such that

(a) $A_i \neq \emptyset$ for all i;

(b) $A_i \cap A_j = \emptyset$ if $i \neq j$;

(c) $X = \bigcup_{j \in J} A_j$.

Each subset A_j is called a **block** of the partition Π.

Theorem 5.3. Let Π be a partition of a set X. Let R_{Π} denote the relation on X defined by

$$x R_{\Pi} y \iff \exists \text{ a block } A_j \in \Pi \text{ such that } x, y \in A_j.$$

Then R_{Π} is an equivalence relation on X, called the **equivalence relation** induced by Π.

Proof. (a) For each $x \in X$, there exists one A_j such that $x \in A_j$. Then by definition of R_{Π}, $x R_{\Pi} x$. Hence R_{Π} is reflexive.

(b) If $x R_{\Pi} y$, then there is one A_j such that $x, y \in A_j$. By definition of R_{Π}, $y R_{\Pi} x$. Thus R_{Π} is symmetric.

(c) If $x R_{\Pi} y$ and $y R_{\Pi} z$, then there exist A_i and A_j such that $x, y \in A_i$ and $y, z \in A_j$. Since $y \in A_i \cap A_j$ and Π is a partition, it forces $A_i = A_j$. Thus $x R_{\Pi} z$. Therefore R_{Π} is transitive. \qed

Given an equivalence relation R on a set X. The collection

$$\Pi_R = \{[x] : x \in X\}$$

of equivalence classes of R is a partition of X, called the **quotient set** of X modulo R. Let $\mathcal{E}(X)$ denote the set of all equivalence relations on X and $\mathcal{P}(X)$ the set of all partitions of X. Then we have two functions

$$f : \mathcal{E}(X) \to \mathcal{P}(X), \quad f(R) = \Pi_R;$$

$$g : \mathcal{P}(X) \to \mathcal{E}(X), \quad g(\Pi) = R_{\Pi}.$$

The functions f and g satisfy the following properties.
Theorem 5.4. Let X be a nonempty set. Then for any equivalence relation R on X, and any partition Π of X, we have

$$(g \circ f)(R) = R, \quad (f \circ g)(\Pi) = \Pi.$$

In other words, f and g are inverse of each other.

Proof. Recall $(g \circ f)(R) = g(f(R))$, $(f \circ g)(\Pi) = f(g(\Pi))$. Then

$$x[y \in g(\Pi_R)] \iff \exists A \in \Pi R, x, y \in A \iff xRy;$$

$$A \in f(R_\Pi) \iff \exists x \in X, A = R_\Pi(x) \iff A \in \Pi.$$

Thus $g(f(R)) = R$ and $f(g(\Pi)) = \Pi$. \qed

Example 5.2. Let \mathbb{Z}_+ be the set of positive integers. Define a relation \sim on $\mathbb{Z} \times \mathbb{Z}_+$ by

$$(a, b) \sim (c, d) \iff ad = bc.$$

Is \sim an equivalence relation? If Yes, what are the equivalence classes?

Let R be a relation on a set X. The reflexive closure of R is the smallest reflexive relation $r(R)$ on X that contains R; that is,

- a) $R \subseteq r(R)$,
- b) if R' is a reflexive relation on X and $R \subseteq R'$, then $r(R) \subseteq R'$.

The symmetric closure of R is the smallest symmetric relation $s(R)$ on X such that $R \subseteq s(R)$; that is,

- a) $R \subseteq s(R)$,
- b) if R' is a symmetric relation on X and $R \subseteq R'$, then $s(R) \subseteq R'$.

The transitive closure of R is the smallest transitive relation $t(R)$ on X such that $R \subseteq t(R)$; that is,

- a) $R \subseteq t(R)$,
- b) if R' is a transitive relation on X and $R \subseteq R'$, then $t(R) \subseteq R'$.

Obviously, the reflexive, symmetric, and transitive closures of R must be unique respectively.
Theorem 5.5. Let R be a relation R on a set X. Then

a) $r(R) = R \cup I$;

b) $s(R) = R \cup R^{-1}$;

c) $t(R) = \bigcup_{k=1}^{\infty} R^k$.

Proof. (a) and (b) are obvious.

(c) Note that $R \subseteq \bigcup_{k=1}^{\infty} R^k$ and

\[
\left(\bigcup_{i=1}^{\infty} R^i \right) \left(\bigcup_{j=1}^{\infty} R^j \right) = \bigcup_{i,j=1}^{\infty} R^i R^j = \bigcup_{i=1}^{\infty} R^{i+j} = \bigcup_{k=2}^{\infty} R^k \subseteq \bigcup_{k=1}^{\infty} R^k.
\]

This shows that $\bigcup_{k=1}^{\infty} R^k$ is a transitive relation, and $R \subseteq \bigcup_{k=1}^{\infty} R^k$. Since each transitive relation that contains R must contain R^k for all integers $k \geq 1$, we see that $\bigcup_{k=1}^{\infty} R^k$ is the transitive closure of R.

Example 5.3. Let $X = \{a, b, c, d, e, f, g\}$ and consider the relation

$$R = \{(a, b), (b, b), (b, c), (d, e), (e, f), (f, g)\}.$$

Then the reflexive closure of R is

$$r(R) = \{(a, a), (a, b), (b, b), (b, c), (c, c), (d, d), (d, e), (e, e), (e, f), (f, f), (f, g), (g, g)\}.$$

The symmetric closure is

$$s(R) = \{((a, b), (b, a), (b, b), (b, c), (c, b), (d, e), (e, d), (e, f), (f, e), (f, g), (g, f)\}.$$

The transitive closure is

$$t(R) = \{(a, b), (a, c), (b, b), (b, c), (d, e), (d, f), (d, g), (e, f), (e, g), (f, g)\}.$$

$$R^2 = \{(a, b), (a, c), (b, b), (b, c), (d, f), (e, g)\}$$

$$R^3 = \{(a, b), (a, c), (b, b), (b, c), (d, g)\},$$

$$R^k = \{(a, b), (a, c), (b, b), (b, c)\}, \quad k \geq 4.$$
Theorem 5.6. Let R be a relation on a set X with $|X| = n \geq 2$. Then
$$t(R) = R \cup R^2 \cup \cdots \cup R^{n-1}.$$In particular, if R is reflexive, then $t(R) = R^{n-1}$.

Proof. It is enough to show that for all $k \geq n$,
$$R^k \subseteq \bigcup_{i=1}^{n-1} R^i.$$This is equivalent to showing that $R^k \subseteq \bigcup_{i=1}^{k-1} R^i$ for all $k \geq n$.

Let $(x, y) \in R^k$. There exist elements $x_1, \ldots, x_{k-1} \in X$ such that
$$(x, x_1), (x_1, x_2), \ldots, (x_{k-1}, y) \in R.$$Since $|X| = n \geq 2$ and $k \geq n$, the following sequence
$$x = x_0, x_1, x_2, \ldots, x_{k-1}, x_k = y$$has $k + 1$ terms, which is at least $n + 1$. Then two of them must be equal, say, $x_p = x_q$ with $p < q$. Thus $q - p \geq 1$ and
$$(x_0, x_1), \ldots, (x_{p-1}, x_p), (x_q, x_{q+1}), \ldots, (x_{k-1}, x_k) \in R.$$Therefore
$$(x, y) = (x_0, x_k) \in R^{k-(q-p)} \subseteq \bigcup_{i=1}^{k-1} R^i.$$That is
$$R^k \subseteq \bigcup_{i=1}^{k-1} R^i.$$If R is reflexive, then $R^k \subseteq R^{k+1}$ for all $k \geq 1$. Hence
$$t(R) = R^{n-1}.$$\qed

Proposition 5.7. Let R be a relation on a set X. Then
$$I \cup t(R \cup R^{-1})$$is an equivalence relation. In particular, if R is reflexive and symmetric, then $t(R)$ is an equivalence relation.
Proof. Since $I \cup t(R \cup R^{-1})$ is reflexive and transitive, we only need to show that $I \cup t(R \cup R^{-1})$ is symmetric.

Let $(x, y) \in I \cup t(R \cup R^{-1})$. If $x = y$, then obviously
\[(y, x) \in I \cup t(R \cup R^{-1}).\]
If $x \neq y$, then $(x, y) \in t(R \cup R^{-1})$. Thus $(x, y) \in (R \cup R^{-1})^k$ for some $k \geq 1$. Hence there is a sequence
\[x = x_0, x_1, \ldots, x_k = y\]
such that
\[(x_i, x_{i+1}) \in R \cup R^{-1}, \quad 0 \leq i \leq k - 1.\]
Since $R \cup R^{-1}$ is symmetric, we have
\[(x_{i+1}, x_i) \in R \cup R^{-1}, \quad 0 \leq i \leq k - 1.\]
This means that $(y, x) \in (R \cup R^{-1})^k$. Hence $(y, x) \in I \cup t(R \cup R^{-1})$. Therefore $I \cup t(R \cup R^{-1})$ is symmetric.

In particular, if R is reflexive and symmetric, then obviously
\[I \cup t(R \cup R^{-1}) = t(R).\]
This means that $t(R)$ is reflexive and symmetric. Since $t(R)$ is automatically transitive, so $t(R)$ is an equivalence relation. \(\square\)

Let R be a relation on a set X. The **reachability relation** of R is a relation R^* on X defined by
\[xR^*y \iff x = y \quad \text{or} \quad \exists \text{ finite } x_1, x_2, \ldots, x_k\]
such that
\[(x, x_1), (x_1, x_2), \ldots, (x_k, y) \in R.\]
That is, $R^* = I \cup t(R)$.

Theorem 5.8. Let R be a relation on a set X. Let M and M^* be the Boolean matrices of R and R^* respectively. If $|X| = n$, then
\[M^* = I \lor M \lor M^2 \lor \cdots \lor M^{n-1}.\]
Moreover, if R is reflexive, then
\[R^k \subset R^{k+1}, \ k \geq 1; \]
\[M^* = M^{n-1}. \]

Proof. It follows from Theorem 5.6. \qed

6 Washall’s Algorithm

Let R be a relation on $X = \{x_1, \ldots, x_n\}$. Let y_0, y_1, \ldots, y_m be a path in R. The vertices y_1, \ldots, y_{m-1} are called **interior vertices** of the path. For each k with $0 \leq k \leq n$, we define the Boolean matrix

\[W_k = [w_{ij}], \]

where $w_{ij} = 1$ if there is a path in R from x_i to x_j whose interior vertices are contained in

\[X_k := \{x_1, \ldots, x_k\}, \]

otherwise $w_{ij} = 0$, where $X_0 = \emptyset$.

Since the interior vertices of any path in R is obviously contained in the whole set $X = X_n = \{x_1, \ldots, x_n\}$, the (i, j)-entry of W_n is equal to 1 if there is a path in R from x_i to x_j. Then W_n is the matrix of the transitive closure $t(R)$ of R, that is,

\[W_n = M_{t(R)}. \]

Clearly, $W_0 = M_R$. We have a sequence of Boolean matrices

\[M_R = W_0, \ W_1, \ W_2, \ldots, \ W_n. \]

The so-called **Warshall’s algorithm** is to compute W_k from W_{k-1}, $k \geq 1$.

Let $W_{k-1} = [s_{ij}]$ and $W_k = [t_{ij}]$. If $t_{ij} = 1$, there must be a path

\[x_i = y_0, \ y_1, \ldots, \ y_m = x_j \]

from x_i to x_j whose interior vertices y_1, \ldots, y_{m-1} are contained in $\{x_1, \ldots, x_k\}$. We may assume that y_1, \ldots, y_{m-1} are distinct. If x_k is not an interior vertex
of this path, that is, all interior vertices are contained in \(\{ x_1, \ldots, x_{k-1} \} \), then \(s_{ij} = 1 \). If \(x_k \) is an interior vertex of the path, say \(x_k = y_p \), then there two sub-paths

\[
x_i = y_0, \ y_1, \ \ldots, \ y_p = x_k, \\
x_k = y_p, \ y_{p+1}, \ \ldots, \ y_m = x_j
\]

whose interior vertices \(y_1, \ldots, y_{p-1}, y_{p+1}, \ldots, y_{m-1} \) are contained in \(\{ x_1, \ldots, x_{k-1} \} \)

obviously. It follows that

\[
s_{ik} = 1, \ s_{kj} = 1.
\]

We conclude that

\[
t_{ij} = 1 \iff \begin{cases}
 s_{ij} = 1 \quad \text{or} \\
 s_{ik} = 1, \ s_{kj} = 1 \quad \text{for some} \ k
\end{cases}
\]

Theorem 6.1 (Warshall’s Algorithm for Transitive Closure). Working on the Boolean matrix \(W_{k-1} \) to produce \(W_k \).

(a) If the \((i, j)\)-entry of \(W_{k-1} \) is 1, so is the entry in \(W_k \). Keep 1 there.

(b) If the \((i, j)\)-entry of \(W_{k-1} \) is 0, then check the entries of \(W_{k-1} \) at \((i, k)\) and \((k, j)\). If both entries are 1, then change the \((i, j)\)-entry in \(W_{k-1} \) to 1. Otherwise, keep 0 there.

Example 6.1. Consider the relation \(R \) on \(A = \{1, 2, 3, 4, 5\} \) given by the Boolean matrix

\[
M_R = \begin{bmatrix}
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0
\end{bmatrix}.
\]
By Warshall’s algorithm, we have

\[
W_0 = \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{bmatrix} \Rightarrow W_1 = \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & (1) \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{bmatrix} (3, 1), (1, 5)
\]

\[
\Rightarrow W_2 = \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{bmatrix} \text{(no change)}
\]

\[
\Rightarrow W_3 = \begin{bmatrix}
0 & 0 & 0 & 1 \\
(1) & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
(1) & 0 & 1 & 1
\end{bmatrix} (2, 3), (3, 1)
\]

\[
\Rightarrow W_4 = \begin{bmatrix}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1
\end{bmatrix} \text{(no change)}
\]

\[
\Rightarrow W_5 = \begin{bmatrix}
(1) & 0 & (1) & (1) & 1 \\
1 & 1 & 1 & (1) & 1 \\
1 & 0 & (1) & (1) & 1 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 1
\end{bmatrix} (1, 5), (5, 1)
\]
The binary relation for the Boolean matrix W_5 is the transitive closure of R.

Definition 6.2. A binary relation R on a set X is called

a) **asymmetric** if xRy implies $y\bar{R}x$;

b) **antisymmetric** if xRy and yRx imply $x = y$.

7 Modular Integers

For an equivalence relation \sim on a set X, the set of equivalence classes is usually denoted by X/\sim, called the **quotient set** of X modulo \sim. Given a positive integer $n \geq 2$. The **relation modulo** n, denoted \equiv_n, is a binary relation on \mathbb{Z}, defined as $a \equiv_n b$ if $b - a = kn$ for an integer $k \in \mathbb{Z}$. Traditionally, $a \equiv_n b$ is written as $a \equiv b \pmod{n}$. We denote the quotient set \mathbb{Z}/\equiv_n by

$$\mathbb{Z}_n = \{[0], [1], \ldots, [n - 1]\}.$$

There addition and multiplication on \mathbb{Z}_n, defined as

$$[a] + [b] = [a + b], \quad [a][b] = [ab].$$

The two operations are well defined since

$$[a + kn] + [b + ln] = [(a + b) + (k + l)n] = [a + b],$$
\[[a + kn][b + ln] = [(a + kn)(b + ln)] = [ab + (al + bk + kl)n] = [ab]. \]

A modular integer \([a]\) is said to be **invertible** if there exists an modular integer \([b]\) such that \([a][b] = [1]\). If so, \([b]\) is called the **inverse** of \([a]\), written

\[[b] = [a]^{-1}. \]

If an inverse exists, it must be unique. If \([b]\) is an inverse of \([a]\), then \([a]\) is an inverse of \([b]\).

A modular integer \([a]\) is said to be **invertible** if there exists an modular integer \([c]\) such that \([a][c] = [1]\). If so, \([c]\) is called the **inverse** of \([a]\), written \([c] = [a]^{-1}\). If \([a_1], [a_2]\) are invertible, then \([a_1][a_2] = [a_1a_2]\) is invertible. Let \([b_1], [b_2]\) be inverses of \([a_1], [a_2]\) respectively. Then \([b_1b_2]\) is the inverse of \([a_1a_2]\). In fact, \([a_1a_2][b_1b_2] = [a_1][a_2][b_2][b_1] = [a_1][1][b_1] = [a_1][b_1] = [1]\).

Example 7.1. What modular integers \([a]\) are invertible in \(\mathbb{Z}_n\)?

When \([a]\) has an inverse \([b]\), we have \([a][b] = 1\), i.e., \([ab] = [1]\). This means that \(ab\) and 1 are different by a multiple of \(n\), say, \(ab + kn = 1\) for an integer \(k\). Let \(d = \gcd(a, n)\). Then \(d | (ab + kn)\), since \(d | a\) and \(d | n\). Thus \(d | 1\). It forces \(d = 1\). So \(\gcd(a, n) = 1\).

If \(\gcd(a, n) = 1\), by Euclidean Algorithm, there are integers \(x, y\) such that \(ax + ny = 1\). Then \([ax + ny] = [ax] = [1]\), i.e., \([a][x] = [1]\). So \([x]\) is the inverse of \([a]\).

Example 7.2. Given an integer \(a\). Consider the function

\[f_a : \mathbb{Z}_n \to \mathbb{Z}_n, \quad f_a([x]) = [ax]. \]

Find a condition for \(a\) so that \(f_a\) is an invertible function.

Example 7.3. Is the function \(f_{45} : \mathbb{Z}_{119} \to \mathbb{Z}_{119}\) by \(f_{45}([x]) = [45x]\) invertible? If yes, find its inverse function.

We need to find \(\gcd(119, 45)\) first. Applying the Division Algorithm,

\[
\begin{align*}
119 &= 2 \cdot 45 + 29 \\
45 &= 29 + 16 \\
29 &= 16 + 13 \\
16 &= 13 + 3 \\
13 &= 4 \cdot 3 + 1
\end{align*}
\]
So \(\gcd(119, 45) = 1 \). The function \(f_{45} \) is invertible. To find the inverse of \(f_{45} \), we apply the Euclidean Algorithm:

\[
1 = 13 - 4 \cdot 3 = 13 - 4(16 - 13) \\
= 5 \cdot 13 - 4 \cdot 16 = 5(29 - 16) - 4 \cdot 16 \\
= 5 \cdot 29 - 9 \cdot 16 = 5 \cdot 29 - 9(45 - 29) \\
= 14 \cdot 29 - 9 \cdot 45 = 14(119 - 2 \cdot 45) - 9 \cdot 45 \\
= 14 \cdot 119 + (-37) \cdot 45
\]

The inverse of \(f_{45} \) is \(f_{-37} \), i.e., \(f_{82} \).

Theorem 7.1 (Fermat’s Little Theorem). Let \(p \) be a prime number and \(a \) an integer. If \(p \nmid a \), then \(a^{p-1} \equiv 1 \pmod{p} \).

Proof. The function \(f_a : \mathbb{Z}_p \rightarrow \mathbb{Z}_p \) is invertible, since \(\gcd(a, p) = 1 \). So \(f_a \) is a bijection and \(f_a(\mathbb{Z}_p) = \mathbb{Z}_p \). Since \(f_a([0]) = [0] \), we must have

\[
f_a(\mathbb{Z}_p - \{[0]\}) = \{[a], [2a], \ldots, [(p-1)a]\} = \{[1], \ldots, [p-1]\}.
\]

Thus

\[
\prod_{k=1}^{p-1}[ka] = \prod_{k=1}^{p-1}[k], \quad \text{i.e.,} \quad [a]^{p-1} \prod_{k=1}^{p-1}[k] = \prod_{k=1}^{p-1}[k][a] = \prod_{k=1}^{p-1}[k].
\]

Since the product of invertible elements are still invertible, so \(\prod_{k=1}^{p-1}[k] \) is invertible. Thus \([a^{p-1}] = [a]^{p-1} = [1] \). This means that \(a^{p-1} \equiv 1 \pmod{p} \).

Let \(\varphi(n) \) denote the number of positive integers coprime to \(n \), i.e.,

\[
\varphi(n) = |\{a \in [n] : \gcd(a, n) = 1\}|.
\]

For example, \(p = 5, a = 6 \) and \(a \nmid 5 \). Then \(6^4 = 1296 = 1 \pmod{5} \).

Theorem 7.2 (Euler’s Theorem). For integer \(n \geq 2 \) and integer \(a \) such that \(\gcd(a, n) = 1 \),

\[
a^{\varphi(n)} = 1 \pmod{n}.
\]

Proof. Let \(S \) denote the set of invertible elements of \(\mathbb{Z}_n \). Then \(|S| = \varphi(n) \). The elements \([a][s], [s] \in S\), are all distinct and invertible, i.e., \([a][s_1] \neq [a][s_2]\)
for \([s_1], [s_2] \in S\) with \([s_1] \neq [s_2]\). In fact, \([a][s_1] = [a][s_2]\) implies \([s_1] = [s_2]\).

Consider the product
\[
[a]^{|S|} \prod_{[s] \in S} [s] = \prod_{[s] \in S} [a][s] = \prod_{[s] \in S} [s].
\]
It follows that \([a]^{|S|} = [1]\). \(\square\)

For example, \(n = 12, a = 35, \gcd(35, 12) = 1,\) and \(\varphi(12) = \{1, 5, 7, 11\}, 35^4 = 1500625 = 1 \pmod{12}\).

Problem Set 3

1. Let \(R\) be a binary relation from \(X\) to \(Y\), \(A, B \subseteq X\).

 (a) If \(A \subseteq B\), then \(R(A) \subseteq R(B)\).

 (b) \(R(A \cup B) = R(A) \cup R(B)\).

 (c) \(R(A \cap B) \subseteq R(A) \cap R(B)\).

Proof.

(a) For each \((x, y) \in R(A)\), there is an \(x \in A\) such that \((x, y) \in R\). Clearly, \(x \in B\), since \(A \subseteq B\). Thus \(y \in R(B)\). This means that \(R(A) \subseteq R(B)\).

(b) Since \(R(A) \subseteq R(A \cup B)\), \(R(B) \subseteq R(A \cup B)\), we have

\[R(A) \cup R(B) \subseteq R(A \cup B).\]

On the other hand, for each \((x, y) \in R(A \cup B)\), there is an \(x \in A \cup B\) such that \((x, y) \in R\). Then either \(x \in A\) or \(x \in B\). Thus \(y \in R(A)\) or \(y \in R(B)\), i.e., \(y \in R(A) \cup R(B)\). Therefore \(R(A) \cup R(B) \supseteq R(A \cup B)\).

(c) It follows from (a) that \(R(A \cap B) \subseteq R(A)\) and \(R(A \cap B) \subseteq R(B)\). Hence \(R(A \cap B) \subseteq R(A \cap B)\). \(\square\)

2. Let \(R_1\) and \(R_2\) be relations from \(X\) to \(Y\). If \(R_1(x) = R_2(x)\) for all \(x \in X\), then \(R_1 = R_2\).

Proof. For each \((x, y) \in R_1\), we have \(y \in R_1(x)\). Since \(R_1(x) = R_2(x)\), then \(y \in R_2(x)\). Thus \((x, y) \in R_2\). Likewise, for each \((x, y) \in R_2\), we have \((x, y) \in R_2\). Hence \(R_1 = R_2\). \(\square\)
3. Let $a, b, c \in \mathbb{R}$. Then

\[
 a \land (b \lor c) = (a \land b) \lor (a \land c),
 a \lor (b \land c) = (a \lor b) \land (a \lor c).
\]

Proof. Note that the cases $b < c$ and $b > c$ are equivalent. There are three essential cases to be verified.

Case 1: $a < b < c$. We have

\[
 a \land (b \lor c) = a = (a \land b) \lor (a \land c),
 a \lor (b \land c) = b = (a \lor b) \land (a \lor c).
\]

Case 2: $b < a < c$. We have

\[
 a \land (b \lor c) = a = (a \land b) \lor (a \land c),
 a \lor (b \land c) = a = (a \lor b) \land (a \lor c).
\]

Case 3: $b < c < a$. We have

\[
 a \land (b \lor c) = c = (a \land b) \lor (a \land c),
 a \lor (b \land c) = a = (a \lor b) \land (a \lor c).
\]

\[\square\]

4. Let $R_i \subseteq X \times Y$ be a family of relations from X to Y, indexed by $i \in I$.

(a) If $R \subseteq W \times X$, then $R \left(\bigcup_{i \in I} R_i \right) = \bigcup_{i \in I} RR_i$;

(b) If $S \subseteq Y \times Z$, then $\left(\bigcup_{i \in I} R_i \right) S = \bigcup_{i \in I} R_i S$.

Proof. (a) By definition of composition of relations, $(w, y) \in R \left(\bigcup_{i \in I} R_i \right)$ is equivalent to that there exists an $x \in X$ such that $(w, x) \in R$ and $(x, y) \in \bigcup_{i \in I} R_i$. Notice that $(x, y) \in \bigcup_{i \in I} R_i$ is further equivalent to that there is an index $i_0 \in I$ such that $(x, y) \in R_{i_0}$. Thus $(w, y) \in R \left(\bigcup_{i \in I} R_i \right)$ is equivalent to that there exists an $i_0 \in I$ such that $(w, y) \in RR_{i_0}$, which means $(w, y) \in \bigcup_{i \in I} RR_i$ by definition of composition.
(b) \((x, z) \in \left(\bigcup_{i \in I} R_i \right) S \iff \text{(by definition of composition)} \) there exists \(y \in Y\) such that \((x, y) \in \bigcup_{i \in I} R_i\) and \((y, z) \in S \iff \text{(by definition of set union)}\) there exists \(i_0 \in I\) such that \((x, y) \in R_{i_0}\) and \((y, z) \in S \iff \text{(by definition of composition)}\) \((w, y) \in \bigcup_{i \in I} RR_i\). □

5. Let \(R_i \ (1 \leq i \leq 3)\) be relations on \(A = \{a, b, c, d, e\}\) whose Boolean matrices are

\[
M_1 = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad M_2 = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad M_3 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}.
\]

(a) Draw the digraphs of the relations \(R_1, R_2, R_3\).

(b) Find the Boolean matrices for the relations

\[R_1^{-1}, \quad R_2 \cup R_3, \quad R_1 R_1, \quad R_1 R_1^{-1}, \quad R_1^{-1} R_1; \]

and verify that \(R_1 R_1^{-1} = R_2, \quad R_1^{-1} R_1 = R_3\).

(c) Verify that \(R_2 \cup R_3\) is an equivalence relation and find the quotient set \(A/(R_2 \cup R_3)\).

\textit{Solution:}

\[
M_{R_1^{-1}} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}, \quad M_{R_2 \cup R_3} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}, \quad M_{R_1^2} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.
\]
\[
M_{R_1R_1^{-1}} = \begin{bmatrix}
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix} = M_2, \quad M_{R_1^{-1}R_1} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1
\end{bmatrix} = M_3.
\]

6. Let \(R \) be a relation on \(\mathbb{Z} \) defined by \(aRb \) if \(a + b \) is an even integer.

(a) Show that \(R \) is an equivalence relation on \(\mathbb{Z} \).

(b) Find all equivalence classes of the relation \(R \).

Proof. (a) For each \(a \in \mathbb{Z} \), \(a + a = 2a \) is clearly even, so \(aRa \), i.e., \(R \) is reflexive. If \(aRb \), then \(a + b \) is even, of course \(b + a = a + b \) is even, so \(bRa \), i.e., \(R \) is symmetric. If \(aRb \) and \(bRc \), then \(a + b \) and \(b + c \) are even; thus \(a + c = (a + b) + (b + c) - 2b \) is even (sum of even numbers are even), so \(a Rc \), i.e., \(R \) is transitive. Therefore \(R \) is an equivalence relation.

(b) Note that \(aRb \) if and only if both of \(a, b \) are odd or both are even. Thus there are exactly two equivalence classes: one class is the set of even integers, and the other class is the set of odd integers. The quotient set \(\mathbb{Z}/R \) is the set \(\mathbb{Z}_2 \) of integers modulo 2. \(\square \)

7. Let \(X = \{1, 2, \ldots, 10\} \) and let \(R \) be a relation on \(X \) such that \(aRb \) if and only if \(|a - b| \leq 2 \). Determine whether \(R \) is an equivalence relation. Let \(M_R \) be the matrix of \(R \). Compute \(M_R^8 \).

Solution: The following is the graph of the relation.

Then \(M_R^5 \) is a Boolean matrix all whose entries are 1. Thus \(M_R^8 \) is the same as \(M_R^5 \). \(\square \)

8. A relation \(R \) on a set \(X \) is called a **preference relation** if \(R \) is reflexive and transitive. Show that \(R \cap R^{-1} \) is an equivalence relation.
Proof. Since $I \subseteq R$, we have $I = I^{-1} \subseteq R^{-1}$, so $I \subseteq R \cap R^{-1}$, i.e., $R \cap R^{-1}$ is reflexive.

If $x(R \cap R^{-1})y$, then xRy and $xR^{-1}y$; by definition of converse, $yR^{-1}x$ and yRx; thus $y(R \cap R^{-1})x$. This means that $R \cap R^{-1}$ is symmetric.

If $x(R \cap R^{-1})y$ and $y(R \cap R^{-1})z$, then xRy, yRz and yRx, zRy by converse; thus xRz and zRx by transitivity; therefore xRz and $xR^{-1}z$ by converse again; finally we have $x(R \cap R^{-1})z$. This means that $R \cap R^{-1}$ is transitive. \hfill \square

9. Let n be a positive integer. The congruence relation \sim of modulo n is an equivalence relation on \mathbb{Z}. Let $\mathbb{Z}/\sim = \{[0], [1], \ldots, [n-1]\}$. Given an integer $a \in \mathbb{Z}$, we define a function

$$ f_a : \mathbb{Z}_n \to \mathbb{Z}_n \text{ by } f_a([x]) = [ax]. $$

(a) Find the cardinality of the set $f_a(\mathbb{Z}_n)$.

(b) Find all integers a such that f_a is invertible.

Solution: (a) Let $d = \gcd(a, n)$, $a = kd$, $n = ld$. Fix an integer $x \in \mathbb{Z}$, we write $x = ql + r$ by division algorithm, where $0 \leq r < l$. Then

$$ ax = kd(ql + r) = kdq l + kdr = kqn + ar \equiv ar \pmod{n}. $$

For two integers r_1, r_2 with $1 \leq r_1 < r_2 < l$, we claim $ar_1 \not\equiv ar_2 \pmod{n}$. In fact, suppose $ar_1 \equiv ar_2 \pmod{n}$, then $n \mid a(r_2 - r_1)$; since $a = kd$ and $n = ld$, it is equivalent to $l \mid k(r_2 - r_1)$. Since $\gcd(k, l) = 1$, we have $l \mid (r_2 - r_1)$. Thus $r_1 = r_2$, which is a contradiction. Thus $|f_a(\mathbb{Z}_n)| = l = n/d$ and

$$ f_a(\mathbb{Z}_n) = \{[ar] : r \in \mathbb{Z}, 0 \leq r < l\}. $$

(b) Since \mathbb{Z}_n is finite, then f_a is a bijection if and only if f_a is onto. However, f_a is onto if and only if $|f_a(\mathbb{Z}_n)| = n$, i.e., $\gcd(a, n) = 1$.

10. For a positive integer n, let $\phi(n)$ denote the number of positive integers $a \leq n$ such that $\gcd(a, n) = 1$, called Euler’s function. Let R be the relation on $X = \{1, 2, \ldots, n\}$ defined by aRb if $a \leq b$, $b \mid n$, and $\gcd(a, b) = 1$.

30
(a) Find the cardinality $|R^{-1}(b)|$ for each $b \in X$.

(b) Show that

$$|R| = \sum_{a \mid n} \phi(a).$$

(c) Prove $|R| = n$ by showing that the function $f : R \to X$, defined by $f(a, b) = an/b$, is a bijection.

Solution: (a) For each $b \in X$, if $b \nmid n$, then $R^{-1}(b) = \emptyset$. If $b \mid n$, we have

$$|R^{-1}(b)| = |\{a \in X : a \leq b, \gcd(a, b) = 1\}| = \phi(b).$$

(b) It follows that

$$|R| = \sum_{b \in X} |R^{-1}(b)| = \sum_{b \geq 1, b \mid n} |R^{-1}(b)| = \sum_{b \mid n} \phi(b).$$

(c) The function f is clearly well-defined. We first to show that f is injective. For $(a_1, b_1), (a_2, b_2) \in R$, if $f(a_1, b_1) = f(a_2, b_2)$, i.e., $a_1n/b_1 = a_2n/b_2$, then $a_1/b_1 = a_2/b_2$, which is a rational number in reduced form, since $\gcd(a_1, b_1) = 1$ and $\gcd(a_2, b_2) = 1$; it follows that $(a_1, b_1) = (a_2, b_2)$. Thus f is injective. To see that f is surjective, for each $b \in X$, let $d = \gcd(b, n)$. Then $f(b/n, n/b) = (b/d)n/(n/d) = b$. This means that f is surjective. So f is a bijection. We have obtained the following formula

$$n = \sum_{b \mid n} \phi(b).$$