Week 1-2: Graphs and Subgraphs

September 26, 2016

1 Graphs

Definition of Graphs:

- A **graph** G is an ordered pair (V, E) consisting of a set V of **vertices** and a set E (disjoint from V) of **edges**, together with an **incidence function** $\text{End} : E \rightarrow M_2(V)$, where $M_2(V)$ is set of all 2-element sub-multisets of V. We usually write $V = V(G)$, $E = E(G)$, and $\text{End} = \text{End}_G$.

- If e is an edge and u, v are vertices such that $\text{End}(e) = \{u, v\}$, we say that e **joins** u and v, or, u and v are **incident** with e, or, u and v are **adjacent** by e, and say that u, v are **end-vertices** of e. We say that e is a **link** if $u \neq v$ and a **loop** if $u = v$.

- Two edges are said to be **parallel** if their end-vertices are identical.

Simple Graphs, Multigraphs, Complete Graphs, Bipartite Graphs:

- A graph is said to be **simple** if it has no loops and parallel edges. A graph with possible loops and parallel edges is referred to a **multigraph**.

- A graph is said to be **finite** if its vertex set and edge set are finite. We assume that all graphs are finite in our course.

- The graph with empty vertex set (and hence empty edge set) is called a **null graph**.

- A graph is said to be **trivial** if it has only one vertex. All other graphs are said to be **nontrivial**.

- A graph is called an **empty graph** if it does not contain any edge.

- A **complete graph** is a simple graph that every pair of vertices are adjacent. A complete graph with n vertices is denoted by K_n.

- A graph G is said to be **bipartite** if its vertex set $V(G)$ can be partitioned into two disjoint nonempty parts X, Y such that every edge has one end-vertex in X and the other in Y; such a partition $\{X, Y\}$ is called a **bipartition** of G, and such a bipartite graph is denoted by $G[X, Y]$.

A bipartite graph $G[X,Y]$ is called a **complete bipartite graph** if every vertex in X is joined to every vertex in Y; we abbreviate $G[X,Y]$ to $K_{m,n}$ if $|X| = m$ and $|Y| = n$.

Neighbors, Degree:

- Two adjacent vertices called **neighbors**. The set of neighbors of a vertex v in a graph G is the set of all vertices adjacent with v, denoted $N_v(G)$ or $G[v]$.
- The **degree** of a vertex v in a graph G, denoted by $d_G(v)$, is the number of edges incident with the vertex, where loops are counted twice. A vertex is said to be **isolated** if its degree is 0. For a simple graph G, $d_G(v) = |N_v(G)|$.
- A graph is said to be **regular** if every vertex has the same degree. A graph is said to be **k-regular** if every vertex has degree k.
- For any graph $G = (V,E)$,

 $$2|E| = \sum_{v \in V} d_G(v).$$

- In any graph, the number of vertices of odd degree is even.
- A graph is said to be **even** if the degree of its every vertex is an even number.

Proposition 1.1. Let $G[X,Y]$ be a bipartite graph without isolated vertices. If $d(x) \geq d(y)$ for all edge xy with $x \in X$ and $y \in Y$, then $|X| \leq |Y|$, and the equality holds iff $d(x) = d(y)$ for all edges xy with with $x \in X$ and $y \in Y$.

Proof. since $d(x) \geq d(y)$ for all edges xy with $x \in X$ and $y \in Y$, we have

$$|X| = \sum_{x \in X} \sum_{\substack{y \in Y \atop xy \in E}} \frac{1}{d(x)} = \sum_{x \in X, y \in Y} \frac{1}{d(x)} \leq \sum_{x \in X, y \in Y} \frac{1}{d(y)} = \sum_{y \in Y} \sum_{x \in X} \frac{1}{d(y)} = |Y|.$$

It is clear that if $d(x) = d(y)$ for all edges xy with $x \in X$ and $y \in Y$ then $|X| = |Y|$. Conversely, if $|X| = |Y|$, the above middle inequality must be equality. It forces that $d(x) = d(y)$ for all edges xy with $x \in X$.

Incidence Matrix, Adjacency Matrix:

- The **incidence matrix** of a graph G is a matrix $M = [m_{ve}]$, whose rows are indexed by vertices and whose columns are indexed by the edges of G, such that (i) the entry $m_{ve} = 0$ at (v,e) if the vertex v is not incident with the edge e, (ii) $m_{ve} = 1$ if v is incident with e once (i.e., e is a link), and (iii) $m_{ve} = 2$ if v is incident with e twice (i.e., e is a loop).
- The **adjacency matrix** of a graph G is a square matrix $A = [a_{uv}]$, whose rows and columns are indexed by vertices of G, where a_{uv} is the number of edges between the vertices u and v, each loop is counted twice.

Walk, Trail, Path, Cycle, Connectedness:

Walk, Trail, Path, Cycle, Connectedness:
A walk from a vertex u to a vertex v in a graph G is a sequence

$$W = v_0 e_1 v_1 \cdots e_{\ell-1} v_{\ell}$$

of vertices and edges with $v_0 = u$ and $v_{\ell} = v$, whose terms are alternate between vertices and edges of G, such that the edge e_i is incident with the vertices v_{i-1} and v_i, $1 \leq i \leq \ell$. The vertex v_0 called the initial vertex, v_{ℓ} the terminal vertex of G, and the number of ℓ the length of W. A walk is said to be closed if its initial and terminal vertices are identical.

- A walk is called a trail if its edge terms are distinct.
- A walk is called a path if its vertex terms are distinct (so are its edge terms), except possible identical initial and terminal vertices, for which it is referred to a closed path. If $P = v_0 e_1 v_1 \cdots e_{\ell-1} e_{\ell} v_{\ell}$ is a path, then $v_0, v_1, \ldots, v_{\ell}$ are distinct, or, $v_0 = v_{\ell}$, $v_1, v_2, \ldots, v_{\ell-1}$ are distinct, and $v_1, v_2, \ldots, v_{\ell-1}$ are called internal vertices of P. The underlying graph of a closed path is called a cycle.
- A subgraph C of a graph G is a cycle iff C is connected and 2-regular.
- A graph is said to be connected if there is a path between any two vertices of the graph.
- A graph is a cycle iff it is connected and 2-regular.
- An Euler trail of a graph G is a trail that uses every edge of G. A closed Euler trail is called an Euler tour.
- A Hamilton path of graph G is a path that uses every vertex of G. A closed Hamilton path is called a Hamilton cycle.

Union, Intersection, Cartesian Product:

- Two graphs are said to be disjoint if they have no common vertices, and to be edge-disjoint if they have no common edges.
- The union of two graphs G and H is the graph $G \cup H$ with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. If G and H are disjoint, then we write their union as $G + H$.
- The intersection of two graphs G and H is the graph $G \cap H$ with vertex set $V(G) \cap V(H)$ and edge set $E(G) \cap E(H)$. If G and H are disjoint, then $G + H$ is the null graph.
- The Cartesian product of two simple graphs G, H is the graph $G \square H$, whose vertex set is $V(G) \times V(H)$ and whose edge set is

$$\{(u, x)(v, x) : uv \in E(G)\} \cup \{(u, x)(u, y) : xy \in E(H)\}.$$
A directed graph (or digraph) is an ordered pair \(D = (V, A) \) consisting of a set \(V \) of vertices and a set of arcs, together with an incidence function \(\text{End} : A \to V \times V \). If \(a \in A \) is an arc and \(\text{End}(a) = (u, v) \), we call the arc \(a \) a directed edge from \(u \) to \(v \), the vertex \(u \) a tail, and \(v \) a head of \(a \). We usually write \(V = V(D) \), \(A = A(D) \), and \(\text{End} = \text{End}_D \).

Let \(v \) be a vertex in a digraph \(D \). The out-degree of \(v \) is the number of arcs of which \(v \) is tail, denoted \(d^+_D(v) \). The in-degree of \(v \) is the number of arcs of which \(v \) is a head, denoted \(d^-_D(v) \).

Let \(a \) be an arc in a digraph \(D \) such that \(\text{End}(a) = (u, v) \). We call \(u \) an in-neighbor of \(v \), and \(v \) an out-neighbor of \(u \). We denote by \(N^+_D(v) \) the set of all out-neighbors of a vertex \(v \), and by \(N^-_D(v) \) the set of all in-neighbors of \(v \).

An orientation of an edge \(e \) incident with two vertices \(u, v \) in a graph \(G \) is an assignment of signs to the pairs \((u, e) \) and \((v, e) \) such that their product is negative. So a loop must be assigned two opposite signs at its end-vertex. A link edge has exactly two orientations, i.e., \(+ - \) and \(- + \). A loop also has exactly two orientations, i.e., \(\pm \) and \(\mp \).

An orientation on a graph \(G \) is an assignment that each edge is given an orientation. An orientation of \(G \) can be viewed as a multi-valued function \(\varepsilon : V \times E \to \{ -1, 0, 1 \} \) such that (i) \(\varepsilon(v, e) = 0 \) if the vertex \(v \) is not incident with the edge \(e \), (ii) \(\varepsilon(u, e)\varepsilon(v, e) = -1 \) if \(e \) is a link joining the vertices \(u \) and \(v \), (iii) \(\varepsilon(u, e) = \pm \) or \(\varepsilon(u, e) = \mp \) if \(e \) is a loop at \(u \), where \(u = v \). A graph \(G \) together with an orientation \(\varepsilon \) is called an oriented graph, denoted \((G, \varepsilon) \).

An oriented graph \((G, \varepsilon) \) can be viewed as a digraph \(D \) with the vertex set \(V(G) \), where each edge \(e \) with end-vertices \(u, v \) is an arc (or directed edge) from \(u \) to \(v \) if \(\varepsilon(u, e) = 1 \) and \(\varepsilon(v, e) = -1 \). Conversely, a digraph \(D \) can be viewed as an oriented graph \((G, \varepsilon) \) with the vertex set \(V(D) \), where each directed edge (or arc) \(e \) from a vertex \(u \) to a vertex \(v \) is oriented by \(\varepsilon(u, e) = 1 \) and \(\varepsilon(v, e) = -1 \).

A tournament is a directed complete graph.

Theorem 1.2. Every tournament has a directed Hamilton path.

Proof. Let \(D \) be a tournament with \(n \) vertices. We proceed by induction on \(n \). For \(n = 2, 3 \), it is trivial to check directly. Now remove one vertex \(v \) from \(D \) to obtain a digraph \(D' = D - v \) with \(n - 1 \) vertices. By induction hypothesis, \(D' \) has a directed Hamilton path \(P = v_1v_2\ldots v_{n-1} \) from \(v_1 \) to \(v_{n-1} \). The situation can be divided into the following cases.

Case 1. \((v, v_1) \) is a directed edge in \(D \). Then \(P_1 = vv_1v_2\ldots v_{n-1} \) is a directed Hamilton path for \(D \).

Case 2. \((v_1, v) \) and \((v, v_2) \) are directed edges in \(D \). Then \(P_2 = v_1vv_2\ldots v_{n-1} \) is a directed Hamilton path for \(D \).

Case 3. \((v_1, v), (v_2, v), \) and \((v, v_3) \) are directed edges in \(D \). Then \(P_3 = v_1v_2vv_3\ldots v_{n-1} \) is a directed Hamilton path for \(D \).

Case k. \((v_1, v), (v_2, v), \ldots, (v, v_k) \) are directed edges in \(D \). Then \(P_k = v_1\ldots v_{k-1}vv_k\ldots v_{n-1} \) is a directed Hamilton path for \(D \).
Case \(n \). \((v_1, v), (v_2, v), \ldots, (v_{n-1}, v)\) are directed edges in \(D \). Then \(P_n = v_1v_2 \ldots v_{n-1}v \) is a directed Hamilton path for \(D \).

Isomorphism, Automorphism, Homomorphism:

- Two graphs \(G \) and \(H \) are said to be identical if \(V(G) = V(H) \) and \(E(G) = E(H) \).
- A graph \(G \) is said to be isomorphic to a graph \(H \) if there exist bijective mappings \(f : V(G) \rightarrow V(H) \) and \(g : E(G) \rightarrow E(H) \) such that \(\text{End}_G(e) = \{u, v\} \) iff \(\text{End}_H(g(e)) = \{f(u), f(v)\} \); such a pair \((f, g)\) of mappings is called an isomorphism from \(G \) to \(H \).
- An isomorphism from a graph \(G \) to itself if called an automorphism of \(G \). The set of all automorphisms of \(G \) froms a group under the composition of mappings, called the automorphism group of \(G \), denoted \(\text{Aut}(G) \).
- A homomorphism from a graph \(G \) to a graph \(H \) if there exist maps \(f : V(G) \rightarrow V(H) \) and \(g : E(G) \rightarrow E(H) \) such that if vertices \(u, v \) are adjacent by an edge \(e \) then the vertices \(f(u), f(v) \) are adjacent by the edge \(g(e) \). [The concept of homomorphism of graphs is not yet standardized. We rarely use the concept in our course.]

Labeled Graphs:

- Given a finite set \(V \). A simple graph \(G = (V, E) \) on \(V \) can be considered as a subset of \(\binom{V}{2} \), the set of all 2-element subsets of \(V \). A simple graph whose vertices are labeled, but whose edges are not labeled, is referred to a labeled simple graph.
- Given a set \(V \) of \(n \) elements. There are \(2^{\binom{n}{2}} \) labeled simple graphs with the vertex set \(V \). We denote by \(G(V) \) the set of all labeled simple graphs with vertex set \(V \).
- Let \(G \) be an unlabeled graph with \(n \) vertices. Then the number of labelings of \(G \) is \(\frac{n!}{\text{Aut}(G)} \), where \(\text{Aut}(G) \) is understood as the automorphism group of \(G \) with any labeling. Then
 \[
 \sum_{G \text{ unlabeled graph with } n \text{ vertices}} \frac{n!}{\text{Aut}(G)} = 2^{\binom{n}{2}}.
 \]
- The number of unlabeled graphs with \(n \) vertices is at least \(\lceil 2^{\binom{n}{2}}/n! \rceil \).

Intersection Graphs, Interval Graphs, Polyhedral Graphs, Cayley Graphs:

- Let \(F \) be a family of subsets of set \(V \). The intersection graph of \(F \) is a graph whose vertex set is \(F \), and two members of \(F \) are adjacent if their intersection is nonempty.
- Let \(V = \mathbb{R} \) and \(F \) be a set of some closed intervals of \(\mathbb{R} \). The intersection graph of \(F \) is called an interval graph.
- Given a polytope \(P \) of \(\mathbb{R}^3 \). The vertices and edges of \(P \) form a graph, called a polyhedral graph.
- Let \(\Gamma \) be a group. Given a subset \(S \) of \(\Gamma \) such that \(S \) does not contain the identity element and is closed under inverse operation. The Cayley graph of \(\Gamma \) with respect to \(S \) is a graph \(G(\Gamma, S) \) with vertex set \(\Gamma \) in which two vertices \(x, y \) are adjacent if \(xy^{-1} \in S \).
2 Subgraphs

Definition of Subgraphs:

- A graph H is called a subgraph of a graph G if $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$, and $End_H : E(H) \to M_2(V(H))$ is the restriction of $End_G : E(G) \to M_2(V(G))$ to $E(H)$. We then say that G contains H or H is contained in G.

- A copy of a graph H in a graph G is a subgraph of G which is isomorphic to H. Such a subgraph is also referred to as an H-subgraph of G.

- An embedding of graph H in a graph G is an isomorphism from H to a subgraph of G. For each copy of H in G, there are $|Aut(H)|$ embeddings in G, whose image subgraph is fixed.

- A maximal connected subgraph of G is called a connected component of G. The number of connected components of G is denoted by $c(G)$.

Deletion, Contraction:

- Let v be a vertex in a graph G. We denote by $G \setminus v$ the graph obtained from G by deleting the vertex v and all edges incident with v. Such an operation is referred to as a vertex deletion, and $G \setminus v$ as a vertex-deleted subgraph.

- Let e be an edge of graph G. We denote by $G \setminus e$ the graph obtained from G by deleting the edge e but leaving the end-vertices of e. Such an operation is referred to as an edge deletion, and $G \setminus e$ as an edge-deleted subgraph. If $S \subseteq E(G)$, we denote by $G \setminus S$ the graph obtained from G by deleting all edges of S.

- Let e be an edge of a graph G. We denote by G/e the graph obtained from G by deleting the edge e and gluing the end-vertices of e to become one vertex. Such an operation is called a contraction, and G/e an edge-contracted minor of G. Note that there are edges (other than e) joining the end-vertices of e, then those edges become loops in G/e. If $S \subseteq E(G)$, we denote by G/S the graph obtained from G by contracting all edges of S.

Theorem 2.1. A graph G whose every vertex has degree at least 2 contains a cycle.

Proof. Let $P := v_0 e_1 v_1 \cdots e_\ell v_\ell$ be a longest path in G. Such a path does exist since G is finite. If $v_0 = v_\ell$, then the underlying graph of P is already a cycle. Otherwise, the degree of v_0 in P is 1. Since the degree of v_0 in G is at least 2, there is an edge e_0 (not in P) joining v_0 to another vertex v. If $v = v_i$ for some i with $0 \leq i \leq \ell$, then the underlying graph of $P_i := v e_0 v_0 v_1 \cdots e_i v_i$ is a cycle. Otherwise, $Q := v e_0 P$ is a longer path, a contradiction. [QED]

Corollary 2.2. A graph without cycles has at least one vertex of degree 0 or degree 1.

Acyclic Graphs (Forests):

- A graph is said to be acyclic if it does not contain any cycle. An acyclic graph is also called a forest. A connected forest is called a tree.
• A vertex of degree 1 in a tree is called a leaf of the tree.
• A tree with at least one edge has at least two leaves.

Spanning Subgraphs, Induced Subgraphs:
• A spanning subgraph H of a graph G is subgraph such that $V(H) = V(G)$.
• The symmetric difference of spanning subgraph G_1 and G_2 of graph G is a spanning subgraph of G whose edge is $E(G_1) \Delta E(G_2)$.
• Let X be a vertex subset of a graph. An induced subgraph by X is a graph $G[X]$ whose vertex is X and whose edge set consists of all edges of G which have end-vertices in X.
• Let S be an edge subset of a graph G. An induced subgraph by S is a graph $G[S]$ whose edge set is S and whose vertex set consists of all end-vertices of edges in S.

Decomposition, Coverings:
• A decomposition of a graph G is a family of edge-disjoint subgraphs of G such that
 $$E(G) = \bigcup_{H \in \mathcal{F}} E(H).$$
• A covering or cover of graph G is a family \mathcal{F} of not necessarily edge-disjoint subgraphs of G such that
 $$E(G) = \bigcup_{H \in \mathcal{F}} E(H).$$
 A covering \mathcal{F} is referred to a path (cycle) covering if the family \mathcal{F} consists entirely of path (cycles) of G.
• A covering of a graph G is said to be a uniform if every edge of G is covered the same number of times by \mathcal{F}. When this number is k, the covering is called a k-cover. A 2-cover is usually called a double cover.

Theorem 2.3. A graph admits a cycle decomposition iff it is even.

Proof. The necessity is trivial, for every cycle is 2-regular and the degree of a vertex in the graph is a sum of 2’s. The sufficiency is as follows.

Let G be an even graph. If G contains some edges, then G contains a cycle C_1 by Theorem 2.1. Remove the edge of C_1 from G to obtain a graph G_1, which is still even. Then by Theorem 2.1 again there is a cycle C_2 in G_1. Remove the edges of C_2 from G_1 to obtain a graph G_2, which is even. Continue this procedure, we obtain a cycle decomposition of G.

Theorem 2.4. Let $\mathcal{F} = \{F_1, \ldots, F_k\}$ be a family of bipartite graphs. If \mathcal{F} is a decomposition of K_n, then $k \geq n - 1$.

Cuts, Bonds, Even Graphs:
• let X and Y be vertex subsets of a graph G or digraph D. We introduce the edge subset and the arc subset

$[X, Y] = \text{set of edges with one vertex in } X \text{ and the other vertex in } Y,$

$(X, Y) = \text{set of arcs having the tail in } X \text{ and the head in } Y.$

• An edge cut or just a cut of graph G is a nonempty edge subset of the form $[X, X^c]$, where X is a vertex subset and X^c is its complement in $V(G)$. We also write

$\partial(X) = \partial_G(X) := [X, X^c].$

If ∂X is a cut, then X must be a proper subset of $V(G)$.

• For each vertex subset X of a graph G,

$|X, X^c| + 2|X, X| = \sum_{v \in X} d_G(v).$

• A bond of a graph G is a minimal cut, i.e., an edge cut none of whose proper subset is an edge cut.

• Deleting the edges of a cut increases the number of connected components. Deleting the edges of a bond increases exactly by one the number of connected components.

• An even graph is a graph whose every vertex has even degree. A connected even graph is called an Eulerian graph.

Theorem 2.5. A graph G is even iff every cut of G has even number of edges.

Proof. If G is even, then for each subset $X \subseteq V(G)$, the cardinality

$|X, X^c| = -2||X, X|| + \sum_{v \in X} d_G(v)$

is clearly even. Conversely, for each vertex $v \in V(G)$, we have the cut $\{|v\}, \{v\}^c\}$, and clearly, $d_G(v) = ||\{v\}, \{v\}^c|| + 2||\{v\}, \{v\}||$ is even.

Proposition 2.6. The difference of two cuts is a cut or empty set. For vertex subsets X, Y of a graph G,

$[X, X^c] \Delta [Y, Y^c] = [X \Delta Y, (X \Delta Y)^c].$

Proof. Note that $\{X \cap Y, X \cap Y^c, X^c \cap Y, X^c \cap Y^c\}$ is a partition of $V(G)$.

<table>
<thead>
<tr>
<th>$X \cap Y$</th>
<th>$X \cap Y^c$</th>
<th>$X^c \cap Y^c$</th>
<th>$X^c \cap Y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X \cap Y$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$X \cap Y^c$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$X^c \cap Y$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$X^c \cap Y^c$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Since \([X, X^c] \cap [Y, Y^c] = [X \cap Y, X^c \cap Y^c]\), we have
\[
[X, X^c] \Delta [Y, Y^c] = [X, X^c] \cup [Y, Y^c] - [X \cap Y, X^c \cap Y^c]
\]
\[
= [X \cap Y, X \cap Y^c] \cup [X \cap Y^c, X \cap Y] \cup
[X \cap Y^c, X^c \cap Y^c] \cup [X^c \cap Y, X^c \cap Y^c].
\]
Since \(X \Delta Y = (X \cap Y^c) \cup (X^c \cap Y)\) and \((X \Delta Y)^c = (X \cap Y) \cup (X^c \cap Y^c)\), we have
\[
[X \Delta Y, (X \Delta Y)^c] = [(X \cap Y^c) \cup (X^c \cap Y), (X \cap Y) \cup (X^c \cap Y^c)]
\]
\[
= [X \cap Y^c, X \cap Y] \cup [X^c \cap Y, X \cap Y] \cup
[X \cap Y^c, X^c \cap Y^c] \cup [X^c \cap Y, X^c \cap Y^c].
\]
Note that \([X \cap Y, X \cap Y^c] = [X \cap Y^c, X \cap Y]\) and \([X \cap Y, X^c \cap Y] = [X^c \cap Y, X \cap Y]\).

\[\Box\]

Proposition 2.7. Let \(B\) be an edge subset of a connected graph \(G\). Then \(B\) is a bond iff there is a vertex subset \(X\) such that both \(G[X]\) and \(G[X^c]\) are connected and \(B = [X, X^c]\).

Proof. “⇒” Since \(B\) is a cut, there is a vertex subset \(X\) such that \(B = [X, X^c]\). We claim that both \(G[X]\) and \(G[X^c]\) are connected. Suppose \(G[X]\) is not connected, say, \(X = X_1 \sqcup X_2, X_i \neq \emptyset, i = 1, 2,\) and \([X_1, X_2] = \emptyset\). Then both \([X_1, X^c]\) and \([X_2, X^c]\) are nonempty cuts, and are contained in \([X, X^c]\); this is contradict to that \(B\) is a minimal cut. So \(G[X]\) is connected. Likewise, \(G[X^c]\) is connected.

“⇐” Clearly, \(B = [X, X^c]\) is a cut. Suppose \(B\) is not minimal, i.e., there exists a proper subset \(B_1 \subsetneq B\) such that \(B_1\) is also a cut. Then \(G - B_1\) is disconnected. However, the edges of \(B - B_1\) are between \(G[X]\) and \(G[X^c]\), and both \(G[X]\), \(G[X^c]\) are connected. So \(G - B_1\) is connected, contradictory to that \(G - B_1\) is disconnected.

Proposition 2.8. An edge subset of \(G\) is a cut iff it is a disjoint union of bonds.

Proof. The sufficiency is trivial. For necessity, consider an edge cut \([X, X^c]\) of \(G\). Let \(G[X]\) be decomposed into connected components, and let \(G_1, \ldots, G_m\) be those components having a vertex adjacent to a vertex in \(X^c\). Set \(X_i = V(G_i), i = 1, \ldots, m\). Then \([X, X^c]\) is a disjoint union of the cuts \([X_i, X_i^c]\), \(1 \leq i \leq m\). For each \(i\), let \(G[X_i]\) be decomposed into connected components, and let \(G_i, \ldots, G_{im}\) be those components having a vertex adjacent to a vertex in \(X_i\). Set \(X_{ij} = V(G_{ij})\). Then \([X_{ij}, X_{ij}^c]\) is a disjoint union of cuts \([X_{ij}, X_{ij}^c]\). It suffices to show that each cut \([X_{ij}, X_{ij}^c]\) is a bond. In fact, \([X_{ij}, X_{ij}^c]\) consists of the edges between the connected subgraphs \(G_{ij}\) and \(G_i\). Then \([X_{ij}, X_{ij}^c]\) is a bond in \(G[X_i \cup X_{ij}]\) by Proposition 2.7. So is \([X_{ij}, X_{ij}^c]\) in \(G\). (In fact, suppose \([X_{ij}, X_{ij}^c]\) is not a bond, i.e., there is a proper nonempty subset \(S\) of \([X_{ij}, X_{ij}^c]\) such that \(S = [Y, Z]\) is a cut of \(G\), where \(Y \subset X_{ij}\) and \(Z \subset X_i\). There is no path from \(G[Y]\) to \(G[Z]\). However, there is an edge \(e \notin S\) such that \(e = uv\) and \(u \in X_{ij}, v \in X_i\). Note that there exist a path from \(G[Y]\) to \(u\) and a path from \(G[Z]\) to \(v\). So there is a path from \(G[Y]\) to \(G[Z]\), a contradiction.)

Proposition 2.9. For spanning subgraphs \(G_1, G_2\) of a graph \(G\),
\[
\partial_{G_1 \Delta G_2}(X) = \partial_{G_1}(X) \Delta \partial_{G_2}(X), \quad i.e.,
\]
\[
[X, X^c]_{G_1 \Delta G_2} = [X, X^c]_{G_1} \Delta [X, X^c]_{G_2}.
\]
Proof. For each edge $e \in \partial G(X)$, we see that $e \in \partial_{G_1 \Delta G_2}(X)$ iff either $e \in E(G_1) - E(G_2)$ or $e \in E(G_2) - E(G_1)$ iff either $e \in \partial G_1(X)$ or $e \in \partial G_2(X)$, i.e., $e \in \partial G_1(X) \Delta \partial G_2(X)$. \qed

Theorem 2.10. The difference of two even graphs is an even graph.

Proof. For even graphs G_1, G_2 and a vertex subset X, let $a = |[X, X^c]_{G_1} \cap [X, X^c]_{G_2}|$. By Proposition 2.9,

$$|[X, X^c]_{G_1} \Delta [X, X^c]_{G_2}| = |[X, X^c]_{G_1} - [X, X^c]_{G_2}| = |[X, X^c]_{G_1}| + |[X, X^c]_{G_2}| - 2a$$

which is an even number. Then by Theorem 2.5, $G_1 \Delta G_2$ is an even graph. \qed

Vector Spaces Associated to Graphs:

- Let S be a set and \mathbb{F} a field. Let \mathbb{F}^S denote the set of all functions from S to \mathbb{F}. Then \mathbb{F}^S becomes a vector space over \mathbb{F} under the addition and the scalar multiplication of functions, i.e., for functions $f, g \in \mathbb{F}^S$ and a scalar $a \in \mathbb{F}$,

$$(f + g)(s) = f(s) + g(s), \quad (af)(s) = af(s), \quad s \in S.$$

- Let S be a set and $\mathbb{F}_2 = \{0, 1\}$ the field of two elements. There is a one-to-one correspondence between the power set $\mathcal{P}(S)$ and the vector space \mathbb{F}_2^S. In fact, each subset $A \subseteq S$ corresponds to the characteristic function $1_A : S \to \mathbb{F}_2$, where $1_A(s) = 1$ for $s \in A$ and $1_A(s) = 0$ for $s \in A^c$. Moreover, for subsets $A, B \subseteq S$,

$$A \triangle B = A \cup B - A \cap B \leftrightarrow 1_A + 1_B.$$

So $\mathcal{P}(S)$ can be viewed as a vector space of dimension $|S|$, whose addition is the symmetric difference, where the zero vector is the empty set, and the negative of a subset is itself.

- For a graph $G = (V, E)$, the vector space \mathbb{F}_2^V is called the **vertex space** of G, and \mathbb{F}_2^E the **edge space** of G.

- The set of even subgraphs of a graph G is a vector subspace of its edge space, called the **cycle space** of G.

- The set of cuts of a graph G is a vector subspace of its edge space, called the **bond space** of G.

Exercises

Ch1: 1.1.21; 1.1.22; 1.2.8; 1.3.9; 1.4.2; 1.5.6; 1.5.7; 1.5.12.

Ch2: 2.1.2(b); 2.1,11; 2.2.9; 2.2.12; 2.2.13; 2.4.1; 2.4.2; 2.4.4; 2.4.9; 2.5.2; 2.5.4; 2.5.7; 2.6.2; 2.6.4.
3 Chain Groups of Graphs

Definition of Graph and Orientation (revisited):

- A graph G is a system (V, E), where V is a set whose elements are called vertices and E a set of disjoint non-closed simple paths, called edges, such that the initial (and also terminal) point of each edge is glued to a vertex in V. Since each edge $e \in E$ is a non-closed simple path, we view e as an embedding $e : [0, 1] \to \mathbb{R}^d$, and view the initial point $e(0)$ and the terminal point $e(1)$ as vertices of G. The edge e is called a link if $e(0) \neq e(1)$ and a loop if $e(0) = e(1)$. The pairs $(0, e)$ and $(1, e)$ are called two ends of e, and may be viewed as the sub-paths $e[0, 1/2]$ and $e[1/2, 1]$. The collection of all ends is denoted by $\text{End}(G)$, i.e., $\text{End}(G) = \{(i, e) : e \in E, i = 0, 1\}$.

- An orientation of an edge e is an assignment ε of signs on the two ends of e such that $\varepsilon(0, e) \varepsilon(1, e) = -1$. Each edge has exactly two (opposite) orientations. An edge with an orientation is called an oriented edge. If \vec{e} denotes an oriented edge, the the same edge with opposite orientation is denoted by $-\vec{e}$. Let $\vec{E}(G)$ denote the set of all oriented edges of G. An orientation of a graph G is an assignment that each edge is given one of its two orientations, and it can be viewed as a subset $\omega \subset \vec{E}(G)$ such that $\omega \cap (-\omega) = \emptyset$ and $\omega \cup (-\omega) = \vec{E}(G)$.

Chain Groups:

- Each vertex of a graph G is referred to a 0-cell, and each edge of G is referred to a 1-cell. So a graph G can be viewed as a 1-dimensional cell complex.

- Let A be an abelian group and $G = (V, E)$ a graph. Set $\vec{V} = \{\pm v : v \in V\}$. A 0-chain of G is a function $p : \vec{V} \to A$ such that $p(-v) = -p(v)$. A 1-chain of is a function $f : \vec{E}(G) \to A$ such that $f(-e) = f(e)$. Let $C_i(G, A)$ denote the group of all i-chains of G, called the i-th chain group of G, $i = 0, 1$.

- For each chain f, the support of f is the set $\text{supp}f = \{e \in E(G) : f(\vec{e}) \neq 0\}$. We usually write
 $$f = \sum_{e \in \text{supp}f} f(\vec{e})\vec{e}.$$
 Here we do not care which oriented edge \vec{e} is selected, since $\sum_{e \in \text{supp}f} f(-\vec{e})(-\vec{e}) = \sum_{e \in \text{supp}f} f(\vec{e})\vec{e}$.

- We introduce a pairing $\langle, \rangle : C_1(G, \Gamma) \times C_1(G, \Gamma) \to \Gamma$ by
 $$\langle f, g \rangle = \sum_{e \in \vec{E}(G)} f(\vec{e})g(\vec{e}).$$
 Again, here it does not matter which oriented edge \vec{e} is selected, since
 $$\sum_{e \in \vec{E}(G)} f(-\vec{e})g(-\vec{e}) = \sum_{e \in \vec{E}(G)} f(\vec{e})g(\vec{e}).$$
There is a **boundary map**

\[\partial : C_1(G, \Gamma) \to C_0(G, \Gamma), \quad \partial \vec{e} = u - v, \text{ where } \vec{e} = \overrightarrow{uv}, \]

extended by group homomorphic property. The **flow group** \(F(G, A) \) of \(G \) with coefficients in \(A \) is the kernel \(\ker \partial \). Each member of \(F(G, A) \) is called a **flow** of \(G \) with values in \(A \).

There is a **co-boundary map**

\[\delta : C_0(G, \Gamma) \to C_1(G, \Gamma), \quad (\delta f)(\vec{e}) = f(u) - f(v), \text{ where } \vec{e} = \overrightarrow{uv}, \]

which is a group homomorphism.

Circuit Vectors, Cut vectors, Bond Vectors:

- A **circuit** of a graph \(G \) is a nonempty edge subset \(C \) such that \(G[C] \) is a minimal even graph. A circuit is just a cycle. A **direction** of a circuit \(C \) is an orientation \(\omega_C \) on \(G[C] \) such that there is neither a source nor a sink. A circuit \(C \) with a direction \(\omega_C \) is referred to as a **directed circuit**, denoted \((C, \omega_C) \).

- It is easy to see that there are exactly two directions \(\pm \omega_C \) (opposite each other) on \(C \). A **circuit vector** of \(G \), associated with a directed circuit \((C, \omega_C) \), is a chain \(I_{(C, \omega_C)} : \vec{E} \to \mathbb{Z} \) defined by

\[
I_{(C, \omega_C)}(e) = \begin{cases}
1 & \text{if } e \in \omega_C, \\
0 & \text{if } e \notin \omega_C \cup (-\omega_C).
\end{cases}
\]

Sometimes we simply use \(\omega_C \) to denote this chain \(I_{(C, \omega_C)} \).

- A **direction** of a cut \(U = [X, X^c] \) of a graph \(G \) is an orientation \(\omega_U \) on \(G[U] \) such that the each oriented edge has its tail in \(X \) and its head in \(X^c \). A cut \(U \) with a direction \(\omega_U \) is referred to as a **directed cut**, denoted \((U, \omega_U) \).

- A **cut vector** of \(G \), associated with an oriented cut \((U, \omega_U) \), is a chain \(I_{(U, \omega_U)} : \vec{E} \to \mathbb{Z} \) defined by

\[
I_{(U, \omega_U)}(e) = \begin{cases}
1 & \text{if } e \in \omega_U, \\
0 & \text{if } e \notin \omega_U \cup (-\omega_U).
\end{cases}
\]

Sometimes we simply use \(\omega_U \) to denote this chain \(I_{(U, \omega_U)} \).

- A cut vector is referred to a **bond vector** if the cut is a bond.

Proposition 3.1 (Berge). Let \(G \) be a graph.

(a) A chain \(f \in C_1(G, A) \) is a flow iff for each directed cut \((U, \omega_U) \),

\[
\sum_{e \in \omega_U} f(e) = 0.
\]
(b) In particular, a digraph \((G, \omega)\) is a directed Eulerian iff for each directed cut \((U, \omega_U)\),
\[
\sum_{e \in \omega_U} [\omega, \omega_U](e) = 0.
\]

Tensions:

A **tension** of a graph \(G\) with values in an abelian group \(A\) is a chain \(g \in C_1(G, A)\) such that for each directed circuit \((C, \omega_C)\),
\[
\sum_{e \in \omega_C} g(e) = 0, \quad \text{i.e.,} \quad \langle g, \omega_C \rangle = 0.
\]

The **tension group** \(T(G, A)\) of \(G\) with coefficients in \(A\) is the group of all tensions of \(G\) with values in \(A\).

Proposition 3.2. For each potential \(p \in C_0(G, A)\), \(\delta p\) is a tension of \(G\).

Theorem 3.3. A 1-chain \(g\) of a graph \(G\) with values in an abelian group \(A\) is a tension iff for each flow \(f\) of \(G\) with values in \(A\),
\[
\langle f, g \rangle = 0.
\]