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1. Binomial and Multinomial Coefficients

Definition 1.1. An r-permutation of n objects is a linearly ordered selection of
r objects from an n-set. The number of r-permutations of n objects is denoted by

P (n, r).

An n-permutation of n objects is just called a permutation of the n objects. The
number of permutations of n objects is denoted by n!, read “n factorial”.

Definition 1.2. An r-combination of n objects is a selection of r objects from a
set of n objects without order. The number of r-combinations of n objects is denoted
by (

n

r

)
,

read “n choose r.” These numbers are called binomial coefficients .

Definition 1.3. An r-combination with repetition of n objects is a selection
of r objects from a set of n objects without order and objects can be selected repeat-
edly. The number of r-combinations of n objects with repetition allowed is denoted
by 〈

n

r

〉
,

read “n choose r with repetition.”

For sake of brevity, we frequently call a set with n objects an n-set, and a subset
with r objects of any set an r-subset. Elements of a set are always considered
to be distinct. When considering indistinguishable objects we need the concept
of multisets. By a multiset we mean a collection of objects such that some of
them may be identically same, said to be indistinguishable. Given a set S; by
a multiset M over S we mean a function v : S → N = {0, 1, 2, . . .}, written
M = (S, v); the cardinality of M = (S, v) is

|M | =
∑

x∈S

v(x);

if |M | = n, we call M an n-multiset. For example, M = {a, a, b, b, b, c, c, e} is an
8-multiset over S = {a, b, c, d, e} with v(a) = 2, v(b) = 3, v(c) = 2, v(d) = 0,
v(e) = 1. An n-multiset M over a k-set S is said to be of type (r1, . . . , rk) or an
(r1, . . . , rk)-multiset, if the ith object of S appears ri times in M , 1 ≤ i ≤ k. A
submultiset of M = (S, v) is a multiset L = (S, u) such that u(x) ≤ v(x) for all
x ∈ S.
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The number of permutations of an n-multiset of type (r1, . . . , rk) is denoted by(
n

r1, . . . , rk

)
,

called a multinomial coefficient of type (n; r1, . . . , rk). See (5) of Proposition 1.5.

Proposition 1.4. (1) The number of r-permutations of n objects is given by

P (n, r) = n(n− 1) · · · (n− r + 1).

(2) The number of r-combinations of n objects is given by(
n

r

)
=

n!
r!(n− r)!

.

(3) The number of permutations of an n-multiset of type (r1, . . . , rk) is the same
as the number of ways to partition an n-set into k subsets of cardinalities
r1, . . . , rk, and is given by(

n

i1, . . . , ik

)
=

n!
r1! · · · rk!

.

(4) The number of n-combinations of r objects with repetition allowed equals
the number of non-negative integer solutions of x1 + · · · + xr = n, and is
given by 〈

r

n

〉
=

(
n + r − 1

n

)
.

Proposition 1.5. (1) The Pascal identity:
(

n
r

)
=

(
n−1

r

)
+

(
n−1
r−1

)
.

(2) An recurrence relation:
(

n+1
r+1

)
=

∑n
k=r

(
k
r

)
.

(3) The Vandermonde convolution:
(

m+n
r

)
=

∑r
i=0

(
m
i

)(
n

r−i

)

(4) The binomial expansion: (x + y)n =
∑n

i=0

(
n
i

)
xiyn−i.

(5) The multinomial expansion: (x1+· · ·+xk)n =
∑

i1+···+ik=n, i1,...,ik≥0

(
n

i1,...,ik

)
xi1

1 · · ·xik

k .

Proof. (1) Let An = {a1, . . . , an} be an n-set and An−1 = {a1, . . . , an−1}. The r-
subsets of An are divided into two types: (i) r-subsets of An−1; and (ii) r-subsets of
An, but not subsets of An−1. There are

(
n−1

r

)
r-subsets of type (i). Each r-subset

of type (ii) must contain the element an; and each such r-subset can be obtained
by selecting an (r−1)-subsets of An−1 first then adding the element an to it. Thus
there are

(
n−1
r−1

)
r-subsets of type (ii). Adding the number of r-subsets of two types,

we have
(

n
r

)
=

(
n−1

r

)
+

(
n−1
r−1

)
.

(2) Let Ai = {a1, . . . , ai}, 1 ≤ i ≤ n + 1. Then A1 ( A2 ( · · · ( An+1. For each
(r + 1)-subset S ⊆ An+1, there exists a unique k (r ≤ k ≤ n) such that S 6⊆ Ak

and S ⊆ Ak+1. Thus ak+1 ∈ S and S′ = S − {ak+1} is an r-subset of Ak. Of
course, each such r-subset S′ ⊆ Ak (r ≤ k ≤ n) produces a unique (r + 1)-subset
S = S′ ∪ {ak+1} of An+1. Therefore

(
n+1
r+1

)
=

∑n
k=r

(
k
r

)
.

(3) Let A be a set of m black balls and B a set of n white balls. Let S = A∪B.
Each r-subset of S is divided into a unique i-subset of A and a unique (r − i)-
subset of B, and vice versa. The identity follows from the counting in two different
ways. ¤

Proposition 1.6. (1)
〈

n
m

〉
=

〈
n

m−1

〉
+

〈
n−1
m

〉
.

(2)
〈

n+1
m

〉
=

∑m
k=0

〈
n
k

〉
.
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Proof. (1) Let An = {a1, . . . , an}. Each m-multiset M of An either contains the
element an or does not contain an. If M contains an, then M r {an} is an (m− 1)-
multiset over An, and there are

〈
n

m−1

〉
such m-multisets. If M does not contain

an, then M is an m-multiset of An−1, and there are
〈

n−1
m

〉
such m-multisets.

(2) For each m-multiset M of An+1 = {a1, . . . , an+1}, let k be the number
of times that the element an appears in M . Clearly, 0 ≤ k ≤ m. Deleting all
multiple copies of an in M we obtain an (m − k)-multiset of An. Thus

〈
n+1
m

〉
=∑m

k=0

〈
n

m−k

〉
. ¤

2. Counting of Functions

Given sets M and N , we have the following classes of functions from M to N .

Map(M, N) = {f : M → N},
Inj(M, N) = {f : M → N | f is injective},
Sur(M, N) = {f : M → N | f is surjective},
Bij(M, N) = {f : M → N | f is bijective}.

Whenever M, N are linearly ordered sets, we say that a function f : M → N is
monotonic provided that x ≤ y in M implies f(x) ≤ f(y) in N . We have the class
of functions

Mon(M, N) = {f : M → N | f is monotonic}.
Proposition 2.1. Let M and N be finite sets with cardinalities |M | = m and
|N | = n. Then

(1) |Map(M, N)| = nm;

(2) |Inj(M, N)| = n(n− 1) · · · (n−m + 1);

(3) |Sur(M, N)| = ∑n
k=0(−1)n−k

(
n
k

)
km;

(4) |Bij(M, N)| =
{

n! if m = n,
0 if m 6= n.

Proof. The cases (1), (2), (4) are obvious. The case (3) follows from the inclusion-
exclusion principle. In fact, let N = {b1, . . . , bn}. For 1 ≤ k ≤ n, we have∣∣Map

(
M, {bi1 , . . . , bik

})∣∣ = km for i1 < · · · < ik.

Then

|Sur(M, N)| =
∣∣∣∣Map(M, N)r

n⋃

i=1

Map
(
M, N r {bi}

)∣∣∣∣

= nm −
n∑

k=1

(−1)k+1
∑

i1<···<ik

∣∣Map
(
M, N r {bi1 , . . . , bik

})∣∣

= nm +
n∑

k=1

(−1)k
(n

k

)
(n− k)m =

n∑

k=0

(−1)n−k
(n

k

)
km.

¤
Note: The power set P(N) of N is a poset under the partial order of inclusion.
Then

|Map(M, T )| =
∑

S⊆T

|Sur(M, S)|, T ⊆ N.
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By the Möbius inversion, we have

|Sur(M, T )| =
∑

S⊆T

(−1)|TrS||Map(M, S)|, T ⊆ N.

Definition 2.2. The falling factorial of length n is

[x](n) = x(x− 1) · · · (x− n + 1), n ≥ 1

and [x](0) = 1. The rising factorial of length n is expression

[x](n) = x(x + 1) · · · (x + n− 1), n ≥ 1

and [x](0) = 1.

Proposition 2.3. (Reciprocity Law) For integers n ≥ 1,

[−x](n) = (−1)n[x](n), (2.1)

[−x](n) = (−1)n[x](n). (2.2)

Proposition 2.4. Let N and X be linearly ordered finite sets with cardinalities
|N | = n and |X| = x. Then

|Mon(N, X)| =
[x](n)

n!
. (2.3)

Proof. Let N = {1, 2, . . . , n}, X = {1, 2, . . . , x}, Y = {1, 2, . . . , x+n−1}, and be lin-
early ordered by the natural order of numbers. Consider the map Φ : Mon(N, X) →(

Y
n

)
, defined for f ∈ Mon(N, X) by

Φ(f) =
{
f(1), f(2) + 1, . . . , f(n) + n− 1

}
,

where
(

Y
n

)
is the set of all n-subsets of Y . It is easy to see that Φ is a bijection.

The inverse of Φ is given by

Φ−1
({y1, . . . , yn}

)
(i) = yi − i + 1, 1 ≤ i ≤ n;

where {y1, . . . , yn} is an n-subset of Y with y1 < · · · < yn. Thus

Mon(N, X)| =
(

x + n− 1
n

)
=

(x + n− 1)(x + n− 2) · · · (x + 1)x
n!

,

which is the form [x](n)/n!. ¤

Let M, N be either sets whose objects are distinguishable or multisets whose
objects are indistinguishable, having cardinalities |M | = m, |N | = n. We use
‘D’ and ‘I’ to indicate distinguishability and indistinguishability respectively. A
function from N to M can be considered as distributing objects of N into boxes
indexed by the members of M . A function from N to M can be also considered
as selecting |N | objects from M , with repetition allowed, and put them into boxes
indexed by members of N so that each box contains exactly one object.

If N is indistinguishable and M is distinguishable, then there are
〈

m
n

〉
ways to

select n objects from M with repetition allowed, and there is only one way to put
them into boxes indexed by the members of N ; so |Map(N, M)| = 〈

m
n

〉
.

If N is distinguishable and M is indistinguishable, then each function from N to
M is a distribution of N into identical boxes, which induces a partition of N , and
the number of parts ranges from 1 to m.
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If both N, M are indistinguishable, then a function from N to M is a partition
of n identical objects into some nonempty parts, which is a partition of the integer
n, and the number of parts ranges from 1 to m.

Let Sn,k denote the number of partitions of an n-set into k parts. Let Pk(n)
denote the number of partitions of the integer n with k parts. We have the following
table.

N M Map Inj (n ≤ m) Sur (n ≥ m) Bij (n = m)

D D mn [m](n) m!Sn,m n!

I D
〈

m
n

〉 (
m
n

) 〈
m

n−m

〉
1

D I
∑m

k=1 Sn,k Sn,n = 1 Sn,m 1

I I
∑m

k=1 Pk(n) Pn(n) = 1 Pm(n) 1

3. Counting of Permutations

A permutation of an n-set [n] = {1, 2, . . . , n} is a bijection σ : N → N , written
(

1 2 · · · n
σ(1) σ(2) · · · σ(n)

)
.

For simplicity, we frequently write σ as a word s1s2 . . . sn, where si = σ(i), 1 ≤
i ≤ n. For each i ∈ [n], the sequence i, σ(i), σ2(i), σ3(i), . . . must return to i for
some terms. Let `i = `i(σ) be the smallest integer such that σ`i(i) = i. We call the
sequence (

i σ(i) σ2(i) · · · σ`i−1(i)
)

a cycle of the permutation σ and `i (the number of elements in the cycle) the
cycle length. Since σ`i(σj(i)) = σj+`i(i) = σj(i)), one can write the above cycle
by starting any element σj(i) with 0 ≤ j ≤ `i − 1. We require to write the cycle
so that the leading element is largest, and to write the whole permutation σ in
increasing order of the leading elements of its cycles; such a writing is called the
standard cycle notation of σ, denoted cyc(σ). For instance, the standard cycle
notation of the permutation 857162394 of {1, 2 . . . , 9} is

cyc(857162394) = (625)(73)(9418).

If we delete the parenthesis in cyc(σ), we obtain a permutation σ̂ = ĉyc(σ). For
instance,

ĉyc(857162394) = 625739418,
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whose standard cycle notation is (2)(53)(74)(9816). We denote by Sn the sym-
metric group of all permutations of {1, 2, . . . , n}.
Proposition 3.1. The map ĉyc : Sn → Sn is a bijection.

Proof. It is clear that the map ĉyc is well-defined. We claim that ĉyc is surjective.
For each permutation t1t2 . . . tn, we construct a permutation σ such that ĉyc(σ) =
t1t2 . . . tn. In fact, the standard representation of σ can be obtained by inserting
parentheses into t1t2 . . . tn as follows: First write a left parenthesis to the left of t1
and a right parenthesis to the right of tn. If ti < tj for all i < j, where j 6= 1, write
a right and a left parentheses )( between tj−1 and tj to have (t1 . . . tj−1)(tj . . . tn).
Continue this procedure for (tj . . . tn). Alternatively, one can define the map σ as
follows:

σ(tj) =
{

tj+1 if there exists an i ≤ j s.t. ti > tj+1,
t if ti ≤ tj+1 for all i ≤ j,

where t is the unique element of the singleton {t1, . . . , tj} r {σ(t1), . . . , σ(tj−1)}.
Now it forces that the surjective map ĉyc is bijective, for Sn is finite. ¤

A permutation σ of [n] is said to be of cycle-type 1λ12λ2 . . . nλn , if it has

λ1(σ) cycles of length 1,

λ2(σ) cycles of length 2,
· · · · · · · · ·

λn(σ) cycles of length n;

the cycle-type of σ is denoted by

type(σ) = 1λ1(σ)2λ2(σ) . . . nλn(σ).

Clearly,
n∑

i=1

i λi(σ) = n.

Proposition 3.2. The number of permutations of an n-set of type 1λ12λ2 . . . nλn ,
where

∑n
i=1 i λi = n, is given by

n!
1λ12λ2 · · ·nλn(λ1!)(λ2!) · · · (λn!)

. (3.1)

Proof. Let S(1λ12λ2 . . . nλn) denote the set of permutations of type 1λ12λ2 . . . nλn .
Let Pi denote a linearly ordered λi pairs of parentheses, each pair of parentheses
contains i linearly ordered positions. Then there are n linearly ordered positions in
the arrangement P = P1P2 . . . Pn. For each permutation σ = s1s2 . . . sn, let Φ(σ)
denote the placement of the n elements s1, s2, . . . , sn placed into the n positions of
P in the same order. Then Φ(σ) defines a permutation of type 1λ12λ2 . . . nλn , which
may not be in standard cycle representations. Thus Φ : Sn → S(1λ12λ2 . . . nλn)
defines a surjective map.

Notice that each filled pair of parentheses with i positions has i representations;
and there are λi such pairs of parentheses. Then there are iλi(λi!) ways to rearrange
the elements in Pi to have the same λi cycles of length i. Since the rearrangements
in P1, . . . , Pn, respectively, are independent, it follows that the fiber of Φ over each
member of S(1λ12λ2 . . . nλn) has the cardinality

1λ12λ2 · · ·nλn(λ1!)(λ2!) · · · (λn!).
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The formula (3.1) follows immediately. ¤
A partition of a set S is a collection of disjoint nonempty subsets whose union

is S. For an n-set S, a partition of S is said to be of type 1λ12λ2 . . . nλn if the
number of i-subsets of the partition is λi. Clearly, we have

∑n
i=1 i λi = n.

Proposition 3.3. The number of partitions of an n-set of type 1λ12λ2 . . . nλn is
n!

(1!)λ1(2!)λ2 · · · (n!)λn(λ1!)(λ2!) · · · (λn!)
. (3.2)

Proof. Let Par(1λ12λ2 · · ·nλn) be the set of all partitions of an n-set N of type
1λ12λ2 · · ·nλn . Let Bi denote a linearly ordered λi boxes, each box contains i
linearly ordered positions. There are total n positions in the arrangement B =
B1B2 · · ·Bn. For each permutation σ = s1s2 . . . sn, let Ψ(σ) denote the place-
ment of the n elements s1, s2, . . . , sn placed into the n positions of B in the same
order. Then Ψ(σ) defines a partition of type 1λ12λ2 . . . nλn . Thus Ψ : Sn →
Par(1λ12λ2 . . . nλn) defines a surjective map. Notice that the i elements in each box
with i positions can be arranged in i! ways; and there are λi such boxes. Then there
are (i!)λi(λi!) ways to rearrange the elements in Bi to have the same λi i-subsets.
Since the rearrangements in B1, . . . , Bn, respectively, are independent, it follows
that the fiber of Ψ over any element of Par(1λ12λ2 . . . nλn) has the cardinality

(1!)λ1(2!)λ2 · · · (n!)λn(λ1!)(λ2!) · · · (λn!).

The formula (3.2) follows immediately. ¤
Definition 3.4. The number of permutations of an n-set with exactly k cycles is
denoted by cn,k, where n ≥ k ≥ 0 and c0,0 = 1.

Proposition 3.5. The numbers cn,k satisfy the recurrence relation



c0,0 = cn,n = 1 for n ≥ 0
cn,0 = 0 for n ≥ 1
cn+1,k = cn,k−1 + ncn,k for n ≥ k ≥ 1

(3.3)

Proof. The initial conditions are obvious.
We consider the set of cn+1,k permutations of an (n + 1)-set N with k cycles.

Fix an element w ∈ N and divide permutations of N into two kinds:
(i) Permutations where (w) is a cycle of length 1. There are cn,k−1 such permu-

tations.
(ii) Permutations where w is contained in a cycle of length at least 2. Such

permutations can be obtained from permutations of N r {w} with k cycles by
inserting the element w into one of the k cycles, and there are exactly n independent
ways of making the insertion. So there are ncn,k such permutations. ¤

Theorem 3.6.
∑n

k=0 cn,kxk = x(x + 1)(x + 2) · · · (x + n− 1).

Proof. Let x be a positive integer and let C(σ) denote the set of cycles of a permu-
tation σ of [n] in standard cycle notation. The left-hand side counts all pairs (σ, f),
where σ is a permutation of [n] and f is a function from C(σ) to [x]. The right-hand
side counts the integer sequences (a1, a2, . . . , an), where 1 ≤ ai ≤ x + n − i. We
define a map (a1, . . . , an) 7→ (σ, f) as follows:

(1) Write down the number n and regard it as a cycle C = (n). Let σ = C and
define f(C) = an.
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(2) Whenever i+1, i+2, . . . , n have been inserted into the cycles of σ, consider
to insert i into σ. There are two situations:
(a) If ai ∈ [1, x], start a new cycle C ′ = (i) with the element i to the left

of existing cycles of σ, and define f(C ′) = ai.
(b) If ai = x+k ∈ [x+1, x+n− i] with 1 ≤ k ≤ n− i, insert i into a cycle

of σ so that it appears to the right of exactly k previously inserted
elements. (The n− i numbers ai+1, . . . , an were inserted previously.)

It follows that ai is the leading element in a cycle Ci of σ iff ai ∈ [1, x], f(Ci) = ai,
and if ai ∈ [x + 1, x + n − i], then i is placed in σ such that there are exactly k
elements larger than and to the right of i.

For example, for n = 9, x = 5, (a1, . . . , a9) = (6, 9, 10, 1, 6, 8, 4, 6, 3), the permu-
tation σ and the function f can be constructed as the following:

(9) a9 = 3 ∈ [1, 5] f(9) = a9 = 3

(98)
a8 = 6 = 5 + 1
∈ [6, 5 + 1] = [6, 6] f(98) = 3

(7)(98) a7 = 4 ∈ [1, 5] f(7) = a7 = 4
f(98) = 3

(7)(986)
a6 = 8 = 5 + 3
∈ [6, 5 + 3] = [6, 8]

f(7) = 4
f(986) = 3

(75)(986)
a5 = 6 = 5 + 1
∈ [6, 9]

f(75) = 4
f(986) = 3

(4)(75)(986) a4 = 1 ∈ [1, 5]
f(4) = a4 = 1
f(75) = 4
f(986) = 3

(4)(75)(9836)
a3 = 10 = 5 + 5
∈ [6, 5 + 6] = [6, 11]

f(4) = 1
f(75) = 4
f(9836) = 3

(4)(75)(92836)
a2 = 9 = 5 + 4
∈ [6, 5 + 7] = [6, 12]

f(4) = 1
f(75) = 4
f(92836) = 3

(41)(75)(92836)
a1 = 6 = 5 + 1
∈ [6, 5 + 8] = [6, 13]

f(41) = 1
f(75) = 4
f(92836) = 3

It is clear that the map is injective. In fact, for (a1, . . . , an) 6= (a′1, . . . , a
′
n), there

exists an index j such that aj 6= a′j and ai = a′i for all i < j. If both aj , a
′
j ∈ [1, x],

then f 6= f ′, since the values of f, f ′ at the cycle of σ, σ′ with the leading term j
are aj , a

′
j respectively; otherwise, σ 6= σ′, since the numbers of terms on the left

side of and larger than j in σ, σ′ respectively are distinct.
For surjectivity, for a pair (σ, f) of permutation σ and function f : C(σ) → [1, x],

let (σ, f) 7→ (a1, . . . , an) be defined by

ai =





f(C) if i is the leading term of a cycle C of σ,
x + k otherwise, where k is the number of terms

on the left-sdie of and larger than i.

¤
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Exercise 1. Find the inverse map (σ, f) 7→ (a1, . . . , an) explicitly, letting that σ
be written in the standard cycle notation and the values of f be given on cycles.

Let σ = s1s2 . . . sn be a permutation of [n]. An inversion of σ is a pair (si, sj)
such that i < j but si > sj . For each k ∈ [n], let ak denote the number of terms
that precede k in s1s2 . . . sn and are greater than k, i.e.,

ak : = #
{
si | si > sj = k, i < j

}
= #

{
σ(i) | σ(i) > σ(j) = k, i < j

}
.

It measures how much k is out of order by counting number of integers larger
than k but located before k. The tuple (σ) := (a1, . . . , an) is called the inversion
sequence (or inversion table) of σ, and the sum

inv(σ) := a1 + · · ·+ an

is called the inversion number of σ, measuring the total disorder of σ. Clearly,
0 ≤ ai ≤ n− i.

Proposition 3.7. Let n ≥ k ≥ 1. Then cn,k counts the number of integer sequences
(a1, . . . , an) such that 0 ≤ ai ≤ n− i and exactly k values of ai equal to 0.

Proof. Let x = 1 in Theorem 3.6. The function f in the pair (σ, f) is a constant
function. Then 1 ≤ ai ≤ x + n − i becomes 1 ≤ ai ≤ n − i + 1, which can be
equivalently reduced to 0 ≤ ai ≤ n− i by shifting the values by 1 unit. Note that
ai produces a cycle if and only if ai ∈ [1, x] = [1, 1], i.e., ai = 1, equivalently, ai = 0
after shifting by 1. Hence, permutations with k cycles correspond to inversion
sequences (a1, . . . , an) having exactly k values of ai equal to 0. ¤

Corollary 3.8. The map Sn →
∏n

i=1[0, n− i]∩Z, sending each permutation σ to
its inversion sequence, is a bijection.

Proposition 3.9. The inversion generating polynomial has the factorization

∑

σ∈Sn

qinv(σ) =
n−1∏

i=1

(
1 + q + · · ·+ qi

)
.

Proof. Note that inv(σ) = a1 + · · ·+an for each permutation σ with inversion table
(a1, . . . , an). We have

∑

σ∈Sn

qinv(σ) =
n−1∑
a1=0

n−2∑
a2=0

· · ·
0∑

an=0

qa1+a2+···+an

=

(
n−1∑
a1=0

qa1

)(
n−2∑
a2=0

qa2

)
· · ·

(
0∑

an=0

qan

)
.

¤

Given a permutation σ = s1s2 . . . sn of [n]. The descent set of σ is the set

Des(σ) :=
{
i ∈ [n] | si > si+1

}
; (3.4)

its cardinality des(σ) := |Des(σ)| is called the descent of σ. Some authors include
n into the set Des(σ) by saying that σ goes down from sn to zero at position n. We
do not include n in Des(σ). Likewise, the ascent set of σ is the set

Asc(σ) :=
{
i ∈ [n] | si < si+1

}
; (3.5)
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its cardinality asc(σ) := |Asc(σ)| is called the ascent of σ. Clearly, we have

0 ≤ des(σ) ≤ n− 1, 0 ≤ asc(σ) ≤ n− 1.

We introduce two integer-valued functions α, β on the power set 2[n] of [n] as
follows: For each subset S ⊆ [n],

α(S) = #
{
σ ∈ Sn : Des(σ) ⊆ S

}
,

β(S) = #
{
σ ∈ Sn : Des(σ) = S

}
.

Clearly, we have
α(T ) =

∑

S⊆T

β(S), T ⊆ [n].

It is equivalent to (by the Möbius inversion)

β(T ) =
∑

S⊆T

(−1)|TrS|α(S), T ⊆ [n].

Proposition 3.10. Let a1, . . . , ak be nonnegative integers such that a1+· · ·+ak = n
and S = {a1, a1 + a2, . . . , a1 + · · ·+ ak}. Then

α(S) =
(

n

a1, a2, . . . , ak

)
.

Proof. For simplicity we may assume ai ≥ 1. We count all permutations σ =
s1s2 . . . sn such that Des(σ) ⊆ S, i.e.,

s1 < s2 < · · · < sa1 > sa1+1,

sa1+1 < sa1+a2+2 < · · · < sa1+a2 > sa1+a2+1,

· · · · · · · · ·
sa1+···+ak−1+1 < sa1+···+ak−1+2 < · · · < sa1+···+ak

= sn.

We choose s1 < · · · < sa1 in
(

n
a1

)
ways; then choose sa1+1 < · · · < sa1+a2 in

(
n−a1

a2

)
ways; and so on. We thus have

α(S) =
(

n

a1

)(
n− a1

a2

)
· · ·

(
n− a1 − · · · − ak−1

ak

)

=
(

n

a1, a2, . . . , ak

)
.

It is easily modified to the case of some ai = 0. ¤
Definition 3.11. The Eulerian polynomial is the generating polynomial

An(x) =
∑

σ∈Sn

xdes(σ) =
n∑

k=0

An,kxk, (3.6)

whose coefficients An,k are Eulerian numbers, counting the number of n-permutations
with k descents. We assume A0,0 = 1.

Proposition 3.12. The Eulerian numbers satisfy the symmetric property:

An,k = An,n−k−1

and the recurrence relation:



A0,0 = 1,
An,n = 0, An,0 = An,n−1 = 1 for n ≥ 1
An,k = (k + 1)An−1,k + (n− k)An−1,k−1 for n > k ≥ 1
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Proof. The map Sn → Sn, s1 . . . sn 7→ t1 . . . tn with ti = n − si, is a bijection,
sending an n-permutation with exactly k descents to an n-permutation with exactly
k ascents. The number of n-permutations with k descents is the same as the number
of n-permutations with exactly k ascents.

Given a permutation σ = s1 . . . sn and i ∈ [n − 1], we have either a descent
si > si+1 or an ascent si > si+1. So σ has exactly k descent iff it has exactly
(n− 1)− k ascents. It follows that An,k = An,n−k−1.

Permutations of [n] with k descending positions can be obtained as follows:
(i) each permutation σ of [n − 1] with k descending positions produces exactly
k permutations of [n] with k descending positions by inserting n behind each of
the k descending positions of σ, plus one more by placing n rightmost; (ii) each
permutation σ of [n− 1] with k− 1 descending positions produces (n− 1)− (k− 1)
permutations of [n] with k descending positions by inserting n anywhere (total
n− 1 positions, left sides of members of [n− 1]) but not behind each of the k − 1
descending positions of σ. It is clear that permutations of [n] obtained in (i) and
(ii) are distinct; and each permutation of [n] with k descending positions can be
obtained in this way. ¤

Proposition 3.13 (Worpitzky Identity). The Euler numbers An,k satisfy the
relation:

xn =
n−1∑

k=0

An,k

(
x + k

n

)
=

n−1∑

k=0

An,k

n!
[x + k](n). (3.7)

Proof. Let In denote the right-hand side of (3.7). We show the identity by induction
on n. For n = 0, 1, it is easily verified to be true. Now for n + 1, we have

In+1 = An,0

(
x

n + 1

)
+

n∑

k=1

(
(k + 1)An,k + (n + 1− k)An,k−1

) (
x + k

n + 1

)

=
n∑

k=0

An,k

(
x + k

n

)
· (k + 1)(x + k − n)

n + 1

+
n∑

k=1

An,k−1

(
x + k − 1

n

)
· (n + 1− k)(x + k)

n + 1

=
n−1∑

k=0

An,k

(
x + k

n

)
· (k + 1)(x + k − n) + (n− k)(x + k + 1)

n + 1

= x
n−1∑

k=0

An,k

(
x + k

n

)
= xn+1.

¤

Exercise 2. For n ≥ 0,
∞∑

k=1

knxk =
1

(1− x)n+1

n−1∑

j=0

An,jx
j+1.

For n = 0, we have

LHS =
∑

k≥1

xk =
x

1− x
, RHS =

A0,0x

1− x
=

x

1− x
.
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For n = 1, we have

LHS =
∑

k≥1

kxk = x
d

dx

∑

k≥1

xk = x
d

dx

(
x

1− x

)
=

x

(1− x)2
,

RHS =
A1,0x

(1− x)2
=

x

(1− x)2
.

For n = 2, LHS =
∑

k≥1 k2xk,

RHS =
A2,0x + A2,1x

2

(1− x)3
=

x + x2

(1− x)3

= (x + x2)
∑

k≥0

(−3
k

)
(−x)k

= (x + x2)
∑

k≥0

(
k + 2

k

)
xk

=
∑

k≥1

(
k + 1
k − 1

)
xk +

∑

k≥2

(
k

k − 2

)
xk

= x +
∑

k≥2

xk

[(
k + 1
k − 1

)
+

(
k

k − 2

)]

= x +
∑

k≥2

k2xk = LHS.

For n = 3, LHS =
∑

k≥1 k3xk,

RHS =
A3,0x + A3,1x

2 + A3,2x
3

(1− x)4

=
x + 4x2 + x3

(1− x)4
= (x + 4x2 + x3)

∑

k≥0

(
k + 3

k

)
xk

= x + 4x2 +
∑

k≥3

xk

[(
k + 2
k − 1

)
+ 4

(
k + 1
k − 2

)
+

(
k

k − 3

)]

= x + 4x2 +
∑

k≥3

k3xk.

For arbitrary n, recall kn =
∑n−1

j=0 An,j

(
k+j

n

)
=

∑n−1
j=0 An,j · [k+j](n)

n! . Then

∞∑

k=1

knxk =
∞∑

k=1

n−1∑

j=0

An,j

(
k + j

n

)
xk =

n−1∑

j=0

An,j · 1
n!

∞∑

k=1

[k + j](n)x
k.
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Note that j < n and

S : =
1
n!

∞∑

k=1

[k + j](n)x
k

=
xn−j

n!

∞∑

k=1

dn

dxn
(xk+j)

=
xn−j

n!
· dn

dxn

∞∑

k=1

xk+j

=
xn−j

n!
· dn

dxn

(
xj+1

1− x

)
.

Applying the Leibliz rule, we have

S =
xn−j

n!

n∑

i=0

(n

i

) di

dxi
(xj+1)

dn−i

dxn−i
(1− x)−1

=
xn−j

n!

n∑

i=0

(n

i

)
[j + 1](i)xj−i+1[−1](n−i)(1− x)i−n−1(−1)n−i

=
xn−j

n!

n∑

i=0

n!(j + 1)!(n− i)!
i!(n− i)!(j − i + 1)!

· xj−i+1

(1− x)n−i+1

=
n∑

i=0

(j + 1)!
i!(j − i + 1)!

(
x

1− x

)n−i+1

.

Now S becomes

S =
(

x

1− x

)n+1 n∑

i=0

(
j + 1

i

)(
1− x

x

)i

=
(

x

1− x

)n+1 (
1− x

x
+ 1

)j+1

=
(

x

1− x

)n+1 (
1
x

)j+1

=
xn−j

(1− x)n+1
.

It follows that
∞∑

k=1

knxk =
1

(1− x)n+1

n−1∑

j=0

An,jx
n−j

=
1

(1− x)n+1

n−1∑

j=0

An,n−j−1x
n−j

=
1

(1− x)n+1

n−1∑

i=0

An,ix
i+1

Given a permutation σ = s1s2 . . . sn ∈ Sn. An exceedance of σ is a number i
such that σ(i) > i. The set of all exceedances of σ is

Exc(σ) =
{
i ∈ [n] : si > i

}
=

{
i ∈ [n] : σ(i) > i

}
. (3.8)
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The number of exceedances of σ is the cardinality exc(σ) := |Exc(σ)|. A week
exceedance of σ is a number i ∈ [n] such that σ(i) ≥ i. The set of weak exceedances
is

w-Exc(σ) =
{
i ∈ [n] : si ≥ i

}
=

{
i ∈ [n] : σ(i) ≥ i

}
. (3.9)

Proposition 3.14. The Eulerian number An,k counts the number of n-permutations
with k exceedances, i.e.,

An,k = #{σ ∈ Sn : exc(σ) = k} = #{σ ∈ Sn : w-exc(σ) = k + 1}.
Proof. The bijection σ 7→ ˆcyc(σ) gives another description of the Eulerian numbers.

Given a permuation σ = s1s2 . . . sn ∈ Sn having the standard cycle notation

cyc(σ) = (t1t2 . . . t`1)(t`1+1t`1+2 . . . t`2) . . . (t`m−1+1t`m−1+2 . . . tn),

where t1 = t`0+1, tn = t`m , and t`0+1, t`1+1, . . . , t`m−1+1 are the m largest elements
in the corresponding k cycles of σ and are arranged in increasing order. Then
σ̂ := ˆcyc(σ) = t1t2 . . . tn is a permutation. Note that σ(tj) = tj+1 for `i−1 + 1 ≤
j < `i, and σ(t`i

) = t`i−1+1 ≥ t`i
(the equality holds for cycles of length 1, i.e.,

`i = `i−1 + 1).
Assume that tj < tj+1, where j < n, which is is automatically true when j = `i

for some i. There exists an i such that either `i−1 + 1 ≤ j < `i or j = `i. Then
either σ(tj) = tj+1 > tj or σ(t`i

) = t`i−1+1 > t`i
if `i > `i−1 + 1, or σ(t`i

) = t`i
if

`i = `i−1 + 1. So σ(tj) ≥ tj for all j < n (it is also true for j = n). Conversely,
assume that σ(tj) ≥ tj . There exists an i such that either `i−1 + 1 ≤ j < `i or
j = `i. Then either σ(tj) = tj+1 6= tj , i.e., tj < tj+1, or t`i < t`i+1 if `i 6= n. It
then follows that σ(tj) ≥ tj iff j = n or tj < tj+1 for j < n.

Recall that Asc(σ̂) = {j ∈ [n− 1] : tj < tj+1} = [n− 1]rDes(σ̂). Then

[n]rDes(σ̂) = Asc(σ̂) ∪ {n} = {j ∈ [n] : σ(tj) ≥ tj}.
Thus

n− des(σ̂) = |{j ∈ [n] : σ(tj) ≥ tj}|
= |{tj ∈ [n] : σ(tj) ≥ tj}|
= w-exc(σ).

Since σ 7→ ˆcyc(σ) is a bijection, we see that

An,k = |{σ̂ : des(σ̂) = k}| = |{σ : w-exc(σ) = n− k}|.
Moreover, for each permutation π = u1u2 . . . un, let π̃ = v1v2 . . . vn, where vi =

n + 1− un+1−i. Note that π has n− k weak exceedances iff π has k indices i such
that ui < i. Since ui < i iff vn+1−i > n + 1 − i, we see that π has n − k weak
exceedances iff π̃ has k exceedances. Thus

An,k = |{σ : w-exc(σ) = n− k}| = |{σ̃ : exc(σ̃) = k}|.
Applying the formula above to An,n−k−1, we have

An,k = An,n−k−1 = |{σ ∈ Sn : w-exc(σ) = k + 1}|.
¤
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4. q-Analogs

Let Fq be a finite field of q elements. Let V = Fn
q be the n-dimensional vector

space over Fq. Given nonnegative integers a1, a2, . . . , am such that

a1 + a2 + · · ·+ am = n.

We denote by Fl(a1, . . . , am) the set of flags

{0} ⊆ V1 ⊆ · · · ⊆ Vm ⊆ V

of length m such that dim(Vi/Vi−1) = ai, 1 ≤ i ≤ m, called the flag space of V
of type (a1, a2, . . . , am). The set of all flags of length m is denoted by Flm, called
the flag space of V of length m. For m = 1 and a1 = k, the set Fl(k) can be
identified as the collection of all k-subspaces of Fn

q , called the Grassmannian of
k-subspaces of V , denoted Gr(V, k). The cardinality of Gr(V, k) is given by

[
n

k

]

q

:=
(qn − 1)(qn − q) · · · (qn − qk−1)
(qk − 1)(qk − q) · · · (qk − qk−1)

,

which is actually a polynomial, called the Gaussian polynomial of the q-analog
of binomial coefficients. In general, we introduce the notations

[n]q := 1 + q + · · ·+ qn−1,

[n]q! := [n]q[n− 1]q · · · [2]q[1]q.
For nonnegative integers a1, a2, . . . , am such that a1 + a2 + · · ·+ am = n, we define
the q-analog of multinomial coefficient (or just q-multinomial coefficient)

[
n

a1, a2, . . . , am

]

q

:=
[n]q!

[a1]q![a2]q! · · · [am]q!
. (4.1)

Let M denote the vector space of all n×n matrices over Fq. We denote by Mn

be the set of n×n matrices of rank n. For each M ∈M, we divide M into a block
matrix of the form

M =




M1

...
Mm


 ,

where Mi is an ai × n matrix, 1 ≤ i ≤ m. For sake of convenience, we write
M = (M1,M2, . . . , Mm) in the row form. There is a canonical projection

π : M→ Fl(a1, . . . , am),

defined by
π(M) = {0} ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vm ⊆ V,

where Vi is the row space of the submatrix (M1,M2, . . . , Mi), 1 ≤ i ≤ m. The
restriction

π : Mn → Fl(a1, . . . , am)
is surjective. Note that

#(Mn) = (qn − 1)(qn − q) · · · (qn − qn−1)

= qn(n−1)/2(qn − 1)(qn−1 − 1) · · · (q − 1)

= qn(n−1)/2(q − 1)n[n]q[n− 1]q · · · [2]q[1]q

= qn(n−1)/2(q − 1)n[n]q!.
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For each F ∈ Fl(a1, . . . , am) in Mn, the fiber π−1(F ) in Mn has the cardinality

#(π−1(F )) = (qa1 − 1) · · · (qa1 − qa1−1)︸ ︷︷ ︸
a1

×

(qa1+a2 − qa1) · · · (qa1+a2 − qa1+a2−1)︸ ︷︷ ︸
a2

×

· · · × (qn − qa1+···+am−1) · · · (qn − qn−1)︸ ︷︷ ︸
am

. (4.2)

It follows that

#(π−1(F )) = qe (qa1 − 1)(qa1−1 − 1) · · · (q − 1)︸ ︷︷ ︸
a1

×

(qa2 − 1)(qa2−1 − 1) · · · (q − 1)︸ ︷︷ ︸
a2

×

· · · × (qam − 1)(qam−1 − 1) · · · (q − 1)︸ ︷︷ ︸
am

, (4.3)

where

e =[1 + 2 + · · ·+ (a1 − 1)] + [a1 + (a1 + 1) + 2 + · · ·+ (a1 + a2 − 1)]

+ · · ·+ [(a1 + · · ·+ am−1) + (a1 + · · ·+ am−1 + 1) + · · ·+ (n− 1)]

=n(n− 1)/2.

We then have

#(π−1(F )) = qe
m∏

i=1

(q − 1)ai [ai]q[ai − 1]q · · · [2]q[1]q

= qe(q − 1)
∑m

i=1 ai

m∏

i=1

[ai]q!

= qe(q − 1)n[a1]q![a2]q! · · · [am]q!;

Since
#(Mn) = #(Fl(a1, . . . , am)) ·#(π−1(F )),

we obtain

#(Fl(a1, . . . , am)) =
[n]q!

[a1]q![a2]q! · · · [am]q!
=

[
n

a1, . . . , am

]

q

.

We shall see that
[

n
a1,...,am

]
q

is a polynomial of q.
Let B(a1, . . . , am) denote a subgroup of the general linear group GL(n,Fq) of

n× n invertible matrices over Fq, consisting of the block lower triangular matrices
of the form

A =




A11 0 · · · 0
A21 A22 · · · 0
...

...
. . .

...
Am1 Am2 · · · Amm


 ,
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where Akl are ak × al matrices and Akk are invertible. Then B(a1, . . . , am) is a
subgroup of GL(n,Fn

q ), acting on Mn on the left by multiplication, i.e.,

AM = A




M1

...
Mm


 =




M ′
1

...
M ′

m


 = M ′,

where M ′
k = Ak1M1 + · · · + AkkMk, 1 ≤ k ≤ m. The projection π : Mn →

Fl(a1, . . . , am) induces a quotient bijection

π : Mn/B(a1, . . . , am) → Fl(a1, . . . , am).

Let Row(M1, . . . , Mk),Row(M ′
1, . . . , M

′
k) denote the row spaces of the submatrices




M1

...
Mk


 ,




M ′
1

...
M ′

k




respectively. It is clear that Row(M ′
1, . . . , M

′
k) ⊆ Row(M1, . . . , Mk). Since A is in-

vertible and A−1 ∈ B(a1, . . . , am), we see that Row(M ′
1, . . . , M

′
k) = Row(M1, . . . , Mk).

So the quotient map is well-defined.
The surjectivity is trivial. For injectivity, assume that π(M) = π(M ′) for two

matrices M and M ′, i.e.,

Row(M1, . . . , Mk) = Row(M ′
1, . . . , M

′
k), 1 ≤ k ≤ m. (4.4)

We need to show that there exists a matrix A ∈ B(a1, . . . , am) such that AM = M ′.
Since Row(M1) = Row(M ′

1), there exits an invertible matrix A11 such that
A11M1 = M ′

1. Next, since Row(M1,M2) = Row(M ′
1,M

′
2), then each row of M ′

2 is
a linear combination of rows of M1 and M2. This means that there exit matrices
A21 and A22 such that M ′

2 = A21M1 + A22M2. We then have
(

M ′
1

M ′
2

)
=

(
A11 0
A21A22

)(
M1

M2

)
,

where A22 must be invertible. Continue this procedure, one obtains matrices Akl

(1 ≤ l ≤ k) such that M ′
k =

∑k
l=1 AklMl and Akk are invertible, 1 ≤ k ≤ m. Set

A = [Akl], where Akl = 0 for k < l. Then A ∈ B(a1, . . . , am) and AM = M ′. This
means that π : Mn/B(a1, . . . , am) → Fl(a1, . . . , am) is a bijection.

A reduced block echelon matrix of type (a1, . . . , am) is a block n×n matrix

E =




E1

...
Em


 ,

where each Ek is a reduced row echelon matrix justified from right and bottom,
pivot positions are in different rows and different columns, and all entries below a
pivot position are zero.

Each non-singular n× n block matrix M of type (a1, . . . , am) can be converted
into a reduced block echelon matrix of the same type by multiplying a matrix
A ∈ B(a1, . . . , am) to the left of M . In other words, each orbit ofMn/B(a1, . . . , am)
has a representative of reduced block echelon matrix, which can be obtained as
follows.
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Step 1: Find the rightmost nonzero column of M1, called the pivot column
of Block 1; the bottom position of the pivot column is called a pivot position.
If the entry of the pivot position is zero, interchange the bottom row of M1 and
one row of M1 whose entry in the pivot column is nonzero; now the pivot entry is
nonzero. Reduce the nonzero pivot entry to 1 and the entries above it in M1 to zero
by row operations. Next, cover the the bottom row of Block 1 to obtain a matrix
M ′

1; repeat the procedure until all rows of Block 1 are covered. We then obtain a
reduced row echelon matrix E1 of M1. There exists an invertible matrix A11 such
that E1 = A11M1.

Step 2: Reduce all entries of Mk (2 ≤ k ≤ m) below the pivot positions of
E1, . . . , Ek−1 to zero by multiplying matrices Ak1, . . . , Ak(k−1) to E1, . . . , Ek−1 re-
spectively. We then obtain a block matrix

M ′ =




E1

...
Ek−1

M ′
k

...
M ′

m




.

Cover the blocks E1, . . . , Ek−1 of M ′ and apply Step 1 to the block M ′
k.

Step 3: Repeat until every block becomes reduced row echelon matrix. Finally,
a reduced block echelon matrix E = (E1, . . . , Em) is obtained.

There are n pivot positions in a block row echelon form E, located in distinct
rows and distinct columns. Entries beyond each pivot position on the right and
below are zero. Entries of a pivot column in the block of the pivot position are
zero, except the pivot entry, which is 1.

Let the pivot position of the ith row be located in (i, si). Then the reduced block
echelon matrix E can be indexed by a permutation

σ = s1s2 . . . sn, σ(i) = si.

Let bk = a1 + · · · + ak, 1 ≤ k ≤ m. Recall that Des(σ) is the set of indices where
σ decreases. Note that σ increases strictly at integers inside intervals (bk−1, bk) for
each block Mk of M . The descents of σ can only occur at the indices bk of each
block. So we have

Des(σ) ⊆ {b1, b2, . . . , bm}, bk = a1 + · · ·+ ak. (4.5)

Conversely, each permutation σ satisfying (4.5) determines a block echelon form.
Next we show the injectivity of π on the reduced block echelon matrices of type

(a1, . . . , am). Given two reduced block echelon matrices E, E′. If π(E) = π(E′),
i.e.,

Row(E1, . . . , Ek) = Row(E′
1, . . . , E

′
k), 1 ≤ k ≤ m, (4.6)

we claim that E = E′. Suppose E 6= E′. We may assume that E1 = E′
1, . . . ,

Ek−1 = E′
k−1, and Ek 6= E′

k.
Let F, F ′ be matrices obtained from E, E′ respectively by row operations to

reduce all entries above each pivot position in the first bk rows. And let vi,v
′
i

denote the ith rows of F, F ′ respectively.
Suppose that Ek, E′

k have distinct pivot positions. Let l be the largest row index
of Ek, E′

k such that sl 6= s′l. Assume sl < s′l. Then si < s′l for i ∈ (bk−1, l]; and
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si = s′i for i ∈ [1, bk−1] ∪ (l, bk]. In particular, si 6= s′l for all i = 1, . . . , bk. Since
(4.6), we have v′l =

∑bk

i=1 civi, i.e.,

v′lj =
bk∑

i=1

civij , j = 1, . . . , n. (4.7)

Note that v′lj = 0 for all j > s′l by the echelon property of F ′. If si0 > s′l for a
row index i0 ∈ [1, bk], then s′i0 = si0 > s′l, consequently, v′lsi0

= 0 by the echelon
property of F ′. Note that visi0

= δii0 for i ∈ [1, , bk] by the echelon property of F .
Set j = si0 in (4.7), we see that

0 = v′lsi0
=

bk∑

i=1

civisi0
= ci0 .

It follows that (4.7) becomes

v′lj =
∑

1≤i≤bk, si<s′l

civij , 1 ≤ j ≤ n. (4.8)

Note that v′ls′l = 1 by the echelon property of F ′, and vis′l = 0 for all i such that
si < s′l by the echelon property of F . Set j = s′l in (4.8); we obtain

1 = v′ls′l =
∑

1≤i≤bk, si<s′l

civis′l = 0,

which is a contradiction. We must have sl ≥ s′l. Likewise, s′l ≥ sl. Hence sl = s′l,
contradicting to the previous assumption. This shows that E, E′ have the same
pivot positions in the first bk rows.

Now let l be the largest row index of Ek, E′
k such that their lth rows are distinct.

Recall (4.6) again; there exists a bk × bk matrix Ak ∈ B(a1, . . . , ak) such that


E′
1
...

E′
k


 = Ak




E1

...
Ek


. The two linear systems




E1

...
Ek


 x = 0,




E′
1
...

E′
k


 x = 0

have the same solution space. So do the two linear systems


F1

...
Fk


 x = 0,




F ′1
...

F ′k


 x = 0 (4.9)

We construct a particular solution x of the first system in (4.9), which is not a
solution of the second system in (4.9), resulting a contradiction.

Since vl 6= v′l and vlsl
= v′lsl

= 1, let j0 ∈ [1, sl) be the first column index such
that vlj0 6= v′lj0 . Notice that j0 6= si for all i ∈ [1, bk] by the echelon property of
F, F ′. A typical solution x of the first system in (4.9) is given by

xj =





1 if j = j0
−vij0 if j = si, 1 ≤ i ≤ bk,

0 otherwise
j = 1, . . . , n.



20 BEIFANG CHEN EMAIL: MABFCHEN@UST.HK

It is clear that such an x is not a solution of the second system in (4.9), for the lth
equation of the second system is not satisfied. This is a contradiction.

Now each flag {0} ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vm = V of type (a1, . . . , am) is identified
as one and only one of a reduced block echelon matrix of type (a1, . . . , am) with
certain values for each ∗. The space Fl(a1, . . . , am) is then decomposed into a
disjoint union of affine subspaces corresponding to reduced block echelon forms.

Each reduced block echelon form E can be indexed by a permutation σ =
s1s2 . . . sn of {1, 2, . . . , n}, where (i, si) is the pivot position of the ith row in E.
For each star position (i, j) of E, we have j < si, and there exists a unique k > i
such (k, j) is a pivot position; so sk := j < si, i.e., (si, sk) is an inversion of σ.
Conversely, if (si, sk) is an inversion, i.e., i < k and si > sk, then the row i and
the row k of E cannot be in the same block, thus (i, sk) must be a star position
of E. So the number of inversions of the permutation σ equals the number of star
positions of the reduced block echelon form E.

For example, given type (a1, a2, a3, a4) = (3, 2, 2, 2), its reduced block echelon
form is




E1

E2

E3

E4


 =




∗ ∗ 1 0 0 0 0 0 0
∗ ∗ 0 ∗ ∗ 1 0 0 0
∗ ∗ 0 ∗ ∗ 0 ∗ 1 0
∗ 1 0 0 0 0 0 0 0
∗ 0 0 1 0 0 0 0 0
∗ 0 0 0 1 0 0 0 0
∗ 0 0 0 0 0 ∗ 0 1
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0




where each ∗ position can be filled with arbitrary values of Fq. Notice that there
is no star position in the last block. The affine subspace with the reduced block
echelon form above is indexed by the permutation σ = 368245917, whose inversion
table is (a1, . . . , a9) = (2, 4, 5, 1, 1, 1, 2, 0, 0). The number of star positions in its
reduced block echelon form is the number of inversions of σ, i.e.,

inv(σ) = inv(368245917) = 16.

We have proved the following theorem.

Theorem 4.1. Given nonnegative integers a1, . . . , am such that a1 + · · · + am =
n. Let Sn(a1, . . . , am) denote the set of permutations σ of [n] whose descent set
satisfies

Des(σ) ⊆ {a1, a1 + a2, . . . , a1 + · · ·+ am}.
Then ∑

σ∈Sn(a1,...,am)

qinv(σ) =
[

n

a1, . . . , am

]

q

. (4.10)

Let Z+ be the set of positive integers. Let F∞q denote the vector space of all
functions from Z+ to Fq with finite support. We write each vector v ∈ F∞q as an
infinite tuple

v = (v1, v2, . . . , vn, 0, 0, . . .).
Given nonnegative integers a1, . . . , am. Denote by Fl∞(a1, . . . , am) the set of flags

{0} = V0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vm ( F∞q
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of length m, such that dim(Vi/Vi−1) = ai, 1 ≤ i ≤ m.
LetMn,∞ denote the vector space of n×∞ matrices over Fq, having only finitely

many nonzero entries. LetMn
n,∞ denote the subset ofMn,∞, consisting of matrices

of rank n. Each member of Mn,∞ can be written as a block matrix

M =




M1

M2

...
Mm


 .

where Mi is an ai ×∞ submatrix. There is canonical projection

π : Mn
n,∞ → Fl∞(a1, . . . , am), M 7→ V0 ⊆ V1 ⊆ · · · ⊆ Vm,

where V0 = {0}, Vi = Row(M1, . . . , Mi), 1 ≤ i ≤ m. The parabolic group
B(a1, . . . , am) acts on Mn

n,∞ on the left by multiplication. We shall see that the
orbit space Mn

n,∞/B(a1, . . . , am) is isomorphic to the flag space Fl∞(a1, . . . , am).
We denote by S∞ the group of all bijections σ : Z+ → Z+ such that σ(k) = k

for large enough k ∈ Z+, i.e., there exists an integer N such that σ(k) = k for all
k > N . For each σ ∈ S∞, the inversion set of σ is the collection

Inv(σ) =
{
(si, sj) : i < j and si > sj

}

and inv(σ) = |Inv(σ)|. Given nonnegative integers a1, a2, . . . , am; we denote by
S∞(a1, . . . , am) the set of permutations σ ∈ S∞ such that

Des(σ) ⊆ {b1, b2, . . . , bm},
where bi = a1 + · · ·+ ai, 1 ≤ i ≤ m.

For example, for (a1, a2, a3) = (3, 2, 2) we have (b1, b2, b3) = (3, 5, 7). For the
permutation σ = s1s2 . . . sn . . . with s1s2 . . . s9 = 368472915 and si = i for i ≥ 10,
we have

Inv(σ) = #{(i, j) ∈ Z2
+ : i < j, si > sj},

inv(σ) = 19, and Des(σ) = {3, 5, 7}.



∗ ∗ 1 0 0 0 0 0 0 0 · · ·
∗ ∗ 0 ∗ ∗ 1 0 0 0 0 · · ·
∗ ∗ 0 ∗ ∗ 0 ∗ 1 0 0 · · ·
∗ ∗ 0 1 0 0 0 0 0 0 · · ·
∗ ∗ 0 0 ∗ 0 1 0 0 0 · · ·
∗ 1 0 0 0 0 0 0 0 0 · · ·
∗ 0 0 0 ∗ 0 0 0 1 0 · · ·
1 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 1 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 1 · · ·
...

...
...

...
...

...
...

...
...

... I∞




(4.11)

Definition 4.2. For nonnegative integers a1, . . . , am, the q-analog of multinomial
coefficient of infinite type (∞; a1, . . . , am) is

[ ∞
a1, . . . , am

]

q

: =
m∏

i=1

1
(1− q)(1− q2) · · · (1− qai)

.
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Theorem 4.3. For non-negative integers a1, . . . , am, let S∞(a1, . . . , am) denote
the set of bijections σ : Z+ → Z+ such that σ(k) = k for k large enough. Then

∑

σ∈S∞(a1,...,am)

qinv(σ) =
[ ∞
a1, . . . , am

]

q

. (4.12)

Proof. Fix a permutation σ = s1s2 · · · ∈ S∞(a1, . . . , am). Let (1, s1), . . . , (a1, sa1)
denote the pivot positions of the echelon form E1 for the first block. The number
of stars in E1 on the left of the s1th column is k1a1, where k1 ≥ 0. The number of
stars in E1 between the columns s1 and s2 is k2(a1 − 1), where k2 ≥ 0. And the
number of stars in E1 between the columns sa1−1 and sa1 is ka1 ≥ 0. So the total
number of stars in E1 is k1a1 + k2(a2 − 1) + · · ·+ ka1−1 · 2 + ka1 · 1. Likewise, the
total number of stars in the echelon form Ei of the ith block is

ki1ai + ki2(ai − 1) + · · ·+ ki(ai−1) · 2 + kiai · 1.

The left-hand side of (4.12) becomes

LHS =
∑

[kiji
≥0]1≤i≤m,1≤ji≤ai

m∏

i=1

ai∏

ji=1

qkiji
(ai−ji+1)

=
m∏

i=1

ai∏

ji=1

∞∑

kiji
=0

qkiji
(ai−ji+1)

=
m∏

i=1

ai∏

ji=1

1
1− qai−ji+1

.

¤

5. Stirling Numbers

5.1. Stirling numbers of the first kind.

Definition 5.1. The Stirling numbers of the first kind are the numbers sn,k

determined by the expansion

[x](n) =
n∑

k=0

sn,k xk, n ≥ k ≥ 0

for n ≥ 1 and with s0,0 ≡ 1.

Proposition 5.2. The Stirling numbers of the first kind sn,k satisfy the recurrence
relation:





sn,n = 1 for n ≥ 0
sn,0 = 0 for n ≥ 1
sn+1,k = sn,k−1 − nsn,k for n ≥ k ≥ 1

(5.1)
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Proof. Expanding the falling factorial [x](n)=x(x− 1) · · · (x− n + 1) for n ≥ 1, it is
clear that sn,n = 1 and sn,0 = 0. Since

n+1∑

k=0

sn+1,kxk = [x](n+1) = [x](n)(x− n)

=
n∑

k=0

sn,kxk+1 − n
n∑

k=0

sn,kxk

=
n+1∑

k=1

sn,k−1x
k −

n∑

k=0

nsn,kxk,

we see that sn+1,k = sn,k−1 − nsn,k for n ≥ k ≥ 1. ¤

Exercise 3.

sn+1,k =
n∑

i=0

(−1)i[n](i)sn,k−1, n ≥ k ≥ 1.

Corollary 5.3. The numbers an,k := (−1)n−kcn,k satisfy the same recurrence
relation (5.1) for the Stirling numbers of the first kind sn,k. Thus

sn,k = (−1)n−kcn,k

and the absolute value |sn,k| counts the number of permutations of an n-set with
exactly k cycles.

Proof. Obviously, a0,0 = 1, and an,0 = 0, an,n = 1 for all n ≥ 1. For n ≥ k ≥ 1, we
have

an+1,k = (−1)n+1−kcn+1,k

= (−1)n−k+1cn,k−1 − n(−1)n−kcn,k

= an,k−1 − nan,k.

¤

Proposition 5.4.

[x](n) =
n∑

k=0

cn,kxk =
n∑

k=0

|sn,k|xk.

Proof. By the Reciprocity Law for the rising factorial function and falling factorial
function, we have

[x](n) = (−1)n[−x]n = (−1)n
n∑

k=0

sn,k(−x)k

=
n∑

k=0

(−1)n−ksn,kxk =
n∑

k=0

cn,kxk.

¤



24 BEIFANG CHEN EMAIL: MABFCHEN@UST.HK

5.2. Stirling numbers of the second kind.

Definition 5.5. The Stirling number of the second kind Sn,k is the number
of ways to partition an n-set into k nonempty subsets. We take convention S0,0 = 1
and Sn,0 = 1 for all n ≥ 1.

Proposition 5.6. The Stirling numbers of the second kind Sn,k are given by

Sn,k =
1
k!

k∑

i=0

(−1)k−i

(
k

i

)
in, n ≥ k ≥ 0.

Proof. The formula follows from the identity

|Sur(N, K)| = k!Sn,k,

where N and K are finite sets with |N | = n and |K| = k. ¤

Proposition 5.7. The numbers Sn,k satisfy the recurrence relation:





S0,0 = Sn,n = 1 for n ≥ 0
Sn,0 = 0 for n ≥ 1
Sn,1 = 1 for n ≥ 1
Sn+1,k = Sn,k−1 + kSn,k for n ≥ k ≥ 1

(5.2)

Proof. The initial conditions Sn,1 = Sn,n = 1 for n ≥ 1 are obvious. As for the
recurrence relation, consider the set of all partitions of an (n + 1)-set N into k
non-empty subsets; there Sn+1,k such partitions. Let w be an element of N . We
divide these partitions into two kinds:

(a) Partitions that the singleton set {w} is a block. There Sn,k−1 such partitions.
(b) Partitions that w is contained in a block of at least two elements. Such

partitions can be obtained from the partitions of the set N − {w} into k blocks by
joining w into any of the k blocks. There are kSn,k such partitions. ¤

Proposition 5.8. The sequence {Sn,k | 0 ≤ k ≤ n} is unimodal for all n ≥ 0. In
fact, set M(n) = max{k |Sn,k = max}. The sequence {Sn,k} has the one of the
following two types:

(1) Sn,0 < sn,1 < · · · < Sn,M(n) > Sn,M(n)+1 > · · · > Sn,n,
(2) Sn,0 < sn,1 < · · · < Sn,M(n)−1 = Sn,M(n) > · · · > Sn,n.

Proposition 5.9.

xn =
n∑

k=0

Sn,k[x]k.

Proof. For finite sets N and X with |N | = n and |X| = x, we have

Map(N, X) =
⊔

S⊂X

Sur(N, S).
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Then

xn = |Map(N, X)|
=

∑

S⊂X

|Sur(N, S)|

=
n∑

k=0

(x

k

)
k!Sn,k

=
n∑

k=0

Sn,k[x](k).

¤
Theorem 5.10. The Stirling inversion formula:

[x](n) =
n∑

k=0

sn,kxk, (5.3)

xn =
n∑

k=0

Sn,k[x](k). (5.4)

Theorem 5.11.
n∑

k=0

sn,kSk,m =
n∑

k=0

Sn,ksk,m = δn,m

Proposition 5.12.

Sn+1,k =
n∑

i=1

(n

i

)
Si,k−1.

Exercise 4. ∞∑

n=k

Sn,k

n!
tn =

(et − 1)k

k!
.

5.3. Lah Numbers.

Definition 5.13. The Lah numbers Ln,k are defined by the identity

[−x](n) =
n∑

k=0

Ln,k[x](k), n ≥ k ≥ 0

with convention L0,0 = 1.

Theorem 5.14. The Lah inversion formula:

[−x](n) =
n∑

k=0

Ln,k[x](k), (5.5)

[x](n) =
n∑

k=0

Ln,k[−x](k). (5.6)

Proposition 5.15. The numbers Ln,k satisfy the recurrence relation:



Ln,n = (−1)n for n ≥ 0
Ln,0 = 0 for n ≥ 1
Ln+1,k = −Ln,k−1 − (n + k)Ln,k for n ≥ k ≥ 1

(5.7)
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Proof. Since [−x](n) = (−x)(−x − 1)(−x − 2) · · · (−x − n + 1), it follows that
Ln,n = (−1)n and Ln,0 = 0 (because there is no constant term) for all n ≥ 1. The
recursion formula follows from

n+1∑

k=0

Ln+1,k[x](k) = [−x](n+1) = (−x− n)[−x](n)

= (−x− n)
n∑

k=0

Ln,k[x](k)

=
n∑

k=0

Ln,k(−(x− k)− (n + k))[x](k)

= −
n∑

k=0

Ln,k[x]k+1 − (n + k)
n∑

k=0

Ln,k[x](k)

= −
n+1∑

k=1

Ln,k−1[x](k) − (n + k)
n∑

k=0

Ln,k[x](k).

¤

Theorem 5.16. The number of ways of placing n distinguishable objects into k
indistinguishable boxes with no box left empty and objects in each box are linearly
ordered, is given by

dn,k =
n!
k!

(
n− 1
k − 1

)
, n ≥ k ≥ 1. (5.8)

Proof. Let the k indistinguishable boxes be divided into the distinguishable boxes
B1, B2, . . . , Bk (linearly ordered) by inserting the bars “|” in between. Now we
place the n objects of an n-set N into the distinguishable boxes so that no one is
empty. Each such placement can be obtained from the permutations

a1∧a2∧a3∧a4∧ · · · ∧an−1∧an

of N by inserting k−1 bars “|” in the n−1 positions indicated by “∧”. There are n!
permutations and

(
n−1
k−1

)
ways of insertion. So there are n!

(
n−1
k−1

)
ways of placing

n distinct objects into k distinct boxes so that no one is empty. Since the boxes in
question are indistinguishable, the answer in question is given by n!

k!

(
n−1
k−1

)
. ¤

Proposition 5.17. The sequence dn,k defined by (5.8) satisfy the recurrence rela-
tion: 




dn,n = 1 for n ≥ 0
dn,0 = 0 for n ≥ 1
dn+1,k = dn,k−1 + (n + k)dn,k for n ≥ k ≥ 1

(5.9)

Proof. First, dn+1,1 = (n + 1)! = 0 + (n + 1) · n! = dn,0 + dn,1. For n ≥ k ≥ 2,

dn,k−1 + (n + k)dn,k =
n!(n− 1)!

(k − 1)!(k − 2)!(n− k + 1)!

+(n + k) · n!(n− 1)!
k!(k − 1)!(n− k)!

=
(n + 1)!n!

k!(k − 1)!(n− k + 1)!
= dn+1,k.
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¤

Theorem 5.18. The Lah numbers can be expressed by

Ln,k = (−1)n n!
k!

(
n− 1
k − 1

)
, n ≥ k ≥ 0;

and the absolute value |Ln,k| counts the number of ways of placing n distinguishable
objects into k indistinguishable boxes such that no boxes are empty and objects in
each box are linearly ordered.

Proof. It follows from Proposition 5.17 that the sequence bn,k = (−1)ndn,k satisfies
the same recurrence relation (5.7) of Lah numbers Ln,k. Hence Ln,k = bn,k. ¤

Proposition 5.19. The number of surjective monotone functions from a totally
ordered n-set to a totally ordered r-set = the number of ordered r-partitions of a
positive integer n, and is equal to

(
n− 1
r − 1

)
.

Proof. For n = 1 it is obviously true. For n > 1, the map

φ : n1 + n2 + · · ·+ nr 7→ (n1, n1 + n2, . . . , n1 + · · ·+ nr−1)

from the set of r-partitions of n to the set of strict monotone words of length r− 1
in {1, 2, . . . , n− 1}< is a bijection because it has the inverse

ψ : (s1, s2, . . . , sr−1) 7→ s1 + (s2 − s1) + · · ·+ (sr−1 − sr−2) + (n− sr−1).

Then the two sets have the same cardinality; and the second set has cardinality(
n−1
r−1

)
. ¤

Proposition 5.20.

[x](n) =
n∑

k=0

|Ln,k| [x](k). (5.10)

Proof. Let N and X be totally ordered sets such that |N | = n and |X| = x. Then

Mon(N, X) =
⊔

S⊂X

Surj-Mon(N, S).

Since |Sur-Mon(N, S)| =
(

n−1
k−1

)
for |S| = k by Proposition 5.19, we have

[x](n)

n!
=

∑

S⊂X

|Sur-Mon (N, S)| =
n∑

k=0

(x

k

) (
n− 1
k − 1

)
=

n∑

k=0

1
k!

(
n− 1
k − 1

)
[x](k).

Therefore

[x](n) =
n∑

k=0

n!
k!

(
n− 1
k − 1

)
[x](k).

¤

Exercise 5. Prove the following identities.
(1)

∑n
k=m Ln,kLk,m = δn,m.

(2) Ln,m =
∑n

k=m(−1)ksn,kSk,m.
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5.4. Bell Numbers.

Definition 5.21. The number of partitions of an n-set is called the Bell number
and is denoted by Bn with B0 = 1. In other words,

Bn =
n∑

k=1

Sn,k.

Proposition 5.22. (Dobinski’s Formula)

Bn =
1
e

∞∑

k=0

kn

k!
.

Proposition 5.23. (Recursion for the Bell Numbers)

B0 = 1,

Bn+1 =
n∑

k=0

(n

k

)
Bk.

∞∑
n=0

Bn

n!
tn = eet−1.

6. Bernoulli Numbers and Eulerian Numbers

Definition 6.1. The Bernoulli numbers Bn are defined by

x

ex − 1
=

∞∑
n=0

Bn

n!
xn.

Proposition 6.2. B0 = 1, B2n+1 = 0 for n ≥ 1, and

Bn = − 1
n

n−2∑

k=0

(n

k

)
Bk.

Definition 6.3. The Euler numbers An,k are defined by

xn =
n∑

k=0

(
x + k − 1

n

)
An,k

with A0,0 = 1.

Proposition 6.4.

An,k =
k∑

i=1

(−1)i

(
n + 1

i

)
(k − i)n.

7. Catalan, Fibonacci, and Lucas Numbers

Definition 7.1. The Catalan numbers Cn are the positive integers

Cn =
1

n + 1

(
2n

n

)
, n ≥ 0.

Proposition 7.2. (1) The number of diagonal triangulations of a labelled n-
gon is given by

Cn−2.
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(2) The number of associations to compute the noncommutative product a1a2 · · · an

is given by
Cn−1.

(3) The number of increasing lattice path from (0, 0) to (n, n) such that all
intermediate points (a, b) satisfying a ≤ b, is given by

2Cn.

8. Grassmannian of ∞-dimensional subspaces

Let K be a field. Let K∞ = {(x1, x2, . . .) : xi ∈ K, xi = 0 for large enogh i}. For
each k ≥ 0, let Gr(k,K∞) be the Grassmannian of k-subspaces of K∞. There are
natural embeddings

Gr(k,K∞) ↪→ Gr(k + l,K∞), V 7→ Kl × V

such that the following diagram is commutative:

Gr(k,K∞) //

''PPPPPPPPPPPP
Gr(k + l + m,K∞)

Gr(k + l,K∞)

55llllllllllllll

So the collection Gr := {Gr(k,K∞) | k ∈ Z≥0} is a directed system. We define
the Grassmannian Gr(∞,K∞) as the algebraic limit of the directed system Gr. If
Gr(k,K∞) is identified with the image under the embedding, then Gr(k,K∞) is a
subset of Gr(k + 1,K∞) and

Gr(∞,K∞) =
∞⋃

k=0

Gr(k,K∞).

Each element of Gr(∞,K∞) can be viewed as a full flag of infinite length. Let
GL∞(K) denote the group of all invertible ∞×∞ matrices of the form(

M 0
0 I

)
,

where M is an invertible square matrix over K and I is an infinite identity matrix.

Theorem 8.1. The space Gr(∞,K∞) can be viewed as the Grassmannian of ∞-
dimensional subspaces of K∞, and has the following cellular decomposition

Gr(∞,K∞) =
⊔
σ

Xσ,

where σ = (σ1, σ2, . . . , σk) is extended over all sequences such that 2 ≤ σ1 < σ2 <
· · · < σk, and when k ≥ 0, σ = (1). Moreover,

∞∑
n=0

p(n)qn = #
(
Gr(∞,K∞q )

)
=

∑

σ∈T∞

qinv(σ) =
∞∏

n=1

1
1− qn

.

Proof. Let M(∞) be the vector space of ∞×∞ matrices M over K such that
the (i, j)-entry of M is zero when i or j is large enough. Let ∼ be the equivalence
relation on M(∞), generated by (1) M ∼ AM , where A ∈ GL∞(K), and (2)

M ∼
(

1 0
0 M

)
. Then Gr(∞,K∞) can be viewed as the quotient space of M(∞)

under the above equivalence relation.
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Viewing in this way, for every element M of M(∞), there exists a unique per-
mutation σ of {1, 2, . . .} such that M is equivalent to the matrix of the schubert
cell Xσ, where σ = (1) or σ = (σ1, . . . , σk), σ1 ≥ 2. For instance, the matrices of
the Schubert cell

Xτ =




Ir O
∗ 1 0 0 0 0 0

O ∗ 0 ∗ 1 0 0 0
∗ 0 ∗ 0 ∗ ∗ 1


 ,

where τ = (1) · · · (r)(r + 1, r + 4, r + 2)(r + 3, r + 5, r + 6, r + 7), are equivalent to
the matrices of the Schubert cell

Xσ =



∗ 1 0 0 0 0 0
∗ 0 ∗ 1 0 0 0
∗ 0 ∗ 0 ∗ ∗ 1


 ,

where σ = (1, 4, 2)(3, 5, 6, 7), respectively.
For each σ ∈ S∞, let σ = (a1, . . . , ai)(b1, . . . , bj) · · · (c1, . . . , ck), where the lead-

ing entries a1, b1, . . . , c1 are the smallest in the corresponding cycles. For 0 ≤ r < a1,
we define

σ + r = (a1 + r, . . . , ai + r)(b1 + r, . . . , bj + r) · · · (c1 + r, . . . , ck + r).

Two permutations σ and τ are called equivalent if τ = σ + r for some r ≥ 0. Let

T∞ := S∞/ ∼ .

Let ∼ be an equivalence relation on S∞, defined by

σ ∼

σ1 σ2 σ3


∗ ∗ 1 0 0 0 0 0 0 0 · · ·
∗ ∗ 0 ∗ ∗ 1 0 0 0 0 · · ·
∗ ∗ 0 ∗ ∗ 0 ∗ 1 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 · · ·
...

...
...

...
...

...
...

...
...

...
. . .




.

Gr(∞,K∞) is decomposed into disjoint union

Gr(∞,K∞) =
⋃
σ

Xσ

where σ = (σ1, σ2, . . . , σk) is extended over all sequences such that 2 ≤ σ1 < σ2 <
· · · < σk, and when k ≥ 0, σ = (1).


