
Integers, Prime Factorization, and More on Primes

October 25, 2013

Week 9-10

1 Integers

Definition 1. Let a, b ∈ Z. We say that a divides b (or a is a factor of b)
if b = ac for some integer c. When a divides b, we write a | b.
Proposition 2 (Division Algorithm). Let a be a positive integer. Then for
any b ∈ Z, there exist unique integers q, r such that

b = qa + r, 0 ≤ r < a.

The integer q is called the quotient and r is the remainder.

Proof. Consider the rational number b
a . Since R =

⋃
k∈Z[k, k + 1) (disjoint),

there exists a unique integer q such that b
a ∈ [q, q + 1), i.e., q ≤ b

a < q + 1.
Multiplying through by the positive integer a, we obtain qa ≤ b < (q + 1)a.
Let r = b− qa. Then we have b = qa + r and 0 ≤ r < a, as required.

Proposition 3. Let a, b, d ∈ Z. If d | a and d | b, then d | (ma + nb) for all
m,n ∈ Z.

Proof. Since d | a and d | b, there exist integers c1 and c2 such that a = c1d

and b = c2a. Then for any integers m,n ∈ Z, we have

ma + nb = mc1d + nc2d = (mc1 + nc2)d.

This means that d divides ma + nb.

2 Euclidean Algorithm

Definition 4. Let a, b ∈ Z, not all zero. A common divisor (or factor) of
a and b is an integer which divides both a and b. The greatest common
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divisor of a and b, written gcd(a, b), is the largest positive integer that divides
both a and b.

Proposition 5. Let a, b ∈ Z. If b = qa + r, then

gcd(a, b) = gcd(a, r).

Proof. An integer c is a common divisor of a and b if and only if c is a common
divisor of a and r. Thus the set of common divisors of a, b are the same as
the set of common divisors of a, r.

Example 1. Find the greatest common divisor of 4346 and 6587.

Euclidean Algorithm: For integers a and b, and assume that a is posi-
tive. We write

b = q1a + r1, 0 ≤ r1 < a,

a = q2r1 + r2, 0 ≤ r2 < r1,

r1 = q3r2 + r3, 0 ≤ r3 < r2,
...

rk−3 = qk−1rk−2 + rk−1, 0 ≤ rk−1 < rk−2,

rk−2 = qkrk−1 + rk, 0 ≤ rk < rk−1,

rk−1 = qk+1rk + 0.

Then by Proposition 5,

gcd(a, b) = gcd(a, r1) = gcd(r1, r2) = · · · = gcd(rk−1, rk) = rk.

Theorem 6 (Euclidean Theorem). Let a, b ∈ Z and d = gcd(a, b). Then
there exist integers m and n such that

d = ma + nb.

Proof. By the Euclidean Algorithm above, we have d = rk and

rk = rk−2 − qkrk−1,

rk−1 = rk−3 − qk−1rk−2,
...

r3 = r1 − q3r2,

r2 = a− q2r1

r1 = b− q1a.

It follows that rk is a linear combination of a and b with integer coefficients.

2



Proposition 7. Let a, b ∈ Z. Then a positive integer d is the greatest com-
mon divisor of a and b if and only if

(1) d divides both a and b;

(2) If c divides both a and b, then c divides d.

Proof. If the above two conditions are satisfied by the integer d, it is clear
that d is the largest one among all divisors of a and b.

Let d = gcd(a, b). The first condition is obviously satisfied. The second
condition follows from the Euclidean Algorithm.

Definition 8. Let a, b ∈ Z. If gcd(a, b) = 1, we say that a and b are coprime
each other.

Proposition 9. Let a, b, c ∈ Z.

(1) Let a and b be comprime each other. If a | bc, then a | c.
(2) Let p be a prime. If p | ab, then either p | a or p | b.
Proof. (1) By the Euclidean algorithm, there exist integers m,n such that
ma + nb = 1. Multiplying c to both sides we have mac + nbc = c. Since
a | bc, i.e., bc = qa for some integer q, then

c = mac + nqa = (mc + nq)a,

which means that a is a divisor of c.
(2) If p - a, then gcd(p, a) = 1. Thus by (1), we must have p | b.

Corollary 10. Let a1, a2, . . . , an ∈ Z and let p be a prime. If p | a1a2 · · · an,
then p | ai for some i.

Proof. Let P (n) denote the statement. We prove it by induction on n. For
n = 1, P (1) says that if “p | a1 then p | a1,” which is trivially true. Suppose
it is true for P (n). Consider P (n + 1). Let a1, a2, . . . , an+1 ∈ Z. Let a =
a1a2 · · · an and b = an+1. Then p | ab. If p | a, i.e., p | a1a2 · · · an, by
induction, we have some i (1 ≤ i ≤ n) such that p | ai. If p - a, then by
Proposition 9, we have p | b, i.e., p | an+1. Hence P (n + 1) is true.

Definition 11. Let a, b ∈ Z, not all zero. A common multiple of a and
b is a nonnegative integer m such that a|m and b|m. The very smallest
one among all common multiples of a and b is called the least common
multiple, denoted lcm(a, b).
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Proposition 12. For a, b ∈ Z, not all zero, if a, b are nonnegative, then

lcm(a, b) =
ab

gcd(a, b)
.

Proof. Let d = gcd(a, b), a = dc1 and b = dc2. It is clear that the integer

ab

d
= dc1c2 = ac2 = bc1

is a common multiple of a and b, gcd(c1, c2) = 1. Let m be a common multiple
of a and b, i.e., m = ae1 and b = be2. Then m = ae1 = dc1e1 = dc2e2. It
follows that c1e1 = c2e2. Since gcd(c1, c2) = 1, we have c1 | e2 and c2 | e1.
Write e2 = c1f1 and e1 = c2f2, then c1c2f2 = c2c1f1. Thus f1 = f2. Therefore

m = ae1 = dc1e1 = dc1c2f2 =
ab

d
f2,

which is a multiple of ab
d = dc1c2. By definition, ab

d is the least common
multiple of a and b.

3 Prime Factorization

Theorem 13. (a) Every integer n ≥ 2 is a product of prime numbers, i.e.,
there exist primes p1, p2, . . . , pk, where p1 ≤ p2 ≤ · · · ≤ pk, such that

n = p1p2 · · · pk.

(b) The prime factorization in (a) is unique, i.e., if n = p1p2 · · · pk =
q1q2 · · · ql, where p1, p2, . . . , pk and q1, q2, . . . , ql are primes, p1 ≤ p2 ≤ · · · ≤
pk, q1 ≤ q2 ≤ · · · ≤ ql, then k = l and

p1 = q1, p2 = q2, . . . pk = qk.

Proof. The existence of the prime factorization has been proved before. We
only need to prove the uniqueness.

Suppose there is an integer n which has two different prime factorizations,
say,

n = p1p2 · · · pk = q1q2 · · · ql,

where p1 ≤ p2 ≤ · · · ≤ pk, q1 ≤ q2 ≤ · · · ≤ ql, and the list of primes
p1, p2, . . . , pk is not the same as the list q1, q2, . . . , ql.
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Now in the equation p1p2 · · · pk = q1q2 · · · ql, cancel any primes that are
common to both sides. Since the two factorizations are different, not all
primes will be canceled, and we end up with an equation

u1u2 · · ·ur = v1v2 · · · vs,

where {u1, u2, . . . , ur} is a sub-multiset of the multiset {p1, p2, . . . , pk}, {v1, v2, . . . , vs}
is a sub-multiset of {q1, q2, . . . , ql}, and {u1, u2, . . . , ur} ∩ {v1, v2, . . . , vs} = ∅.

Now we have u1 | v1v2 · · · vs and v1 | u1u2 · · ·ur. By part (2) of Propo-
sition 9, we see that u1 | vj for some j and v1 | ui for some i. It follows
that u1 = vj for some j and v1 = ui for some i. This contradicts to that
{u1, u2, . . . , ur} ∩ {v1, v2, . . . , vs} = ∅.
Corollary 14. (a) For any integer n ≥ 2, there is a unique factorization

n = pe1
1 pe2

2 · · · pek

k ,

where p1, p2, . . . , pk are distinct primes, p1 < p2 < · · · < pk, and e1, e2, . . . , ek

are positive integers.
(b) Let n = pe1

1 pe2
2 · · · pek

k , where p1 < p2 < · · · < pk are primes and all
ei ≥ 0. If m is positive integer and m | n, then m = pd1

1 pd2
2 · · · pdk

k with
0 ≤ di ≤ ei for all i.

Proof. (a) Collect the same primes and write them into powers.
(b) Since m | n, then n = mc for a positive integer c. Write m and c into

the unique prime factorization forms m = qf1

1 qf2

2 · · · qfl

l and c = ug1

1 ug2

2 · · ·ugr
r .

Then
pe1

1 pe2
2 · · · pek

k = qf1

1 qf2

2 · · · qfl

l ug1

1 ug2

2 · · ·ugr
r

By the unique prime factorization, the primes q1, q2, . . . , ql and u1, u2, . . . , ur

must be some of the primes p1, p2, . . . , pk. Thus

m = pd1
1 pd2

2 · · · pdk

k and c = pa1
1 pa2

2 · · · pak

k ,

where di ≥ 0 and ai ≥ 0 for all i. It follows that ei = di + ai for all i.
Therefore, 0 ≤ di ≤ ei for all i.

Proposition 15. Let a, b ≥ 2 be integers with the prime factorizations

a = pe1
1 pe2

2 · · · pek

k , b = pf1

1 pf2

2 · · · pek

k ,

where pi are distinct primes and ei, fi ≥ 0 for all i. Then
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(a) gcd(a, b) = p
min(e1,f1)
1 p

min(e2,f2)
2 · · · pmin(ek,fk)

k ,

(b) lcm(a, b) = p
max(e1,f1)
1 p

max(e2,f2)
2 · · · pmax(ek,fk)

k ,

(c) ab = gcd(a, b) · lcm(a, b).

4 Some Consequences of the Prime Factorization

Proposition 16. Let n be a positive integer. Then
√

n is rational if and only
if n is a perfect square, i.e., n = m2 for some integer m.

Proof. When n = m2 for an integer m, it is clear that m is a rational number
and

√
n = m.

Suppose
√

n = a
b is rational in reduced form, where a, b ∈ Z. Squaring

both sides, we have nb2 = a2. Let a = pe1
1 pe2

2 · · · pek

k . Then a2 has the unique
prime factorization a2 = p2e1

1 p2e2
2 · · · p2ek

k , i.e., each prime in a2 has an even
power. Similarly, every prime in the unique factorization b2 also has even
power. So the prime in the unique factorization of n also has even power.
Write n = q2d1

1 · · · q2dl, we have n = m2 with m = qd1
1 · · · qdl.

Proposition 17. Let a and b be positive integers that are coprime each other.
(a) If ab is a square, then both a and b are squares.
(b) If ab is an nth power, then both a and b are also nth powers.

Proof. It is trivial if one of a and b is the integer 1. Let a, b ≥ 2 and be
factored into the products

a = pd1
1 pd2

2 · · · pdk

k , b = qe1
1 qe2

2 · · · qek

k ,

where p1 < p2 < · · · < pk and q1 < q2 < · · · < ql are primes, di > 0 for all i

and ej > 0 for all j.
(a) Note that ab = c2 for positive integer c. Let c be factored into the

product c = rf1

1 rf2

2 · · · rfm
m . Then ab = c2 gives the equation

pd1
1 pd2

2 · · · pdk

k qe1
1 qe2

2 · · · qek

k = r2f1

1 r2f2

2 · · · r2fm
m .

Since a and b are coprime to each other, none of the pi are equal to any of the
qj. The unique Factorization Theorem implies that {p1, p2, . . . , pk, q1, q2, . . . , ql} =
{r1, r2, . . . , rm} and the corresponding powers are the same. Thus the inte-
gers di and ej are even numbers. Write di = 2d′i and ej = 2e′j. We then
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have

a =
(
p

d′1
1 p

d′2
2 · · · pd′k

k

)2
, b =

(
q

e′1
1 q

e′2
2 · · · qe′k

k

)2
.

So a and b are squares.
(b) The argument for (b) is the same as for (a). The condition ab = cn for

some integer c gives an equation

pd1
1 pd2

2 · · · pdk

k qe1
1 qe2

2 · · · qek

k = rnf1

1 rnf2

2 · · · rnfm
m .

The unique Factorization Theorem implies that the integers di and ej are
multiples of n. Hence a and b are both nth powers.

Example 2. Can a nonzero even square exceed a cube by 1? No.

Proof. If there is an even integer 2x whose square is equal to a cubic power
of an integer y plus 1, then (2x)2 = y3 +1. We are to show that the equation

4x2 = y3 + 1

has no integer solution (x, y) such that x 6= 0.
Suppose there is an integer solution (x, y) such that 4x2 = y3 + 1. Then

4x2 − 1 = y3. Thus
(2x + 1)(2x− 1) = y3.

Let d = gcd(2x + 1, 2x − 1). Since 2x + 1 and 2x − 1 are odd numbers, it
follows that d is an odd number. Certainly, d divides the difference of 2x + 1
and 2x− 1, which is 2. Hence d = 1; i.e., 2x + 1 and 2x− 1 are coprime. By
Proposition 17(b), both 2x + 1 and 2x − 1 are cubes. Note that the list of
cubes is

. . . ,−27,−8,−1, 0, 1, 8, 27, . . .

By inspection, a pair of cubes whose difference is 2 must be the pair (−1, 1).
So we must have x = 0 and y = −1.

5 More on Prime Numbers

Theorem 18. There are infinitely many prime numbers.

Proof. Suppose the result is not true, i.e., there are only finite number of
prime numbers, say, p1, p2, . . . , pn. Now consider the positive integer

N = p1p2 · · · pn + 1.
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Since N > pi for all i, the integer N cannot be a prime number. By the
Factorization Theorem we have N = q1q2 · · · qk for some prime numbers.
Since p1, p2, . . . , pn are the only prime numbers, then q1 = pi for some i.
Then pi | N by the factorization of N , but pi - N by definition of N . This is
a contradiction.

Question: Given a positive integer n, how many of the numbers 1, 2, . . . , n
are primes?

For a positive integer n, let π(n) denote the number of primes in {1, 2, . . . , n}.
For instance, we have

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 · · ·
π(n) 0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 · · ·

Theorem 19 (Prime Number Theorem).

π(n) ∼ n

ln n
, i.e., lim

n→∞
π(n)

n
lnn

= 1.

Goldbach Conjecture: Every even positive integer that is greater than 2
is a sum of two primes.

Twin Primes Conjecture: Two prime numbers of the form p, p + 2 are
called twin primes. There are infinitely many twin primes.
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