Integers, Prime Factorization, and More on Primes

October 25, 2013

Week 9-10

1 Integers

Definition 1. Let $a, b \in \mathbb{Z}$. We say that a divides b (or a is a factor of b) if $b=a c$ for some integer c. When a divides b, we write $a \mid b$.

Proposition 2 (Division Algorithm). Let a be a positive integer. Then for any $b \in \mathbb{Z}$, there exist unique integers q, r such that

$$
b=q a+r, \quad 0 \leq r<a .
$$

The integer q is called the quotient and r is the remainder.
Proof. Consider the rational number $\frac{b}{a}$. Since $\mathbb{R}=\bigcup_{k \in \mathbb{Z}}[k, k+1)$ (disjoint), there exists a unique integer q such that $\frac{b}{a} \in[q, q+1)$, i.e., $q \leq \frac{b}{a}<q+1$. Multiplying through by the positive integer a, we obtain $q a \leq b<(q+1) a$. Let $r=b-q a$. Then we have $b=q a+r$ and $0 \leq r<a$, as required.

Proposition 3. Let $a, b, d \in \mathbb{Z}$. If $d \mid a$ and $d \mid b$, then $d \mid(m a+n b)$ for all $m, n \in \mathbb{Z}$.

Proof. Since $d \mid a$ and $d \mid b$, there exist integers c_{1} and c_{2} such that $a=c_{1} d$ and $b=c_{2} a$. Then for any integers $m, n \in \mathbb{Z}$, we have

$$
m a+n b=m c_{1} d+n c_{2} d=\left(m c_{1}+n c_{2}\right) d
$$

This means that d divides $m a+n b$.

2 Euclidean Algorithm

Definition 4. Let $a, b \in \mathbb{Z}$, not all zero. A common divisor (or factor) of a and b is an integer which divides both a and b. The greatest common
divisor of a and b, written $\operatorname{gcd}(a, b)$, is the largest positive integer that divides both a and b.

Proposition 5. Let $a, b \in \mathbb{Z}$. If $b=q a+r$, then

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(a, r) .
$$

Proof. An integer c is a common divisor of a and b if and only if c is a common divisor of a and r. Thus the set of common divisors of a, b are the same as the set of common divisors of a, r.

Example 1. Find the greatest common divisor of 4346 and 6587.
Euclidean Algorithm: For integers a and b, and assume that a is positive. We write

$$
\begin{aligned}
b & =q_{1} a+r_{1}, & & 0 \leq r_{1}<a, \\
a & =q_{2} r_{1}+r_{2}, & & 0 \leq r_{2}<r_{1}, \\
r_{1} & =q_{3} r_{2}+r_{3}, & & 0 \leq r_{3}<r_{2}, \\
& \vdots & & \\
r_{k-3} & =q_{k-1} r_{k-2}+r_{k-1}, & & 0 \leq r_{k-1}<r_{k-2}, \\
r_{k-2} & =q_{k} r_{k-1}+r_{k}, & & 0 \leq r_{k}<r_{k-1}, \\
r_{k-1} & =q_{k+1} r_{k}+0 . & &
\end{aligned}
$$

Then by Proposition 5,

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}\left(a, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right)=\cdots=\operatorname{gcd}\left(r_{k-1}, r_{k}\right)=r_{k} .
$$

Theorem 6 (Euclidean Theorem). Let $a, b \in \mathbb{Z}$ and $d=\operatorname{gcd}(a, b)$. Then there exist integers m and n such that

$$
d=m a+n b .
$$

Proof. By the Euclidean Algorithm above, we have $d=r_{k}$ and

$$
\begin{aligned}
r_{k} & =r_{k-2}-q_{k} r_{k-1}, \\
r_{k-1} & =r_{k-3}-q_{k-1} r_{k-2}, \\
& \vdots \\
r_{3} & =r_{1}-q_{3} r_{2}, \\
r_{2} & =a-q_{2} r_{1} \\
r_{1} & =b-q_{1} a .
\end{aligned}
$$

It follows that r_{k} is a linear combination of a and b with integer coefficients.

Proposition 7. Let $a, b \in \mathbb{Z}$. Then a positive integer d is the greatest common divisor of a and b if and only if
(1) d divides both a and b;
(2) If c divides both a and b, then c divides d.

Proof. If the above two conditions are satisfied by the integer d, it is clear that d is the largest one among all divisors of a and b.

Let $d=\operatorname{gcd}(a, b)$. The first condition is obviously satisfied. The second condition follows from the Euclidean Algorithm.

Definition 8. Let $a, b \in \mathbb{Z}$. If $\operatorname{gcd}(a, b)=1$, we say that a and b are coprime each other.

Proposition 9. Let $a, b, c \in \mathbb{Z}$.
(1) Let a and b be comprime each other. If $a \mid b c$, then $a \mid c$.
(2) Let p be a prime. If $p \mid a b$, then either $p \mid a$ or $p \mid b$.

Proof. (1) By the Euclidean algorithm, there exist integers m, n such that $m a+n b=1$. Multiplying c to both sides we have $m a c+n b c=c$. Since $a \mid b c$, i.e., $b c=q a$ for some integer q, then

$$
c=m a c+n q a=(m c+n q) a,
$$

which means that a is a divisor of c.
(2) If $p \nmid a$, then $\operatorname{gcd}(p, a)=1$. Thus by (1), we must have $p \mid b$.

Corollary 10. Let $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$ and let p be a prime. If $p \mid a_{1} a_{2} \cdots a_{n}$, then $p \mid a_{i}$ for some i.

Proof. Let $P(n)$ denote the statement. We prove it by induction on n. For $n=1, P(1)$ says that if " $p \mid a_{1}$ then $p \mid a_{1}$," which is trivially true. Suppose it is true for $P(n)$. Consider $P(n+1)$. Let $a_{1}, a_{2}, \ldots, a_{n+1} \in \mathbb{Z}$. Let $a=$ $a_{1} a_{2} \cdots a_{n}$ and $b=a_{n+1}$. Then $p \mid a b$. If $p \mid a$, i.e., $p \mid a_{1} a_{2} \cdots a_{n}$, by induction, we have some $i(1 \leq i \leq n)$ such that $p \mid a_{i}$. If $p \nmid a$, then by Proposition 9, we have $p \mid b$, i.e., $p \mid a_{n+1}$. Hence $P(n+1)$ is true.

Definition 11. Let $a, b \in \mathbb{Z}$, not all zero. A common multiple of a and b is a nonnegative integer m such that $a \mid m$ and $b \mid m$. The very smallest one among all common multiples of a and b is called the least common multiple, denoted $\operatorname{lcm}(a, b)$.

Proposition 12. For $a, b \in \mathbb{Z}$, not all zero, if a, b are nonnegative, then

$$
\operatorname{lcm}(a, b)=\frac{a b}{\operatorname{gcd}(a, b)} .
$$

Proof. Let $d=\operatorname{gcd}(a, b), a=d c_{1}$ and $b=d c_{2}$. It is clear that the integer

$$
\frac{a b}{d}=d c_{1} c_{2}=a c_{2}=b c_{1}
$$

is a common multiple of a and $b, \operatorname{gcd}\left(c_{1}, c_{2}\right)=1$. Let m be a common multiple of a and b, i.e., $m=a e_{1}$ and $b=b e_{2}$. Then $m=a e_{1}=d c_{1} e_{1}=d c_{2} e_{2}$. It follows that $c_{1} e_{1}=c_{2} e_{2}$. Since $\operatorname{gcd}\left(c_{1}, c_{2}\right)=1$, we have $c_{1} \mid e_{2}$ and $c_{2} \mid e_{1}$. Write $e_{2}=c_{1} f_{1}$ and $e_{1}=c_{2} f_{2}$, then $c_{1} c_{2} f_{2}=c_{2} c_{1} f_{1}$. Thus $f_{1}=f_{2}$. Therefore

$$
m=a e_{1}=d c_{1} e_{1}=d c_{1} c_{2} f_{2}=\frac{a b}{d} f_{2},
$$

which is a multiple of $\frac{a b}{d}=d c_{1} c_{2}$. By definition, $\frac{a b}{d}$ is the least common multiple of a and b.

3 Prime Factorization

Theorem 13. (a) Every integer $n \geq 2$ is a product of prime numbers, i.e., there exist primes $p_{1}, p_{2}, \ldots, p_{k}$, where $p_{1} \leq p_{2} \leq \cdots \leq p_{k}$, such that

$$
n=p_{1} p_{2} \cdots p_{k} .
$$

(b) The prime factorization in (a) is unique, i.e., if $n=p_{1} p_{2} \cdots p_{k}=$ $q_{1} q_{2} \cdots q_{l}$, where $p_{1}, p_{2}, \ldots, p_{k}$ and $q_{1}, q_{2}, \ldots, q_{l}$ are primes, $p_{1} \leq p_{2} \leq \cdots \leq$ $p_{k}, q_{1} \leq q_{2} \leq \cdots \leq q_{l}$, then $k=l$ and

$$
p_{1}=q_{1}, \quad p_{2}=q_{2}, \quad \ldots \quad p_{k}=q_{k} .
$$

Proof. The existence of the prime factorization has been proved before. We only need to prove the uniqueness.

Suppose there is an integer n which has two different prime factorizations, say,

$$
n=p_{1} p_{2} \cdots p_{k}=q_{1} q_{2} \cdots q_{l},
$$

where $p_{1} \leq p_{2} \leq \cdots \leq p_{k}, q_{1} \leq q_{2} \leq \cdots \leq q_{l}$, and the list of primes $p_{1}, p_{2}, \ldots, p_{k}$ is not the same as the list $q_{1}, q_{2}, \ldots, q_{l}$.

Now in the equation $p_{1} p_{2} \cdots p_{k}=q_{1} q_{2} \cdots q_{l}$, cancel any primes that are common to both sides. Since the two factorizations are different, not all primes will be canceled, and we end up with an equation

$$
u_{1} u_{2} \cdots u_{r}=v_{1} v_{2} \cdots v_{s}
$$

where $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ is a sub-multiset of the multiset $\left\{p_{1}, p_{2}, \ldots, p_{k}\right\},\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}$ is a sub-multiset of $\left\{q_{1}, q_{2}, \ldots, q_{l}\right\}$, and $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\} \cap\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}=\emptyset$.

Now we have $u_{1} \mid v_{1} v_{2} \cdots v_{s}$ and $v_{1} \mid u_{1} u_{2} \cdots u_{r}$. By part (2) of Proposition 9 , we see that $u_{1} \mid v_{j}$ for some j and $v_{1} \mid u_{i}$ for some i. It follows that $u_{1}=v_{j}$ for some j and $v_{1}=u_{i}$ for some i. This contradicts to that $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\} \cap\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}=\emptyset$.
Corollary 14. (a) For any integer $n \geq 2$, there is a unique factorization

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}
$$

where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes, $p_{1}<p_{2}<\cdots<p_{k}$, and $e_{1}, e_{2}, \ldots, e_{k}$ are positive integers.
(b) Let $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$, where $p_{1}<p_{2}<\cdots<p_{k}$ are primes and all $e_{i} \geq 0$. If m is positive integer and $m \mid n$, then $m=p_{1}^{d_{1}} p_{2}^{d_{2}} \cdots p_{k}^{d_{k}}$ with $0 \leq d_{i} \leq e_{i}$ for all i.
Proof. (a) Collect the same primes and write them into powers.
(b) Since $m \mid n$, then $n=m c$ for a positive integer c. Write m and c into the unique prime factorization forms $m=q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{l}^{f_{l}}$ and $c=u_{1}^{g_{1}} u_{2}^{g_{2}} \cdots u_{r}^{g_{r}}$. Then

$$
p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}=q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{l}^{f_{l}} u_{1}^{g_{1}} u_{2}^{g_{2}} \cdots u_{r}^{g_{r}}
$$

By the unique prime factorization, the primes $q_{1}, q_{2}, \ldots, q_{l}$ and $u_{1}, u_{2}, \ldots, u_{r}$ must be some of the primes $p_{1}, p_{2}, \ldots, p_{k}$. Thus

$$
m=p_{1}^{d_{1}} p_{2}^{d_{2}} \cdots p_{k}^{d_{k}} \quad \text { and } \quad c=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}
$$

where $d_{i} \geq 0$ and $a_{i} \geq 0$ for all i. It follows that $e_{i}=d_{i}+a_{i}$ for all i. Therefore, $0 \leq d_{i} \leq e_{i}$ for all i.

Proposition 15. Let $a, b \geq 2$ be integers with the prime factorizations

$$
a=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}, \quad b=p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{k}^{e_{k}}
$$

where p_{i} are distinct primes and $e_{i}, f_{i} \geq 0$ for all i. Then
(a) $\operatorname{gcd}(a, b)=p_{1}^{\min \left(e_{1}, f_{1}\right)} p_{2}^{\min \left(e_{2}, f_{2}\right)} \cdots p_{k}^{\min \left(e_{k}, f_{k}\right)}$,
(b) $\operatorname{lcm}(a, b)=p_{1}^{\max \left(e_{1}, f_{1}\right)} p_{2}^{\max \left(e_{2}, f_{2}\right)} \cdots p_{k}^{\max \left(e_{k}, f_{k}\right)}$,
(c) $a b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)$.

4 Some Consequences of the Prime Factorization

Proposition 16. Let n be a positive integer. Then \sqrt{n} is rational if and only if n is a perfect square, i.e., $n=m^{2}$ for some integer m.

Proof. When $n=m^{2}$ for an integer m, it is clear that m is a rational number and $\sqrt{n}=m$.

Suppose $\sqrt{n}=\frac{a}{b}$ is rational in reduced form, where $a, b \in \mathbb{Z}$. Squaring both sides, we have $n b^{2}=a^{2}$. Let $a=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$. Then a^{2} has the unique prime factorization $a^{2}=p_{1}^{2 e_{1}} p_{2}^{2 e_{2}} \cdots p_{k}^{2 e_{k}}$, i.e., each prime in a^{2} has an even power. Similarly, every prime in the unique factorization b^{2} also has even power. So the prime in the unique factorization of n also has even power. Write $n=q_{1}^{2 d_{1}} \cdots q^{2 d_{l}}$, we have $n=m^{2}$ with $m=q_{1}^{d_{1}} \cdots q^{d_{l}}$.

Proposition 17. Let a and b be positive integers that are coprime each other.
(a) If $a b$ is a square, then both a and b are squares.
(b) If $a b$ is an nth power, then both a and b are also nth powers.

Proof. It is trivial if one of a and b is the integer 1 . Let $a, b \geq 2$ and be factored into the products

$$
a=p_{1}^{d_{1}} p_{2}^{d_{2}} \cdots p_{k}^{d_{k}}, \quad b=q_{1}^{e_{1}} q_{2}^{e_{2}} \cdots q_{k}^{e_{k}}
$$

where $p_{1}<p_{2}<\cdots<p_{k}$ and $q_{1}<q_{2}<\cdots<q_{l}$ are primes, $d_{i}>0$ for all i and $e_{j}>0$ for all j.
(a) Note that $a b=c^{2}$ for positive integer c. Let c be factored into the product $c=r_{1}^{f_{1}} r_{2}^{f_{2}} \cdots r_{m}^{f_{m}}$. Then $a b=c^{2}$ gives the equation

$$
p_{1}^{d_{1}} p_{2}^{d_{2}} \cdots p_{k}^{d_{k}} q_{1}^{e_{1}} q_{2}^{e_{2}} \cdots q_{k}^{e_{k}}=r_{1}^{2 f_{1}} r_{2}^{2 f_{2}} \cdots r_{m}^{2 f_{m}}
$$

Since a and b are coprime to each other, none of the p_{i} are equal to any of the q_{j}. The unique Factorization Theorem implies that $\left\{p_{1}, p_{2}, \ldots, p_{k}, q_{1}, q_{2}, \ldots, q_{l}\right\}=$ $\left\{r_{1}, r_{2}, \ldots, r_{m}\right\}$ and the corresponding powers are the same. Thus the integers d_{i} and e_{j} are even numbers. Write $d_{i}=2 d_{i}^{\prime}$ and $e_{j}=2 e_{j}^{\prime}$. We then
have

$$
a=\left(p_{1}^{d_{1}^{\prime}} p_{2}^{d_{2}^{\prime}} \cdots p_{k}^{d_{k}^{\prime}}\right)^{2}, \quad b=\left(q_{1}^{e_{1}^{\prime}} q_{2}^{e_{2}^{\prime}} \cdots q_{k}^{e_{k}^{\prime}}\right)^{2}
$$

So a and b are squares.
(b) The argument for (b) is the same as for (a). The condition $a b=c^{n}$ for some integer c gives an equation

$$
p_{1}^{d_{1}} p_{2}^{d_{2}} \cdots p_{k}^{d_{k}} q_{1}^{e_{1}} q_{2}^{e_{2}} \cdots q_{k}^{e_{k}}=r_{1}^{n f_{1}} r_{2}^{n f_{2}} \cdots r_{m}^{n f_{m}} .
$$

The unique Factorization Theorem implies that the integers d_{i} and e_{j} are multiples of n. Hence a and b are both nth powers.

Example 2. Can a nonzero even square exceed a cube by 1? No.
Proof. If there is an even integer $2 x$ whose square is equal to a cubic power of an integer y plus 1 , then $(2 x)^{2}=y^{3}+1$. We are to show that the equation

$$
4 x^{2}=y^{3}+1
$$

has no integer solution (x, y) such that $x \neq 0$.
Suppose there is an integer solution (x, y) such that $4 x^{2}=y^{3}+1$. Then $4 x^{2}-1=y^{3}$. Thus

$$
(2 x+1)(2 x-1)=y^{3} .
$$

Let $d=\operatorname{gcd}(2 x+1,2 x-1)$. Since $2 x+1$ and $2 x-1$ are odd numbers, it follows that d is an odd number. Certainly, d divides the difference of $2 x+1$ and $2 x-1$, which is 2 . Hence $d=1$; i.e., $2 x+1$ and $2 x-1$ are coprime. By Proposition $17(\mathrm{~b})$, both $2 x+1$ and $2 x-1$ are cubes. Note that the list of cubes is

$$
\ldots,-27,-8,-1,0,1,8,27, \ldots
$$

By inspection, a pair of cubes whose difference is 2 must be the pair $(-1,1)$. So we must have $x=0$ and $y=-1$.

5 More on Prime Numbers

Theorem 18. There are infinitely many prime numbers.
Proof. Suppose the result is not true, i.e., there are only finite number of prime numbers, say, $p_{1}, p_{2}, \ldots, p_{n}$. Now consider the positive integer

$$
N=p_{1} p_{2} \cdots p_{n}+1
$$

Since $N>p_{i}$ for all i, the integer N cannot be a prime number. By the Factorization Theorem we have $N=q_{1} q_{2} \cdots q_{k}$ for some prime numbers. Since $p_{1}, p_{2}, \ldots, p_{n}$ are the only prime numbers, then $q_{1}=p_{i}$ for some i. Then $p_{i} \mid N$ by the factorization of N, but $p_{i} \nmid N$ by definition of N. This is a contradiction.

Question: Given a positive integer n, how many of the numbers $1,2, \ldots, n$ are primes?

For a positive integer n, let $\pi(n)$ denote the number of primes in $\{1,2, \ldots, n\}$. For instance, we have

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
\cdots																	
$\pi(n)$	0	1	2	2	3	3	4	4	4	4	5	5	6	6	6	6	7

Theorem 19 (Prime Number Theorem).

$$
\pi(n) \sim \frac{n}{\ln n}, \quad \text { i.e., } \quad \lim _{n \rightarrow \infty} \frac{\pi(n)}{\frac{n}{\ln n}}=1 .
$$

Goldbach Conjecture: Every even positive integer that is greater than 2 is a sum of two primes.

Twin Primes Conjecture: Two prime numbers of the form $p, p+2$ are called twin primes. There are infinitely many twin primes.

