BIJECTIVE COUNTING

BEIFANG CHEN
EMAIL: MABFCHEN@UST.HK

1. Binomial and Multinomial Coefficients

Definition 1.1. An r-permutation of n objects is a linearly ordered selection of r objects from an n-set. The number of r-permutations of n objects is denoted by

$$
P(n, r) .
$$

An n-permutation of n objects is just called a permutation of the n objects. The number of permutations of n objects is denoted by n !, read " n factorial".

Definition 1.2. An r-combination of n objects is a selection of r objects from a set of n objects without order. The number of r-combinations of n objects is denoted by

$$
\binom{n}{r}
$$

read " n choose r." These numbers are called binomial coefficients .
Definition 1.3. An r-combination with repetition of n objects is a selection of r objects from a set of n objects without order and objects can be selected repeatedly. The number of r-combinations of n objects with repetition allowed is denoted by

$$
\left\langle\begin{array}{l}
n \\
r
\end{array}\right\rangle
$$

read " n choose r with repetition."
For sake of brevity, we frequently call a set with n objects an n-set, and a subset with r objects of any set an r-subset. Elements of a set are always considered to be distinct. When considering indistinguishable objects we need the concept of multisets. By a multiset we mean a collection of objects such that some of them may be identically same, said to be indistinguishable. Given a set S; by a multiset M over S we mean a function $v: S \rightarrow \mathbb{N}=\{0,1,2, \ldots\}$, written $M=(S, v)$; the cardinality of $M=(S, v)$ is

$$
|M|=\sum_{x \in S} v(x)
$$

if $|M|=n$, we call M an n-multiset. For example, $M=\{a, a, b, b, b, c, c, e\}$ is an 8 -multiset over $S=\{a, b, c, d, e\}$ with $v(a)=2, v(b)=3, v(c)=2, v(d)=0$, $v(e)=1$. An n-multiset M over a k-set S is said to be of type $\left(r_{1}, \ldots, r_{k}\right)$ or an $\left(r_{1}, \ldots, r_{k}\right)$-multiset, if the i th object of S appears r_{i} times in $M, 1 \leq i \leq k$. A submultiset of $M=(S, v)$ is a multiset $L=(S, u)$ such that $u(x) \leq v(x)$ for all $x \in S$.

The number of permutations of an n-multiset of type $\left(r_{1}, \ldots, r_{k}\right)$ is denoted by

$$
\binom{n}{r_{1}, \ldots, r_{k}}
$$

called a multinomial coefficient of type ($n ; r_{1}, \ldots, r_{k}$). See (5) of Proposition 1.5.
Proposition 1.4. (1) The number of r-permutations of n objects is given by

$$
P(n, r)=n(n-1) \cdots(n-r+1)
$$

(2) The number of r-combinations of n objects is given by

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!} .
$$

(3) The number of permutations of an n-multiset of type $\left(r_{1}, \ldots, r_{k}\right)$ is the same as the number of ways to partition an n-set into k subsets of cardinalities r_{1}, \ldots, r_{k}, and is given by

$$
\binom{n}{i_{1}, \ldots, i_{k}}=\frac{n!}{r_{1}!\cdots r_{k}!} .
$$

(4) The number of n-combinations of r objects with repetition allowed equals the number of non-negative integer solutions of $x_{1}+\cdots+x_{r}=n$, and is given by

$$
\left\langle\begin{array}{c}
r \\
n
\end{array}\right\rangle=\binom{n+r-1}{n} .
$$

Proposition 1.5. (1) The Pascal identity: $\binom{n}{r}=\binom{n-1}{r}+\binom{n-1}{r-1}$.
(2) An recurrence relation: $\binom{n+1}{r+1}=\sum_{k=r}^{n}\binom{k}{r}$.
(3) The Vandermonde convolution: $\binom{m+n}{r}=\sum_{i=0}^{r}\binom{m}{i}\binom{n}{r-i}$
(4) The binomial expansion: $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}$.
(5) The multinomial expansion: $\left(x_{1}+\cdots+x_{k}\right)^{n}=\sum_{i_{1}+\cdots+i_{k}=n, i_{1}, \ldots, i_{k} \geq 0}\left(\begin{array}{c}{ }_{i_{1}, \ldots, i_{k}}\end{array}\right) x_{1}^{i_{1}} \cdots x_{k}^{i_{k}}$.

Proof. (1) Let $A_{n}=\left\{a_{1}, \ldots, a_{n}\right\}$ be an n-set and $A_{n-1}=\left\{a_{1}, \ldots, a_{n-1}\right\}$. The r subsets of A_{n} are divided into two types: (i) r-subsets of A_{n-1}; and (ii) r-subsets of A_{n}, but not subsets of A_{n-1}. There are $\binom{n-1}{r} r$-subsets of type (i). Each r-subset of type (ii) must contain the element a_{n}; and each such r-subset can be obtained by selecting an $(r-1)$-subsets of A_{n-1} first then adding the element a_{n} to it. Thus there are $\binom{n-1}{r-1} r$-subsets of type (ii). Adding the number of r-subsets of two types, we have $\binom{n}{r}=\binom{n-1}{r}+\binom{n-1}{r-1}$.
(2) Let $A_{i}=\left\{a_{1}, \ldots, a_{i}\right\}, 1 \leq i \leq n+1$. Then $A_{1} \subsetneq A_{2} \subsetneq \cdots \subsetneq A_{n+1}$. For each $(r+1)$-subset $S \subseteq A_{n+1}$, there exists a unique $k(r \leq k \leq n)$ such that $S \nsubseteq A_{k}$ and $S \subseteq A_{k+1}$. Thus $a_{k+1} \in S$ and $S^{\prime}=S-\left\{a_{k+1}\right\}$ is an r-subset of A_{k}. Of course, each such r-subset $S^{\prime} \subseteq A_{k}(r \leq k \leq n)$ produces a unique $(r+1)$-subset $S=S^{\prime} \cup\left\{a_{k+1}\right\}$ of A_{n+1}. Therefore $\binom{n+1}{r+1}=\sum_{k=r}^{n}\binom{k}{r}$.
(3) Let A be a set of m black balls and B a set of n white balls. Let $S=A \cup B$. Each r-subset of S is divided into a unique i-subset of A and a unique ($r-i$)subset of B, and vice versa. The identity follows from the counting in two different ways.

Proposition 1.6. (1) $\left\langle\begin{array}{c}n \\ m\end{array}\right\rangle=\left\langle\begin{array}{c}n \\ m-1\end{array}\right\rangle+\left\langle\begin{array}{c}n-1 \\ m\end{array}\right\rangle$.
(2) $\left\langle\begin{array}{c}n+1 \\ m\end{array}\right\rangle=\sum_{k=0}^{m}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$.

Proof. (1) Let $A_{n}=\left\{a_{1}, \ldots, a_{n}\right\}$. Each m-multiset M of A_{n} either contains the element a_{n} or does not contain a_{n}. If M contains a_{n}, then $M \backslash\left\{a_{n}\right\}$ is an (m-1)multiset over A_{n}, and there are $\left\langle\begin{array}{c}n \\ m-1\end{array}\right\rangle$ such m-multisets. If M does not contain a_{n}, then M is an m-multiset of A_{n-1}, and there are $\left\langle\begin{array}{c}n-1 \\ m\end{array}\right\rangle$ such m-multisets.
(2) For each m-multiset M of $A_{n+1}=\left\{a_{1}, \ldots, a_{n+1}\right\}$, let k be the number of times that the element a_{n} appears in M. Clearly, $0 \leq k \leq m$. Deleting all multiple copies of a_{n} in M we obtain an $(m-k)$-multiset of A_{n}. Thus $\left\langle\begin{array}{c}n+1 \\ m\end{array}\right\rangle=$ $\sum_{k=0}^{m}\left\langle\begin{array}{c}n \\ m-k\end{array}\right\rangle$.

2. Counting of Functions

Given sets M and N, we have the following classes of functions from M to N.

$$
\begin{aligned}
\operatorname{Map}(M, N) & =\{f: M \rightarrow N\} \\
\operatorname{Inj}(M, N) & =\{f: M \rightarrow N \mid f \text { is injective }\} \\
\operatorname{Sur}(M, N) & =\{f: M \rightarrow N \mid f \text { is surjective }\} \\
\operatorname{Bij}(M, N) & =\{f: M \rightarrow N \mid f \text { is bijective }\}
\end{aligned}
$$

Whenever M, N are linearly ordered sets, we say that a function $f: M \rightarrow N$ is monotonic provided that $x \leq y$ in M implies $f(x) \leq f(y)$ in N. We have the class of functions

$$
\operatorname{Mon}(M, N)=\{f: M \rightarrow N \mid f \text { is monotonic }\}
$$

Proposition 2.1. Let M and N be finite sets with cardinalities $|M|=m$ and $|N|=n$. Then
(1) $|\operatorname{Map}(M, N)|=n^{m}$;
(2) $|\operatorname{Inj}(M, N)|=n(n-1) \cdots(n-m+1)$;
(3) $|\operatorname{Sur}(M, N)|=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} k^{m}$;
(4) $|\operatorname{Bij}(M, N)|=\left\{\begin{array}{lll}n! & \text { if } & m=n, \\ 0 & \text { if } & m \neq n .\end{array}\right.$

Proof. The cases (1), (2), (4) are obvious. The case (3) follows from the inclusionexclusion principle. In fact, let $N=\left\{b_{1}, \ldots, b_{n}\right\}$. For $1 \leq k \leq n$, we have

$$
\left|\operatorname{Map}\left(M,\left\{b_{i_{1}}, \ldots, b_{i_{k}}\right\}\right)\right|=k^{m} \quad \text { for } \quad i_{1}<\cdots<i_{k} .
$$

Then

$$
\begin{aligned}
|\operatorname{Sur}(M, N)| & =\left|\operatorname{Map}(M, N) \backslash \bigcup_{i=1}^{n} \operatorname{Map}\left(M, N \backslash\left\{b_{i}\right\}\right)\right| \\
& =n^{m}-\sum_{k=1}^{n}(-1)^{k+1} \sum_{i_{1}<\cdots<i_{k}}\left|\operatorname{Map}\left(M, N \backslash\left\{b_{i_{1}}, \ldots, b_{i_{k}}\right\}\right)\right| \\
& =n^{m}+\sum_{k=1}^{n}(-1)^{k}\binom{n}{k}(n-k)^{m}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} k^{m} .
\end{aligned}
$$

Note: The power set $\mathcal{P}(N)$ of N is a poset under the partial order of inclusion. Then

$$
|\operatorname{Map}(M, T)|=\sum_{S \subseteq T}|\operatorname{Sur}(M, S)|, \quad T \subseteq N
$$

By the Möbius inversion, we have

$$
|\operatorname{Sur}(M, T)|=\sum_{S \subseteq T}(-1)^{|T \backslash S|}|\operatorname{Map}(M, S)|, \quad T \subseteq N .
$$

Definition 2.2. The falling factorial of length n is

$$
[x]_{(n)}=x(x-1) \cdots(x-n+1), \quad n \geq 1
$$

and $[x]_{(0)}=1$. The rising factorial of length n is expression

$$
[x]^{(n)}=x(x+1) \cdots(x+n-1), \quad n \geq 1
$$

and $[x]^{(0)}=1$.
Proposition 2.3. (Reciprocity Law) For integers $n \geq 1$,

$$
\begin{align*}
& {[-x]_{(n)}=(-1)^{n}[x]^{(n)},} \tag{2.1}\\
& {[-x]^{(n)}=(-1)^{n}[x]_{(n)} .} \tag{2.2}
\end{align*}
$$

Proposition 2.4. Let N and X be linearly ordered finite sets with cardinalities $|N|=n$ and $|X|=x$. Then

$$
\begin{equation*}
|\operatorname{Mon}(N, X)|=\frac{[x]^{(n)}}{n!} \tag{2.3}
\end{equation*}
$$

Proof. Let $N=\{1,2, \ldots, n\}, X=\{1,2, \ldots, x\}, Y=\{1,2, \ldots, x+n-1\}$, and be linearly ordered by the natural order of numbers. Consider the map $\Phi: \operatorname{Mon}(N, X) \rightarrow$ $\binom{Y}{n}$, defined for $f \in \operatorname{Mon}(N, X)$ by

$$
\Phi(f)=\{f(1), f(2)+1, \ldots, f(n)+n-1\}
$$

where $\binom{Y}{n}$ is the set of all n-subsets of Y. It is easy to see that Φ is a bijection. The inverse of Φ is given by

$$
\Phi^{-1}\left(\left\{y_{1}, \ldots, y_{n}\right\}\right)(i)=y_{i}-i+1, \quad 1 \leq i \leq n
$$

where $\left\{y_{1}, \ldots, y_{n}\right\}$ is an n-subset of Y with $y_{1}<\cdots<y_{n}$. Thus

$$
\operatorname{Mon}(N, X) \left\lvert\,=\binom{x+n-1}{n}=\frac{(x+n-1)(x+n-2) \cdots(x+1) x}{n!}\right.
$$

which is the form $[x]^{(n)} / n!$.
Let M, N be either sets whose objects are distinguishable or multisets whose objects are indistinguishable, having cardinalities $|M|=m,|N|=n$. We use ' D ' and ' I ' to indicate distinguishability and indistinguishability respectively. A function from N to M can be considered as distributing objects of N into boxes indexed by the members of M. A function from N to M can be also considered as selecting $|N|$ objects from M, with repetition allowed, and put them into boxes indexed by members of N so that each box contains exactly one object.

If N is indistinguishable and M is distinguishable, then there are $\left\langle\begin{array}{c}m \\ n\end{array}\right\rangle$ ways to select n objects from M with repetition allowed, and there is only one way to put them into boxes indexed by the members of N; so $|\operatorname{Map}(N, M)|=\left\langle\begin{array}{l}m \\ n\end{array}\right\rangle$.

If N is distinguishable and M is indistinguishable, then each function from N to M is a distribution of N into identical boxes, which induces a partition of N, and the number of parts ranges from 1 to m.

If both N, M are indistinguishable, then a function from N to M is a partition of n identical objects into some nonempty parts, which is a partition of the integer n, and the number of parts ranges from 1 to m.

Let $S_{n, k}$ denote the number of partitions of an n-set into k parts. Let $P_{k}(n)$ denote the number of partitions of the integer n with k parts. We have the following table.

N	M	Map	$\operatorname{Inj}(n \leq m)$	$\operatorname{Sur}(n \geq m)$	$\operatorname{Bij}(n=m)$
D	D	m^{n}	$[m]_{(n)}$	$m!S_{n, m}$	$n!$
I	D	$\left\langle\begin{array}{c}m \\ n\end{array}\right\rangle$	$\left.\begin{array}{c}m \\ n\end{array}\right)$	$\left\langle\begin{array}{c}m \\ n-m\end{array}\right\rangle$	1
D	I	$\sum_{k=1}^{m} S_{n, k}$	$S_{n, n}=1$	$S_{n, m}$	1
I	I	$\sum_{k=1}^{m} P_{k}(n)$	$P_{n}(n)=1$	$P_{m}(n)$	1

3. Counting of Permutations

A permutation of an n-set $[n]=\{1,2, \ldots, n\}$ is a bijection $\sigma: N \rightarrow N$, written

$$
\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
\sigma(1) & \sigma(2) & \cdots & \sigma(n)
\end{array}\right)
$$

For simplicity, we frequently write σ as a word $s_{1} s_{2} \ldots s_{n}$, where $s_{i}=\sigma(i), 1 \leq$ $i \leq n$. For each $i \in[n]$, the sequence $i, \sigma(i), \sigma^{2}(i), \sigma^{3}(i), \ldots$ must return to i for some terms. Let $\ell_{i}=\ell_{i}(\sigma)$ be the smallest integer such that $\sigma^{\ell_{i}}(i)=i$. We call the sequence

$$
\left(\begin{array}{llll}
i & \sigma(i) & \sigma^{2}(i) & \cdots
\end{array} \sigma^{\ell_{i}-1}(i)\right)
$$

a cycle of the permutation σ and ℓ_{i} (the number of elements in the cycle) the cycle length. Since $\left.\sigma^{\ell_{i}}\left(\sigma^{j}(i)\right)=\sigma^{j+\ell_{i}}(i)=\sigma^{j}(i)\right)$, one can write the above cycle by starting any element $\sigma^{j}(i)$ with $0 \leq j \leq \ell_{i}-1$. We require to write the cycle so that the leading element is largest, and to write the whole permutation σ in increasing order of the leading elements of its cycles; such a writing is called the standard cycle notation of σ, denoted $\operatorname{cyc}(\sigma)$. For instance, the standard cycle notation of the permutation 857162394 of $\{1,2 \ldots, 9\}$ is

$$
\operatorname{cyc}(857162394)=(625)(73)(9418)
$$

If we delete the parenthesis in $\operatorname{cyc}(\sigma)$, we obtain a permutation $\hat{\sigma}=\widehat{\operatorname{cyc}}(\sigma)$. For instance,

$$
\widehat{\mathrm{cyc}}(857162394)=625739418
$$

whose standard cycle notation is $(2)(53)(74)(9816)$. We denote by \mathfrak{S}_{n} the symmetric group of all permutations of $\{1,2, \ldots, n\}$.
Proposition 3.1. The map $\widehat{\mathrm{cyc}}: \mathfrak{S}_{n} \rightarrow \mathfrak{S}_{n}$ is a bijection.
Proof. It is clear that the map $\widehat{\text { cyc }}$ is well-defined. We claim that $\widehat{\text { cyc }}$ is surjective. For each permutation $t_{1} t_{2} \ldots t_{n}$, we construct a permutation σ such that $\widehat{\operatorname{cyc}}(\sigma)=$ $t_{1} t_{2} \ldots t_{n}$. In fact, the standard representation of σ can be obtained by inserting parentheses into $t_{1} t_{2} \ldots t_{n}$ as follows: First write a left parenthesis to the left of t_{1} and a right parenthesis to the right of t_{n}. If $t_{i}<t_{j}$ for all $i<j$, where $j \neq 1$, write a right and a left parentheses)(between t_{j-1} and t_{j} to have $\left(t_{1} \ldots t_{j-1}\right)\left(t_{j} \ldots t_{n}\right)$. Continue this procedure for $\left(t_{j} \ldots t_{n}\right)$. Alternatively, one can define the map σ as follows:

$$
\sigma\left(t_{j}\right)= \begin{cases}t_{j+1} & \text { if there exists an } i \leq j \text { s.t. } t_{i}>t_{j+1} \\ t & \text { if } t_{i} \leq t_{j+1} \text { for all } i \leq j\end{cases}
$$

where t is the unique element of the singleton $\left\{t_{1}, \ldots, t_{j}\right\} \backslash\left\{\sigma\left(t_{1}\right), \ldots, \sigma\left(t_{j-1}\right)\right\}$. Now it forces that the surjective map cyc is bijective, for \mathfrak{S}_{n} is finite.

A permutation σ of $[n]$ is said to be of cycle-type $1^{\lambda_{1}} 2^{\lambda_{2}} \ldots n^{\lambda_{n}}$, if it has

$$
\begin{gathered}
\lambda_{1}(\sigma) \text { cycles of length } 1, \\
\lambda_{2}(\sigma) \text { cycles of length } 2, \\
\ldots \ldots . . \\
\lambda_{n}(\sigma) \text { cycles of length } n ;
\end{gathered}
$$

the cycle-type of σ is denoted by

$$
\operatorname{type}(\sigma)=1^{\lambda_{1}(\sigma)} 2^{\lambda_{2}(\sigma)} \ldots n^{\lambda_{n}(\sigma)}
$$

Clearly,

$$
\sum_{i=1}^{n} i \lambda_{i}(\sigma)=n
$$

Proposition 3.2. The number of permutations of an n-set of type $1^{\lambda_{1}} 2^{\lambda_{2}} \ldots n^{\lambda_{n}}$, where $\sum_{i=1}^{n} i \lambda_{i}=n$, is given by

$$
\begin{equation*}
\frac{n!}{1^{\lambda_{1}} 2^{\lambda_{2}} \cdots n^{\lambda_{n}}\left(\lambda_{1}!\right)\left(\lambda_{2}!\right) \cdots\left(\lambda_{n}!\right)} . \tag{3.1}
\end{equation*}
$$

Proof. Let $\mathfrak{S}\left(1^{\lambda_{1}} 2^{\lambda_{2}} \ldots n^{\lambda_{n}}\right)$ denote the set of permutations of type $1^{\lambda_{1}} 2^{\lambda_{2}} \ldots n^{\lambda_{n}}$. Let P_{i} denote a linearly ordered λ_{i} pairs of parentheses, each pair of parentheses contains i linearly ordered positions. Then there are n linearly ordered positions in the arrangement $P=P_{1} P_{2} \ldots P_{n}$. For each permutation $\sigma=s_{1} s_{2} \ldots s_{n}$, let $\Phi(\sigma)$ denote the placement of the n elements $s_{1}, s_{2}, \ldots, s_{n}$ placed into the n positions of P in the same order. Then $\Phi(\sigma)$ defines a permutation of type $1^{\lambda_{1}} 2^{\lambda_{2}} \ldots n^{\lambda_{n}}$, which may not be in standard cycle representations. Thus $\Phi: \mathfrak{S}_{n} \rightarrow \mathfrak{S}\left(1^{\lambda_{1}} 2^{\lambda_{2}} \ldots n^{\lambda_{n}}\right)$ defines a surjective map.

Notice that each filled pair of parentheses with i positions has i representations; and there are λ_{i} such pairs of parentheses. Then there are $i^{\lambda_{i}}\left(\lambda_{i}!\right)$ ways to rearrange the elements in P_{i} to have the same λ_{i} cycles of length i. Since the rearrangements in P_{1}, \ldots, P_{n}, respectively, are independent, it follows that the fiber of Φ over each member of $\mathfrak{S}\left(1^{\lambda_{1}} 2^{\lambda_{2}} \ldots n^{\lambda_{n}}\right)$ has the cardinality

$$
1^{\lambda_{1}} 2^{\lambda_{2}} \cdots n^{\lambda_{n}}\left(\lambda_{1}!\right)\left(\lambda_{2}!\right) \cdots\left(\lambda_{n}!\right)
$$

The formula (3.1) follows immediately.
A partition of a set S is a collection of disjoint nonempty subsets whose union is S. For an n-set S, a partition of S is said to be of type $1^{\lambda_{1}} 2^{\lambda_{2}} \ldots n^{\lambda_{n}}$ if the number of i-subsets of the partition is λ_{i}. Clearly, we have $\sum_{i=1}^{n} i \lambda_{i}=n$.

Proposition 3.3. The number of partitions of an n-set of type $1^{\lambda_{1}} 2^{\lambda_{2}} \ldots n^{\lambda_{n}}$ is

$$
\begin{equation*}
\frac{n!}{(1!)^{\lambda_{1}}(2!)^{\lambda_{2}} \cdots(n!)^{\lambda_{n}}\left(\lambda_{1}!\right)\left(\lambda_{2}!\right) \cdots\left(\lambda_{n}!\right)} . \tag{3.2}
\end{equation*}
$$

Proof. Let $\operatorname{Par}\left(1^{\lambda_{1}} 2^{\lambda_{2}} \cdots n^{\lambda_{n}}\right)$ be the set of all partitions of an n-set N of type $1^{\lambda_{1}} 2^{\lambda_{2}} \cdots n^{\lambda_{n}}$. Let B_{i} denote a linearly ordered λ_{i} boxes, each box contains i linearly ordered positions. There are total n positions in the arrangement $B=$ $B_{1} B_{2} \cdots B_{n}$. For each permutation $\sigma=s_{1} s_{2} \ldots s_{n}$, let $\Psi(\sigma)$ denote the placement of the n elements $s_{1}, s_{2}, \ldots, s_{n}$ placed into the n positions of B in the same order. Then $\Psi(\sigma)$ defines a partition of type $1^{\lambda_{1}} 2^{\lambda_{2}} \ldots n^{\lambda_{n}}$. Thus $\Psi: \mathfrak{S}_{n} \rightarrow$ $\operatorname{Par}\left(1^{\lambda_{1}} 2^{\lambda_{2}} \ldots n^{\lambda_{n}}\right)$ defines a surjective map. Notice that the i elements in each box with i positions can be arranged in i ! ways; and there are λ_{i} such boxes. Then there are $(i!)^{\lambda_{i}}\left(\lambda_{i}!\right)$ ways to rearrange the elements in B_{i} to have the same $\lambda_{i} i$-subsets. Since the rearrangements in B_{1}, \ldots, B_{n}, respectively, are independent, it follows that the fiber of Ψ over any element of $\operatorname{Par}\left(1^{\lambda_{1}} 2^{\lambda_{2}} \ldots n^{\lambda_{n}}\right)$ has the cardinality

$$
(1!)^{\lambda_{1}}(2!)^{\lambda_{2}} \cdots(n!)^{\lambda_{n}}\left(\lambda_{1}!\right)\left(\lambda_{2}!\right) \cdots\left(\lambda_{n}!\right)
$$

The formula (3.2) follows immediately.
Definition 3.4. The number of permutations of an n-set with exactly k cycles is denoted by $c_{n, k}$, where $n \geq k \geq 0$ and $c_{0,0}=1$.
Proposition 3.5. The numbers $c_{n, k}$ satisfy the recurrence relation

$$
\begin{cases}c_{0,0}=c_{n, n}=1 & \text { for } n \geq 0 \tag{3.3}\\ c_{n, 0}=0 & \text { for } n \geq 1 \\ c_{n+1, k}=c_{n, k-1}+n c_{n, k} & \text { for } n \geq k \geq 1\end{cases}
$$

Proof. The initial conditions are obvious.
We consider the set of $c_{n+1, k}$ permutations of an $(n+1)$-set N with k cycles. Fix an element $w \in N$ and divide permutations of N into two kinds:
(i) Permutations where (w) is a cycle of length 1 . There are $c_{n, k-1}$ such permutations.
(ii) Permutations where w is contained in a cycle of length at least 2. Such permutations can be obtained from permutations of $N \backslash\{w\}$ with k cycles by inserting the element w into one of the k cycles, and there are exactly n independent ways of making the insertion. So there are $n c_{n, k}$ such permutations.
Theorem 3.6. $\sum_{k=0}^{n} c_{n, k} x^{k}=x(x+1)(x+2) \cdots(x+n-1)$.
Proof. Let x be a positive integer and let $C(\sigma)$ denote the set of cycles of a permutation σ of $[n]$ in standard cycle notation. The left-hand side counts all pairs (σ, f), where σ is a permutation of $[n]$ and f is a function from $C(\sigma)$ to $[x]$. The right-hand side counts the integer sequences $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, where $1 \leq a_{i} \leq x+n-i$. We define a map $\left(a_{1}, \ldots, a_{n}\right) \mapsto(\sigma, f)$ as follows:
(1) Write down the number n and regard it as a cycle $C=(n)$. Let $\sigma=C$ and define $f(C)=a_{n}$.
(2) Whenever $i+1, i+2, \ldots, n$ have been inserted into the cycles of σ, consider to insert i into σ. There are two situations:
(a) If $a_{i} \in[1, x]$, start a new cycle $C^{\prime}=(i)$ with the element i to the left of existing cycles of σ, and define $f\left(C^{\prime}\right)=a_{i}$.
(b) If $a_{i}=x+k \in[x+1, x+n-i]$ with $1 \leq k \leq n-i$, insert i into a cycle of σ so that it appears to the right of exactly k previously inserted elements. (The $n-i$ numbers a_{i+1}, \ldots, a_{n} were inserted previously.)
It follows that a_{i} is the leading element in a cycle C_{i} of σ iff $a_{i} \in[1, x], f\left(C_{i}\right)=a_{i}$, and if $a_{i} \in[x+1, x+n-i]$, then i is placed in σ such that there are exactly k elements larger than and to the right of i.

For example, for $n=9, x=5,\left(a_{1}, \ldots, a_{9}\right)=(6,9,10,1,6,8,4,6,3)$, the permutation σ and the function f can be constructed as the following:
(4)(75)(986)
(4)(75)(9836)
(4)(75)(92836)
(41)(75)(92836)

$$
\begin{array}{rlrl}
a_{9} & =3 \in[1,5] & f(9)=a_{9}=3 \\
a_{8} & =6=5+1 & & f(98)=3 \\
& \in[6,5+1]=[6,6] & & f(7)=a_{7}=4 \\
a_{7}=4 \in[1,5] & & f(98)=3 \\
a_{6} & =8=5+3 & f(7)=4 \\
& \in[6,5+3]=[6,8] & f(986)=3 \\
a_{5} & =6=5+1 & f(75)=4 \\
& \in[6,9] & f(986)=3
\end{array}
$$

$$
a_{4}=1 \in[1,5]
$$

$$
a_{3}=10=5+5
$$

$$
\in[6,5+6]=[6,11]
$$

$$
a_{2}=9=5+4
$$

$$
\in[6,5+7]=[6,12]
$$

$$
a_{1}=6=5+1
$$

$$
\in[6,5+8]=[6,13]
$$

$$
f(4)=a_{4}=1
$$

$$
f(75)=4
$$

$$
f(986)=3
$$

$$
f(4)=1
$$

$$
f(75)=4
$$

$$
f(9836)=3
$$

$$
f(4)=1
$$

$$
f(75)=4
$$

$$
f(92836)=3
$$

$$
f(41)=1
$$

$$
f(75)=4
$$

$$
f(92836)=3
$$

It is clear that the map is injective. In fact, for $\left(a_{1}, \ldots, a_{n}\right) \neq\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$, there exists an index j such that $a_{j} \neq a_{j}^{\prime}$ and $a_{i}=a_{i}^{\prime}$ for all $i<j$. If both $a_{j}, a_{j}^{\prime} \in[1, x]$, then $f \neq f^{\prime}$, since the values of f, f^{\prime} at the cycle of σ, σ^{\prime} with the leading term j are a_{j}, a_{j}^{\prime} respectively; otherwise, $\sigma \neq \sigma^{\prime}$, since the numbers of terms on the left side of and larger than j in σ, σ^{\prime} respectively are distinct.

For surjectivity, for a pair (σ, f) of permutation σ and function $f: C(\sigma) \rightarrow[1, x]$, let $(\sigma, f) \mapsto\left(a_{1}, \ldots, a_{n}\right)$ be defined by

$$
a_{i}= \begin{cases}f(C) & \text { if } i \text { is the leading term of a cycle } C \text { of } \sigma, \\ x+k & \text { otherwise, where } k \text { is the number of terms } \\ & \text { on the left-sdie of and larger than } i .\end{cases}
$$

Exercise 1. Find the inverse map $(\sigma, f) \mapsto\left(a_{1}, \ldots, a_{n}\right)$ explicitly, letting that σ be written in the standard cycle notation and the values of f be given on cycles.

Let $\sigma=s_{1} s_{2} \ldots s_{n}$ be a permutation of $[n]$. An inversion of σ is a pair $\left(s_{i}, s_{j}\right)$ such that $i<j$ but $s_{i}>s_{j}$. For each $k \in[n]$, let a_{k} denote the number of terms that precede k in $s_{1} s_{2} \ldots s_{n}$ and are greater than k, i.e.,

$$
a_{k}:=\#\left\{s_{i} \mid s_{i}>s_{j}=k, i<j\right\}=\#\{\sigma(i) \mid \sigma(i)>\sigma(j)=k, i<j\}
$$

It measures how much k is out of order by counting number of integers larger than k but located before k. The tuple $(\sigma):=\left(a_{1}, \ldots, a_{n}\right)$ is called the inversion sequence (or inversion table) of σ, and the sum

$$
\operatorname{inv}(\sigma):=a_{1}+\cdots+a_{n}
$$

is called the inversion number of σ, measuring the total disorder of σ. Clearly, $0 \leq a_{i} \leq n-i$.

Proposition 3.7. Let $n \geq k \geq 1$. Then $c_{n, k}$ counts the number of integer sequences $\left(a_{1}, \ldots, a_{n}\right)$ such that $0 \leq a_{i} \leq n-i$ and exactly k values of a_{i} equal to 0 .
Proof. Let $x=1$ in Theorem 3.6. The function f in the pair (σ, f) is a constant function. Then $1 \leq a_{i} \leq x+n-i$ becomes $1 \leq a_{i} \leq n-i+1$, which can be equivalently reduced to $0 \leq a_{i} \leq n-i$ by shifting the values by 1 unit. Note that a_{i} produces a cycle if and only if $a_{i} \in[1, x]=[1,1]$, i.e., $a_{i}=1$, equivalently, $a_{i}=0$ after shifting by 1 . Hence, permutations with k cycles correspond to inversion sequences $\left(a_{1}, \ldots, a_{n}\right)$ having exactly k values of a_{i} equal to 0 .
Corollary 3.8. The map $\mathfrak{S}_{n} \rightarrow \prod_{i=1}^{n}[0, n-i] \cap \mathbb{Z}$, sending each permutation σ to its inversion sequence, is a bijection.

Proposition 3.9. The inversion generating polynomial has the factorization

$$
\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{inv}(\sigma)}=\prod_{i=1}^{n-1}\left(1+q+\cdots+q^{i}\right)
$$

Proof. Note that $\operatorname{inv}(\sigma)=a_{1}+\cdots+a_{n}$ for each permutation σ with inversion table $\left(a_{1}, \ldots, a_{n}\right)$. We have

$$
\begin{aligned}
\sum_{\sigma \in S_{n}} q^{\operatorname{inv}(\sigma)} & =\sum_{a_{1}=0}^{n-1} \sum_{a_{2}=0}^{n-2} \cdots \sum_{a_{n}=0}^{0} q^{a_{1}+a_{2}+\cdots+a_{n}} \\
& =\left(\sum_{a_{1}=0}^{n-1} q^{a_{1}}\right)\left(\sum_{a_{2}=0}^{n-2} q^{a_{2}}\right) \cdots\left(\sum_{a_{n}=0}^{0} q^{a_{n}}\right)
\end{aligned}
$$

Given a permutation $\sigma=s_{1} s_{2} \ldots s_{n}$ of $[n]$. The descent set of σ is the set

$$
\begin{equation*}
\operatorname{Des}(\sigma):=\left\{i \in[n] \mid s_{i}>s_{i+1}\right\} ; \tag{3.4}
\end{equation*}
$$

its cardinality $\operatorname{des}(\sigma):=|\operatorname{Des}(\sigma)|$ is called the descent of σ. Some authors include n into the set $\operatorname{Des}(\sigma)$ by saying that σ goes down from s_{n} to zero at position n. We do not include n in $\operatorname{Des}(\sigma)$. Likewise, the ascent set of σ is the set

$$
\begin{equation*}
\operatorname{Asc}(\sigma):=\left\{i \in[n] \mid s_{i}<s_{i+1}\right\} \tag{3.5}
\end{equation*}
$$

its cardinality $\operatorname{asc}(\sigma):=|\operatorname{Asc}(\sigma)|$ is called the ascent of σ. Clearly, we have

$$
0 \leq \operatorname{des}(\sigma) \leq n-1, \quad 0 \leq \operatorname{asc}(\sigma) \leq n-1
$$

We introduce two integer-valued functions α, β on the power set $2^{[n]}$ of $[n]$ as follows: For each subset $S \subseteq[n]$,

$$
\begin{aligned}
& \alpha(S)=\#\left\{\sigma \in \mathfrak{S}_{n}: \operatorname{Des}(\sigma) \subseteq S\right\} \\
& \beta(S)=\#\left\{\sigma \in \mathfrak{S}_{n}: \operatorname{Des}(\sigma)=S\right\}
\end{aligned}
$$

Clearly, we have

$$
\alpha(T)=\sum_{S \subseteq T} \beta(S), \quad T \subseteq[n]
$$

It is equivalent to (by the Möbius inversion)

$$
\beta(T)=\sum_{S \subseteq T}(-1)^{|T \backslash S|} \alpha(S), \quad T \subseteq[n]
$$

Proposition 3.10. Let a_{1}, \ldots, a_{k} be nonnegative integers such that $a_{1}+\cdots+a_{k}=n$ and $S=\left\{a_{1}, a_{1}+a_{2}, \ldots, a_{1}+\cdots+a_{k}\right\}$. Then

$$
\alpha(S)=\binom{n}{a_{1}, a_{2}, \ldots, a_{k}}
$$

Proof. For simplicity we may assume $a_{i} \geq 1$. We count all permutations $\sigma=$ $s_{1} s_{2} \ldots s_{n}$ such that $\operatorname{Des}(\sigma) \subseteq S$, i.e.,

$$
\begin{gathered}
s_{1}<s_{2}<\cdots<s_{a_{1}}>s_{a_{1}+1} \\
s_{a_{1}+1}<s_{a_{1}+a_{2}+2}<\cdots<s_{a_{1}+a_{2}}>s_{a_{1}+a_{2}+1} \\
\cdots \cdots \cdots \\
s_{a_{1}+\cdots+a_{k-1}+1}<s_{a_{1}+\cdots+a_{k-1}+2}<\cdots<s_{a_{1}+\cdots+a_{k}}=s_{n}
\end{gathered}
$$

We choose $s_{1}<\cdots<s_{a_{1}}$ in $\binom{n}{a_{1}}$ ways; then choose $s_{a_{1}+1}<\cdots<s_{a_{1}+a_{2}}$ in $\binom{n-a_{1}}{a_{2}}$ ways; and so on. We thus have

$$
\begin{aligned}
\alpha(S) & =\binom{n}{a_{1}}\binom{n-a_{1}}{a_{2}} \cdots\binom{n-a_{1}-\cdots-a_{k-1}}{a_{k}} \\
& =\binom{n}{a_{1}, a_{2}, \ldots, a_{k}}
\end{aligned}
$$

It is easily modified to the case of some $a_{i}=0$.
Definition 3.11. The Eulerian polynomial is the generating polynomial

$$
\begin{equation*}
A_{n}(x)=\sum_{\sigma \in \mathfrak{S}_{n}} x^{\operatorname{des}(\sigma)}=\sum_{k=0}^{n} A_{n, k} x^{k} \tag{3.6}
\end{equation*}
$$

whose coefficients $A_{n, k}$ are Eulerian numbers, counting the number of n-permutations with k descents. We assume $A_{0,0}=1$.
Proposition 3.12. The Eulerian numbers satisfy the symmetric property:

$$
A_{n, k}=A_{n, n-k-1}
$$

and the recurrence relation:

$$
\begin{cases}A_{0,0}=1, & \text { for } \quad n \geq 1 \\ A_{n, n}=0, A_{n, 0}=A_{n, n-1}=1 & \text { for } \quad n>k \geq 1\end{cases}
$$

Proof. The map $\mathfrak{S}_{n} \rightarrow \mathfrak{S}_{n}, s_{1} \ldots s_{n} \mapsto t_{1} \ldots t_{n}$ with $t_{i}=n-s_{i}$, is a bijection, sending an n-permutation with exactly k descents to an n-permutation with exactly k ascents. The number of n-permutations with k descents is the same as the number of n-permutations with exactly k ascents.

Given a permutation $\sigma=s_{1} \ldots s_{n}$ and $i \in[n-1]$, we have either a descent $s_{i}>s_{i+1}$ or an ascent $s_{i}>s_{i+1}$. So σ has exactly k descent iff it has exactly $(n-1)-k$ ascents. It follows that $A_{n, k}=A_{n, n-k-1}$.

Permutations of $[n]$ with k descending positions can be obtained as follows: (i) each permutation σ of $[n-1]$ with k descending positions produces exactly k permutations of $[n]$ with k descending positions by inserting n behind each of the k descending positions of σ, plus one more by placing n rightmost; (ii) each permutation σ of $[n-1]$ with $k-1$ descending positions produces $(n-1)-(k-1)$ permutations of $[n]$ with k descending positions by inserting n anywhere (total $n-1$ positions, left sides of members of $[n-1]$) but not behind each of the $k-1$ descending positions of σ. It is clear that permutations of $[n]$ obtained in (i) and (ii) are distinct; and each permutation of $[n]$ with k descending positions can be obtained in this way.

Proposition 3.13 (Worpitzky Identity). The Euler numbers $A_{n, k}$ satisfy the relation:

$$
\begin{equation*}
x^{n}=\sum_{k=0}^{n-1} A_{n, k}\binom{x+k}{n}=\sum_{k=0}^{n-1} \frac{A_{n, k}}{n!}[x+k]_{(n)} . \tag{3.7}
\end{equation*}
$$

Proof. Let I_{n} denote the right-hand side of (3.7). We show the identity by induction on n. For $n=0,1$, it is easily verified to be true. Now for $n+1$, we have

$$
\begin{aligned}
I_{n+1}= & A_{n, 0}\binom{x}{n+1}+\sum_{k=1}^{n}\left((k+1) A_{n, k}+(n+1-k) A_{n, k-1}\right)\binom{x+k}{n+1} \\
= & \sum_{k=0}^{n} A_{n, k}\binom{x+k}{n} \cdot \frac{(k+1)(x+k-n)}{n+1} \\
& \quad+\sum_{k=1}^{n} A_{n, k-1}\binom{x+k-1}{n} \cdot \frac{(n+1-k)(x+k)}{n+1} \\
= & \sum_{k=0}^{n-1} A_{n, k}\binom{x+k}{n} \cdot \frac{(k+1)(x+k-n)+(n-k)(x+k+1)}{n+1} \\
= & x \sum_{k=0}^{n-1} A_{n, k}\binom{x+k}{n}=x^{n+1} .
\end{aligned}
$$

Exercise 2. For $n \geq 0$,

$$
\sum_{k=1}^{\infty} k^{n} x^{k}=\frac{1}{(1-x)^{n+1}} \sum_{j=0}^{n-1} A_{n, j} x^{j+1}
$$

For $n=0$, we have

$$
\mathrm{LHS}=\sum_{k \geq 1} x^{k}=\frac{x}{1-x}, \quad \text { RHS }=\frac{A_{0,0} x}{1-x}=\frac{x}{1-x}
$$

For $n=1$, we have

$$
\begin{gathered}
\text { LHS }=\sum_{k \geq 1} k x^{k}=x \frac{d}{d x} \sum_{k \geq 1} x^{k}=x \frac{d}{d x}\left(\frac{x}{1-x}\right)=\frac{x}{(1-x)^{2}}, \\
\text { RHS }=\frac{A_{1,0} x}{(1-x)^{2}}=\frac{x}{(1-x)^{2}} .
\end{gathered}
$$

For $n=2$, LHS $=\sum_{k \geq 1} k^{2} x^{k}$,

$$
\begin{aligned}
\mathrm{RHS} & =\frac{A_{2,0} x+A_{2,1} x^{2}}{(1-x)^{3}}=\frac{x+x^{2}}{(1-x)^{3}} \\
& =\left(x+x^{2}\right) \sum_{k \geq 0}\binom{-3}{k}(-x)^{k} \\
& =\left(x+x^{2}\right) \sum_{k \geq 0}\binom{k+2}{k} x^{k} \\
& =\sum_{k \geq 1}\binom{k+1}{k-1} x^{k}+\sum_{k \geq 2}\binom{k}{k-2} x^{k} \\
& =x+\sum_{k \geq 2} x^{k}\left[\binom{k+1}{k-1}+\binom{k}{k-2}\right] \\
& =x+\sum_{k \geq 2} k^{2} x^{k}=\mathrm{LHS} .
\end{aligned}
$$

For $n=3$, LHS $=\sum_{k \geq 1} k^{3} x^{k}$,

$$
\begin{aligned}
\mathrm{RHS} & =\frac{A_{3,0} x+A_{3,1} x^{2}+A_{3,2} x^{3}}{(1-x)^{4}} \\
& =\frac{x+4 x^{2}+x^{3}}{(1-x)^{4}}=\left(x+4 x^{2}+x^{3}\right) \sum_{k \geq 0}\binom{k+3}{k} x^{k} \\
& =x+4 x^{2}+\sum_{k \geq 3} x^{k}\left[\binom{k+2}{k-1}+4\binom{k+1}{k-2}+\binom{k}{k-3}\right] \\
& =x+4 x^{2}+\sum_{k \geq 3} k^{3} x^{k}
\end{aligned}
$$

For arbitrary n, recall $k^{n}=\sum_{j=0}^{n-1} A_{n, j}\binom{k+j}{n}=\sum_{j=0}^{n-1} A_{n, j} \cdot \frac{[k+j]_{(n)}}{n!}$. Then

$$
\sum_{k=1}^{\infty} k^{n} x^{k}=\sum_{k=1}^{\infty} \sum_{j=0}^{n-1} A_{n, j}\binom{k+j}{n} x^{k}=\sum_{j=0}^{n-1} A_{n, j} \cdot \frac{1}{n!} \sum_{k=1}^{\infty}[k+j]_{(n)} x^{k}
$$

Note that $j<n$ and

$$
\begin{aligned}
S: & =\frac{1}{n!} \sum_{k=1}^{\infty}[k+j]_{(n)} x^{k} \\
& =\frac{x^{n-j}}{n!} \sum_{k=1}^{\infty} \frac{d^{n}}{d x^{n}}\left(x^{k+j}\right) \\
& =\frac{x^{n-j}}{n!} \cdot \frac{d^{n}}{d x^{n}} \sum_{k=1}^{\infty} x^{k+j} \\
& =\frac{x^{n-j}}{n!} \cdot \frac{d^{n}}{d x^{n}}\left(\frac{x^{j+1}}{1-x}\right) .
\end{aligned}
$$

Applying the Leibliz rule, we have

$$
\begin{aligned}
S & =\frac{x^{n-j}}{n!} \sum_{i=0}^{n}\binom{n}{i} \frac{d^{i}}{d x^{i}}\left(x^{j+1}\right) \frac{d^{n-i}}{d x^{n-i}}(1-x)^{-1} \\
& =\frac{x^{n-j}}{n!} \sum_{i=0}^{n}\binom{n}{i}[j+1]_{(i)} x^{j-i+1}[-1]_{(n-i)}(1-x)^{i-n-1}(-1)^{n-i} \\
& =\frac{x^{n-j}}{n!} \sum_{i=0}^{n} \frac{n!(j+1)!(n-i)!}{i!(n-i)!(j-i+1)!} \cdot \frac{x^{j-i+1}}{(1-x)^{n-i+1}} \\
& =\sum_{i=0}^{n} \frac{(j+1)!}{i!(j-i+1)!}\left(\frac{x}{1-x}\right)^{n-i+1} .
\end{aligned}
$$

Now S becomes

$$
\begin{aligned}
S & =\left(\frac{x}{1-x}\right)^{n+1} \sum_{i=0}^{n}\binom{j+1}{i}\left(\frac{1-x}{x}\right)^{i} \\
& =\left(\frac{x}{1-x}\right)^{n+1}\left(\frac{1-x}{x}+1\right)^{j+1} \\
& =\left(\frac{x}{1-x}\right)^{n+1}\left(\frac{1}{x}\right)^{j+1}=\frac{x^{n-j}}{(1-x)^{n+1}}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\sum_{k=1}^{\infty} k^{n} x^{k} & =\frac{1}{(1-x)^{n+1}} \sum_{j=0}^{n-1} A_{n, j} x^{n-j} \\
& =\frac{1}{(1-x)^{n+1}} \sum_{j=0}^{n-1} A_{n, n-j-1} x^{n-j} \\
& =\frac{1}{(1-x)^{n+1}} \sum_{i=0}^{n-1} A_{n, i} x^{i+1}
\end{aligned}
$$

Given a permutation $\sigma=s_{1} s_{2} \ldots s_{n} \in \mathfrak{S}_{n}$. An exceedance of σ is a number i such that $\sigma(i)>i$. The set of all exceedances of σ is

$$
\begin{equation*}
\operatorname{Exc}(\sigma)=\left\{i \in[n]: s_{i}>i\right\}=\{i \in[n]: \sigma(i)>i\} \tag{3.8}
\end{equation*}
$$

The number of exceedances of σ is the cardinality $\operatorname{exc}(\sigma):=|\operatorname{Exc}(\sigma)|$. A week exceedance of σ is a number $i \in[n]$ such that $\sigma(i) \geq i$. The set of weak exceedances is

$$
\begin{equation*}
\mathrm{w}-\operatorname{Exc}(\sigma)=\left\{i \in[n]: s_{i} \geq i\right\}=\{i \in[n]: \sigma(i) \geq i\} \tag{3.9}
\end{equation*}
$$

Proposition 3.14. The Eulerian number $A_{n, k}$ counts the number of n-permutations with k exceedances, i.e.,

$$
A_{n, k}=\#\left\{\sigma \in \mathfrak{S}_{n}: \operatorname{exc}(\sigma)=k\right\}=\#\left\{\sigma \in \mathfrak{S}_{n}: \operatorname{w}-\operatorname{exc}(\sigma)=k+1\right\}
$$

Proof. The bijection $\sigma \mapsto \mathrm{cyc}(\sigma)$ gives another description of the Eulerian numbers.
Given a permuation $\sigma=s_{1} s_{2} \ldots s_{n} \in \mathfrak{S}_{n}$ having the standard cycle notation

$$
\operatorname{cyc}(\sigma)=\left(t_{1} t_{2} \ldots t_{\ell_{1}}\right)\left(t_{\ell_{1}+1} t_{\ell_{1}+2} \ldots t_{\ell_{2}}\right) \ldots\left(t_{\ell_{m-1}+1} t_{\ell_{m-1}+2} \ldots t_{n}\right)
$$

where $t_{1}=t_{\ell_{0}+1}, t_{n}=t_{\ell_{m}}$, and $t_{\ell_{0}+1}, t_{\ell_{1}+1}, \ldots, t_{\ell_{m-1}+1}$ are the m largest elements in the corresponding k cycles of σ and are arranged in increasing order. Then $\hat{\sigma}:=\operatorname{cyc}(\sigma)=t_{1} t_{2} \ldots t_{n}$ is a permutation. Note that $\sigma\left(t_{j}\right)=t_{j+1}$ for $\ell_{i-1}+1 \leq$ $j<\ell_{i}$, and $\sigma\left(t_{\ell_{i}}\right)=t_{\ell_{i-1}+1} \geq t_{\ell_{i}}$ (the equality holds for cycles of length 1, i.e., $\left.\ell_{i}=\ell_{i-1}+1\right)$.

Assume that $t_{j}<t_{j+1}$, where $j<n$, which is is automatically true when $j=\ell_{i}$ for some i. There exists an i such that either $\ell_{i-1}+1 \leq j<\ell_{i}$ or $j=\ell_{i}$. Then either $\sigma\left(t_{j}\right)=t_{j+1}>t_{j}$ or $\sigma\left(t_{\ell_{i}}\right)=t_{\ell_{i-1}+1}>t_{\ell_{i}}$ if $\ell_{i}>\bar{\ell}_{i-1}+1$, or $\sigma\left(t_{\ell_{i}}\right)=t_{\ell_{i}}$ if $\ell_{i}=\ell_{i-1}+1$. So $\sigma\left(t_{j}\right) \geq t_{j}$ for all $j<n$ (it is also true for $j=n$). Conversely, assume that $\sigma\left(t_{j}\right) \geq t_{j}$. There exists an i such that either $\ell_{i-1}+1 \leq j<\ell_{i}$ or $j=\ell_{i}$. Then either $\sigma\left(t_{j}\right)=t_{j+1} \neq t_{j}$, i.e., $t_{j}<t_{j+1}$, or $t_{\ell_{i}}<t_{\ell_{i}+1}$ if $\ell_{i} \neq n$. It then follows that $\sigma\left(t_{j}\right) \geq t_{j}$ iff $j=n$ or $t_{j}<t_{j+1}$ for $j<n$.

Recall that $\operatorname{Asc}(\hat{\sigma})=\left\{j \in[n-1]: t_{j}<t_{j+1}\right\}=[n-1] \backslash \operatorname{Des}(\hat{\sigma})$. Then

$$
[n] \backslash \operatorname{Des}(\hat{\sigma})=\operatorname{Asc}(\hat{\sigma}) \cup\{n\}=\left\{j \in[n]: \sigma\left(t_{j}\right) \geq t_{j}\right\}
$$

Thus

$$
\begin{aligned}
n-\operatorname{des}(\hat{\sigma}) & =\left|\left\{j \in[n]: \sigma\left(t_{j}\right) \geq t_{j}\right\}\right| \\
& =\left|\left\{t_{j} \in[n]: \sigma\left(t_{j}\right) \geq t_{j}\right\}\right| \\
& =\mathrm{w}-\operatorname{exc}(\sigma) .
\end{aligned}
$$

Since $\sigma \mapsto \mathrm{cyc}(\sigma)$ is a bijection, we see that

$$
A_{n, k}=|\{\hat{\sigma}: \operatorname{des}(\hat{\sigma})=k\}|=|\{\sigma: \mathrm{w}-\operatorname{exc}(\sigma)=n-k\}| .
$$

Moreover, for each permutation $\pi=u_{1} u_{2} \ldots u_{n}$, let $\tilde{\pi}=v_{1} v_{2} \ldots v_{n}$, where $v_{i}=$ $n+1-u_{n+1-i}$. Note that π has $n-k$ weak exceedances iff π has k indices i such that $u_{i}<i$. Since $u_{i}<i$ iff $v_{n+1-i}>n+1-i$, we see that π has $n-k$ weak exceedances iff $\tilde{\pi}$ has k exceedances. Thus

$$
A_{n, k}=|\{\sigma: \mathrm{w}-\operatorname{exc}(\sigma)=n-k\}|=|\{\tilde{\sigma}: \operatorname{exc}(\tilde{\sigma})=k\}|
$$

Applying the formula above to $A_{n, n-k-1}$, we have

$$
A_{n, k}=A_{n, n-k-1}=\left|\left\{\sigma \in \mathfrak{S}_{n}: \mathrm{w}-\operatorname{exc}(\sigma)=k+1\right\}\right|
$$

4. q-ANALOGS

Let \mathbb{F}_{q} be a finite field of q elements. Let $V=\mathbb{F}_{q}^{n}$ be the n-dimensional vector space over \mathbb{F}_{q}. Given nonnegative integers $a_{1}, a_{2}, \ldots, a_{m}$ such that

$$
a_{1}+a_{2}+\cdots+a_{m}=n
$$

We denote by $\operatorname{Fl}\left(a_{1}, \ldots, a_{m}\right)$ the set of flags

$$
\{0\} \subseteq V_{1} \subseteq \cdots \subseteq V_{m} \subseteq V
$$

of length m such that $\operatorname{dim}\left(V_{i} / V_{i-1}\right)=a_{i}, 1 \leq i \leq m$, called the flag space of V of type $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$. The set of all flags of length m is denoted by Fl_{m}, called the flag space of V of length m. For $m=1$ and $a_{1}=k$, the set $\mathrm{Fl}(k)$ can be identified as the collection of all k-subspaces of \mathbb{F}_{q}^{n}, called the Grassmannian of k-subspaces of V, denoted $\operatorname{Gr}(V, k)$. The cardinality of $\operatorname{Gr}(V, k)$ is given by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:=\frac{\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{k-1}\right)}{\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{k-1}\right)}
$$

which is actually a polynomial, called the Gaussian polynomial of the q-analog of binomial coefficients. In general, we introduce the notations

$$
\begin{gathered}
{[n]_{q}:=1+q+\cdots+q^{n-1},} \\
{[n]_{q}!:=[n]_{q}[n-1]_{q} \cdots[2]_{q}[1]_{q} .}
\end{gathered}
$$

For nonnegative integers $a_{1}, a_{2}, \ldots, a_{m}$ such that $a_{1}+a_{2}+\cdots+a_{m}=n$, we define the q-analog of multinomial coefficient (or just q-multinomial coefficient)

$$
\left[\begin{array}{c}
n \tag{4.1}\\
\left.a_{1}, a_{2}, \ldots, a_{m}\right]_{q}:=\frac{[n]_{q}!}{\left[a_{1}\right]_{q}!\left[a_{2}\right]_{q}!\cdots\left[a_{m}\right]_{q}!} .
\end{array}\right.
$$

Let \mathcal{M} denote the vector space of all $n \times n$ matrices over \mathbb{F}_{q}. We denote by \mathcal{M}^{n} be the set of $n \times n$ matrices of rank n. For each $M \in \mathcal{M}$, we divide M into a block matrix of the form

$$
M=\left(\begin{array}{c}
M_{1} \\
\vdots \\
M_{m}
\end{array}\right)
$$

where M_{i} is an $a_{i} \times n$ matrix, $1 \leq i \leq m$. For sake of convenience, we write $M=\left(M_{1}, M_{2}, \ldots, M_{m}\right)$ in the row form. There is a canonical projection

$$
\pi: \mathcal{M} \rightarrow \operatorname{Fl}\left(a_{1}, \ldots, a_{m}\right)
$$

defined by

$$
\pi(M)=\{0\} \subseteq V_{1} \subseteq V_{2} \subseteq \cdots \subseteq V_{m} \subseteq V
$$

where V_{i} is the row space of the submatrix $\left(M_{1}, M_{2}, \ldots, M_{i}\right), 1 \leq i \leq m$. The restriction

$$
\pi: \mathcal{M}^{n} \rightarrow \operatorname{Fl}\left(a_{1}, \ldots, a_{m}\right)
$$

is surjective. Note that

$$
\begin{aligned}
\#\left(\mathcal{M}^{n}\right) & =\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{n-1}\right) \\
& =q^{n(n-1) / 2}\left(q^{n}-1\right)\left(q^{n-1}-1\right) \cdots(q-1) \\
& =q^{n(n-1) / 2}(q-1)^{n}[n]_{q}[n-1]_{q} \cdots[2]_{q}[1]_{q} \\
& =q^{n(n-1) / 2}(q-1)^{n}[n]_{q}!.
\end{aligned}
$$

For each $F \in \operatorname{Fl}\left(a_{1}, \ldots, a_{m}\right)$ in \mathcal{M}^{n}, the fiber $\pi^{-1}(F)$ in \mathcal{M}^{n} has the cardinality

$$
\begin{align*}
\#\left(\pi^{-1}(F)\right)= & \underbrace{\left(q^{a_{1}}-1\right) \cdots\left(q^{a_{1}}-q^{a_{1}-1}\right)}_{a_{1}} \times \\
& \underbrace{\left(q^{a_{1}+a_{2}}-q^{a_{1}}\right) \cdots\left(q^{a_{1}+a_{2}}-q^{a_{1}+a_{2}-1}\right)}_{a_{2}} \times \\
& \cdots \times \underbrace{\left(q^{n}-q^{a_{1}+\cdots+a_{m-1}}\right) \cdots\left(q^{n}-q^{n-1}\right)}_{a_{m}} . \tag{4.2}
\end{align*}
$$

It follows that

$$
\begin{align*}
\#\left(\pi^{-1}(F)\right)= & q^{e} \underbrace{\left(q^{a_{1}}-1\right)\left(q^{a_{1}-1}-1\right) \cdots(q-1)}_{a_{1}} \times \\
& \underbrace{\left(q^{a_{2}}-1\right)\left(q^{a_{2}-1}-1\right) \cdots(q-1)}_{a_{2}} \times \\
& \cdots \times \underbrace{\left(q^{a_{m}}-1\right)\left(q^{a_{m}-1}-1\right) \cdots(q-1)}_{a_{m}}, \tag{4.3}
\end{align*}
$$

where

$$
\begin{aligned}
e= & {\left[1+2+\cdots+\left(a_{1}-1\right)\right]+\left[a_{1}+\left(a_{1}+1\right)+2+\cdots+\left(a_{1}+a_{2}-1\right)\right] } \\
& +\cdots+\left[\left(a_{1}+\cdots+a_{m-1}\right)+\left(a_{1}+\cdots+a_{m-1}+1\right)+\cdots+(n-1)\right] \\
= & n(n-1) / 2 .
\end{aligned}
$$

We then have

$$
\begin{aligned}
\#\left(\pi^{-1}(F)\right) & =q^{e} \prod_{i=1}^{m}(q-1)^{a_{i}}\left[a_{i}\right]_{q}\left[a_{i}-1\right]_{q} \cdots[2]_{q}[1]_{q} \\
& =q^{e}(q-1)^{\sum_{i=1}^{m} a_{i}} \prod_{i=1}^{m}\left[a_{i}\right]_{q}! \\
& =q^{e}(q-1)^{n}\left[a_{1}\right]_{q}!\left[a_{2}\right]_{q}!\cdots\left[a_{m}\right]_{q}!
\end{aligned}
$$

Since

$$
\#\left(\mathcal{M}^{n}\right)=\#\left(\operatorname{Fl}\left(a_{1}, \ldots, a_{m}\right)\right) \cdot \#\left(\pi^{-1}(F)\right)
$$

we obtain

$$
\#\left(\operatorname{Fl}\left(a_{1}, \ldots, a_{m}\right)\right)=\frac{[n]_{q}!}{\left[a_{1}\right]_{q}!\left[a_{2}\right]_{q}!\cdots\left[a_{m}\right]_{q}!}=\left[\begin{array}{c}
n \\
a_{1}, \ldots, a_{m}
\end{array}\right]_{q}
$$

We shall see that $\left[\begin{array}{c}n \\ a_{1}, \ldots, a_{m}\end{array}\right]_{q}$ is a polynomial of q.
Let $B\left(a_{1}, \ldots, a_{m}\right)$ denote a subgroup of the general linear group $\operatorname{GL}\left(n, \mathbb{F}_{q}\right)$ of $n \times n$ invertible matrices over \mathbb{F}_{q}, consisting of the block lower triangular matrices of the form

$$
A=\left(\begin{array}{cccc}
A_{11} & 0 & \cdots & 0 \\
A_{21} & A_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
A_{m 1} & A_{m 2} & \cdots & A_{m m}
\end{array}\right)
$$

where $A_{k l}$ are $a_{k} \times a_{l}$ matrices and $A_{k k}$ are invertible. Then $B\left(a_{1}, \ldots, a_{m}\right)$ is a subgroup of $\operatorname{GL}\left(n, \mathbb{F}_{q}^{n}\right)$, acting on \mathcal{M}^{n} on the left by multiplication, i.e.,

$$
A M=A\left(\begin{array}{c}
M_{1} \\
\vdots \\
M_{m}
\end{array}\right)=\left(\begin{array}{c}
M_{1}^{\prime} \\
\vdots \\
M_{m}^{\prime}
\end{array}\right)=M^{\prime}
$$

where $M_{k}^{\prime}=A_{k 1} M_{1}+\cdots+A_{k k} M_{k}, 1 \leq k \leq m$. The projection $\pi: \mathcal{M}^{n} \rightarrow$ $\mathrm{Fl}\left(a_{1}, \ldots, a_{m}\right)$ induces a quotient bijection

$$
\pi: \mathcal{M}^{n} / B\left(a_{1}, \ldots, a_{m}\right) \rightarrow \operatorname{Fl}\left(a_{1}, \ldots, a_{m}\right)
$$

Let $\operatorname{Row}\left(M_{1}, \ldots, M_{k}\right), \operatorname{Row}\left(M_{1}^{\prime}, \ldots, M_{k}^{\prime}\right)$ denote the row spaces of the submatrices

$$
\left(\begin{array}{c}
M_{1} \\
\vdots \\
M_{k}
\end{array}\right), \quad\left(\begin{array}{c}
M_{1}^{\prime} \\
\vdots \\
M_{k}^{\prime}
\end{array}\right)
$$

respectively. It is clear that $\operatorname{Row}\left(M_{1}^{\prime}, \ldots, M_{k}^{\prime}\right) \subseteq \operatorname{Row}\left(M_{1}, \ldots, M_{k}\right)$. Since A is invertible and $A^{-1} \in B\left(a_{1}, \ldots, a_{m}\right)$, we see that $\operatorname{Row}\left(M_{1}^{\prime}, \ldots, M_{k}^{\prime}\right)=\operatorname{Row}\left(M_{1}, \ldots, M_{k}\right)$. So the quotient map is well-defined.

The surjectivity is trivial. For injectivity, assume that $\pi(M)=\pi\left(M^{\prime}\right)$ for two matrices M and M^{\prime}, i.e.,

$$
\begin{equation*}
\operatorname{Row}\left(M_{1}, \ldots, M_{k}\right)=\operatorname{Row}\left(M_{1}^{\prime}, \ldots, M_{k}^{\prime}\right), \quad 1 \leq k \leq m \tag{4.4}
\end{equation*}
$$

We need to show that there exists a matrix $A \in B\left(a_{1}, \ldots, a_{m}\right)$ such that $A M=M^{\prime}$.
Since $\operatorname{Row}\left(M_{1}\right)=\operatorname{Row}\left(M_{1}^{\prime}\right)$, there exits an invertible matrix A_{11} such that $A_{11} M_{1}=M_{1}^{\prime}$. Next, since $\operatorname{Row}\left(M_{1}, M_{2}\right)=\operatorname{Row}\left(M_{1}^{\prime}, M_{2}^{\prime}\right)$, then each row of M_{2}^{\prime} is a linear combination of rows of M_{1} and M_{2}. This means that there exit matrices A_{21} and A_{22} such that $M_{2}^{\prime}=A_{21} M_{1}+A_{22} M_{2}$. We then have

$$
\binom{M_{1}^{\prime}}{M_{2}^{\prime}}=\left(\begin{array}{cc}
A_{11} & 0 \\
A_{21} & A_{22}
\end{array}\right)\binom{M_{1}}{M_{2}}
$$

where A_{22} must be invertible. Continue this procedure, one obtains matrices $A_{k l}$ $(1 \leq l \leq k)$ such that $M_{k}^{\prime}=\sum_{l=1}^{k} A_{k l} M_{l}$ and $A_{k k}$ are invertible, $1 \leq k \leq m$. Set $A=\left[A_{k l}\right]$, where $A_{k l}=0$ for $k<l$. Then $A \in B\left(a_{1}, \ldots, a_{m}\right)$ and $A M=M^{\prime}$. This means that $\pi: \mathcal{M}^{n} / B\left(a_{1}, \ldots, a_{m}\right) \rightarrow \mathrm{Fl}\left(a_{1}, \ldots, a_{m}\right)$ is a bijection.

A reduced block echelon matrix of type $\left(a_{1}, \ldots, a_{m}\right)$ is a block $n \times n$ matrix

$$
E=\left(\begin{array}{c}
E_{1} \\
\vdots \\
E_{m}
\end{array}\right)
$$

where each E_{k} is a reduced row echelon matrix justified from right and bottom, pivot positions are in different rows and different columns, and all entries below a pivot position are zero.

Each non-singular $n \times n$ block matrix M of type $\left(a_{1}, \ldots, a_{m}\right)$ can be converted into a reduced block echelon matrix of the same type by multiplying a matrix $A \in B\left(a_{1}, \ldots, a_{m}\right)$ to the left of M. In other words, each orbit of $\mathcal{M}^{n} / B\left(a_{1}, \ldots, a_{m}\right)$ has a representative of reduced block echelon matrix, which can be obtained as follows.

Step 1: Find the rightmost nonzero column of M_{1}, called the pivot column of Block 1; the bottom position of the pivot column is called a pivot position. If the entry of the pivot position is zero, interchange the bottom row of M_{1} and one row of M_{1} whose entry in the pivot column is nonzero; now the pivot entry is nonzero. Reduce the nonzero pivot entry to 1 and the entries above it in M_{1} to zero by row operations. Next, cover the the bottom row of Block 1 to obtain a matrix M_{1}^{\prime}; repeat the procedure until all rows of Block 1 are covered. We then obtain a reduced row echelon matrix E_{1} of M_{1}. There exists an invertible matrix A_{11} such that $E_{1}=A_{11} M_{1}$.

Step 2: Reduce all entries of $M_{k}(2 \leq k \leq m)$ below the pivot positions of E_{1}, \ldots, E_{k-1} to zero by multiplying matrices $A_{k 1}, \ldots, A_{k(k-1)}$ to E_{1}, \ldots, E_{k-1} respectively. We then obtain a block matrix

$$
M^{\prime}=\left(\begin{array}{c}
E_{1} \\
\vdots \\
E_{k-1} \\
M_{k}^{\prime} \\
\vdots \\
M_{m}^{\prime}
\end{array}\right)
$$

Cover the blocks E_{1}, \ldots, E_{k-1} of M^{\prime} and apply Step 1 to the block M_{k}^{\prime}.
Step 3: Repeat until every block becomes reduced row echelon matrix. Finally, a reduced block echelon matrix $E=\left(E_{1}, \ldots, E_{m}\right)$ is obtained.

There are n pivot positions in a block row echelon form E, located in distinct rows and distinct columns. Entries beyond each pivot position on the right and below are zero. Entries of a pivot column in the block of the pivot position are zero, except the pivot entry, which is 1 .

Let the pivot position of the i th row be located in $\left(i, s_{i}\right)$. Then the reduced block echelon matrix E can be indexed by a permutation

$$
\sigma=s_{1} s_{2} \ldots s_{n}, \quad \sigma(i)=s_{i}
$$

Let $b_{k}=a_{1}+\cdots+a_{k}, 1 \leq k \leq m$. Recall that $\operatorname{Des}(\sigma)$ is the set of indices where σ decreases. Note that σ increases strictly at integers inside intervals $\left(b_{k-1}, b_{k}\right)$ for each block M_{k} of M. The descents of σ can only occur at the indices b_{k} of each block. So we have

$$
\begin{equation*}
\operatorname{Des}(\sigma) \subseteq\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}, \quad b_{k}=a_{1}+\cdots+a_{k} \tag{4.5}
\end{equation*}
$$

Conversely, each permutation σ satisfying (4.5) determines a block echelon form.
Next we show the injectivity of π on the reduced block echelon matrices of type $\left(a_{1}, \ldots, a_{m}\right)$. Given two reduced block echelon matrices E, E^{\prime}. If $\pi(E)=\pi\left(E^{\prime}\right)$, i.e.,

$$
\begin{equation*}
\operatorname{Row}\left(E_{1}, \ldots, E_{k}\right)=\operatorname{Row}\left(E_{1}^{\prime}, \ldots, E_{k}^{\prime}\right), \quad 1 \leq k \leq m \tag{4.6}
\end{equation*}
$$

we claim that $E=E^{\prime}$. Suppose $E \neq E^{\prime}$. We may assume that $E_{1}=E_{1}^{\prime}, \ldots$, $E_{k-1}=E_{k-1}^{\prime}$, and $E_{k} \neq E_{k}^{\prime}$.

Let F, F^{\prime} be matrices obtained from E, E^{\prime} respectively by row operations to reduce all entries above each pivot position in the first b_{k} rows. And let $\boldsymbol{v}_{i}, \boldsymbol{v}_{i}^{\prime}$ denote the i th rows of F, F^{\prime} respectively.

Suppose that E_{k}, E_{k}^{\prime} have distinct pivot positions. Let l be the largest row index of E_{k}, E_{k}^{\prime} such that $s_{l} \neq s_{l}^{\prime}$. Assume $s_{l}<s_{l}^{\prime}$. Then $s_{i}<s_{l}^{\prime}$ for $i \in\left(b_{k-1}, l\right]$; and
$s_{i}=s_{i}^{\prime}$ for $i \in\left[1, b_{k-1}\right] \cup\left(l, b_{k}\right]$. In particular, $s_{i} \neq s_{l}^{\prime}$ for all $i=1, \ldots, b_{k}$. Since (4.6), we have $\boldsymbol{v}_{l}^{\prime}=\sum_{i=1}^{b_{k}} c_{i} \boldsymbol{v}_{i}$, i.e.,

$$
\begin{equation*}
v_{l j}^{\prime}=\sum_{i=1}^{b_{k}} c_{i} v_{i j}, \quad j=1, \ldots, n \tag{4.7}
\end{equation*}
$$

Note that $v_{l j}^{\prime}=0$ for all $j>s_{l}^{\prime}$ by the echelon property of F^{\prime}. If $s_{i_{0}}>s_{l}^{\prime}$ for a row index $i_{0} \in\left[1, b_{k}\right]$, then $s_{i_{0}}^{\prime}=s_{i_{0}}>s_{l}^{\prime}$, consequently, $v_{l s_{i_{0}}}^{\prime}=0$ by the echelon property of F^{\prime}. Note that $v_{i s_{i_{0}}}=\delta_{i i_{0}}$ for $i \in\left[1, b_{k}\right]$ by the echelon property of F. Set $j=s_{i_{0}}$ in (4.7), we see that

$$
0=v_{l s_{i_{0}}}^{\prime}=\sum_{i=1}^{b_{k}} c_{i} v_{i s_{i_{0}}}=c_{i_{0}}
$$

It follows that (4.7) becomes

$$
\begin{equation*}
v_{l j}^{\prime}=\sum_{1 \leq i \leq b_{k}, s_{i}<s_{l}^{\prime}} c_{i} v_{i j}, \quad 1 \leq j \leq n . \tag{4.8}
\end{equation*}
$$

Note that $v_{l s_{l}^{\prime}}^{\prime}=1$ by the echelon property of F^{\prime}, and $v_{i s_{l}^{\prime}}=0$ for all i such that $s_{i}<s_{l}^{\prime}$ by the echelon property of F. Set $j=s_{l}^{\prime}$ in (4.8); we obtain

$$
1=v_{l s_{l}^{\prime}}^{\prime}=\sum_{1 \leq i \leq b_{k}, s_{i}<s_{l}^{\prime}} c_{i} v_{i s_{l}^{\prime}}=0
$$

which is a contradiction. We must have $s_{l} \geq s_{l}^{\prime}$. Likewise, $s_{l}^{\prime} \geq s_{l}$. Hence $s_{l}=s_{l}^{\prime}$, contradicting to the previous assumption. This shows that E, E^{\prime} have the same pivot positions in the first b_{k} rows.

Now let l be the largest row index of E_{k}, E_{k}^{\prime} such that their l th rows are distinct. Recall (4.6) again; there exists a $b_{k} \times b_{k}$ matrix $A_{k} \in B\left(a_{1}, \ldots, a_{k}\right)$ such that $\left(\begin{array}{c}E_{1}^{\prime} \\ \vdots \\ E_{k}^{\prime}\end{array}\right)=A_{k}\left(\begin{array}{c}E_{1} \\ \vdots \\ E_{k}\end{array}\right)$. The two linear systems

$$
\left(\begin{array}{c}
E_{1} \\
\vdots \\
E_{k}
\end{array}\right) \boldsymbol{x}=\mathbf{0}, \quad\left(\begin{array}{c}
E_{1}^{\prime} \\
\vdots \\
E_{k}^{\prime}
\end{array}\right) \boldsymbol{x}=\mathbf{0}
$$

have the same solution space. So do the two linear systems

$$
\left(\begin{array}{c}
F_{1} \tag{4.9}\\
\vdots \\
F_{k}
\end{array}\right) \boldsymbol{x}=\mathbf{0}, \quad\left(\begin{array}{c}
F_{1}^{\prime} \\
\vdots \\
F_{k}^{\prime}
\end{array}\right) \boldsymbol{x}=\mathbf{0}
$$

We construct a particular solution \boldsymbol{x} of the first system in (4.9), which is not a solution of the second system in (4.9), resulting a contradiction.

Since $v_{l} \neq v_{l}^{\prime}$ and $v_{l s_{l}}=v_{l s_{l}}^{\prime}=1$, let $j_{0} \in\left[1, s_{l}\right)$ be the first column index such that $v_{l j_{0}} \neq v_{l j_{0}}^{\prime}$. Notice that $j_{0} \neq s_{i}$ for all $i \in\left[1, b_{k}\right]$ by the echelon property of F, F^{\prime}. A typical solution \boldsymbol{x} of the first system in (4.9) is given by

$$
x_{j}=\left\{\begin{array}{cl}
1 & \text { if } j=j_{0} \\
-v_{i j_{0}} & \text { if } j=s_{i}, 1 \leq i \leq b_{k}, \quad j=1, \ldots, n . \\
0 & \text { otherwise }
\end{array}\right.
$$

It is clear that such an \boldsymbol{x} is not a solution of the second system in (4.9), for the l th equation of the second system is not satisfied. This is a contradiction.

Now each flag $\{0\} \subseteq V_{1} \subseteq V_{2} \subseteq \cdots \subseteq V_{m}=V$ of type $\left(a_{1}, \ldots, a_{m}\right)$ is identified as one and only one of a reduced block echelon matrix of type $\left(a_{1}, \ldots, a_{m}\right)$ with certain values for each $*$. The space $\operatorname{Fl}\left(a_{1}, \ldots, a_{m}\right)$ is then decomposed into a disjoint union of affine subspaces corresponding to reduced block echelon forms.

Each reduced block echelon form E can be indexed by a permutation $\sigma=$ $s_{1} s_{2} \ldots s_{n}$ of $\{1,2, \ldots, n\}$, where $\left(i, s_{i}\right)$ is the pivot position of the i th row in E. For each star position (i, j) of E, we have $j<s_{i}$, and there exists a unique $k>i$ such (k, j) is a pivot position; so $s_{k}:=j<s_{i}$, i.e., $\left(s_{i}, s_{k}\right)$ is an inversion of σ. Conversely, if $\left(s_{i}, s_{k}\right)$ is an inversion, i.e., $i<k$ and $s_{i}>s_{k}$, then the row i and the row k of E cannot be in the same block, thus $\left(i, s_{k}\right)$ must be a star position of E. So the number of inversions of the permutation σ equals the number of star positions of the reduced block echelon form E.

For example, given type $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=(3,2,2,2)$, its reduced block echelon form is

$$
\left(\begin{array}{l}
E_{1} \\
E_{2} \\
E_{3} \\
E_{4}
\end{array}\right)=\left(\begin{array}{lllllllll}
* & * & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
* & * & 0 & * & * & 1 & 0 & 0 & 0 \\
* & * & 0 & * & * & 0 & * & 1 & 0 \\
\hline * & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
* & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\hline * & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
* & 0 & 0 & 0 & 0 & 0 & * & 0 & 1 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

where each $*$ position can be filled with arbitrary values of \mathbb{F}_{q}. Notice that there is no star position in the last block. The affine subspace with the reduced block echelon form above is indexed by the permutation $\sigma=368245917$, whose inversion table is $\left(a_{1}, \ldots, a_{9}\right)=(2,4,5,1,1,1,2,0,0)$. The number of star positions in its reduced block echelon form is the number of inversions of σ, i.e.,

$$
\operatorname{inv}(\sigma)=\operatorname{inv}(368245917)=16
$$

We have proved the following theorem.
Theorem 4.1. Given nonnegative integers a_{1}, \ldots, a_{m} such that $a_{1}+\cdots+a_{m}=$ n. Let $\mathfrak{S}_{n}\left(a_{1}, \ldots, a_{m}\right)$ denote the set of permutations σ of $[n]$ whose descent set satisfies

$$
\operatorname{Des}(\sigma) \subseteq\left\{a_{1}, a_{1}+a_{2}, \ldots, a_{1}+\cdots+a_{m}\right\}
$$

Then

$$
\sum_{\sigma \in \mathfrak{S}_{n}\left(a_{1}, \ldots, a_{m}\right)} q^{\operatorname{inv}(\sigma)}=\left[\begin{array}{c}
n \tag{4.10}\\
a_{1}, \ldots, a_{m}
\end{array}\right]_{q}
$$

Let \mathbb{Z}_{+}be the set of positive integers. Let \mathbb{F}_{q}^{∞} denote the vector space of all functions from \mathbb{Z}_{+}to \mathbb{F}_{q} with finite support. We write each vector $\boldsymbol{v} \in \mathbb{F}_{q}^{\infty}$ as an infinite tuple

$$
\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}, 0,0, \ldots\right)
$$

Given nonnegative integers a_{1}, \ldots, a_{m}. Denote by $\mathrm{Fl}_{\infty}\left(a_{1}, \ldots, a_{m}\right)$ the set of flags

$$
\{0\}=V_{0} \subseteq V_{1} \subseteq V_{2} \subseteq \cdots \subseteq V_{m} \subseteq \mathbb{F}_{q}^{\infty}
$$

of length m, such that $\operatorname{dim}\left(V_{i} / V_{i-1}\right)=a_{i}, 1 \leq i \leq m$.
Let $\mathcal{M}_{n, \infty}$ denote the vector space of $n \times \infty$ matrices over \mathbb{F}_{q}, having only finitely many nonzero entries. Let $\mathcal{M}_{n, \infty}^{n}$ denote the subset of $\mathcal{M}_{n, \infty}$, consisting of matrices of rank n. Each member of $\mathcal{M}_{n, \infty}$ can be written as a block matrix

$$
M=\left(\begin{array}{c}
M_{1} \\
M_{2} \\
\vdots \\
M_{m}
\end{array}\right) .
$$

where M_{i} is an $a_{i} \times \infty$ submatrix. There is canonical projection

$$
\pi: \mathcal{M}_{n, \infty}^{n} \rightarrow \mathrm{Fl}_{\infty}\left(a_{1}, \ldots, a_{m}\right), \quad M \mapsto V_{0} \subseteq V_{1} \subseteq \cdots \subseteq V_{m}
$$

where $V_{0}=\{0\}, V_{i}=\operatorname{Row}\left(M_{1}, \ldots, M_{i}\right), 1 \leq i \leq m$. The parabolic group $B\left(a_{1}, \ldots, a_{m}\right)$ acts on $\mathcal{M}_{n, \infty}^{n}$ on the left by multiplication. We shall see that the orbit space $\mathcal{M}_{n, \infty}^{n} / B\left(a_{1}, \ldots, a_{m}\right)$ is isomorphic to the flag space $\mathrm{Fl}_{\infty}\left(a_{1}, \ldots, a_{m}\right)$.

We denote by \mathfrak{S}_{∞} the group of all bijections $\sigma: \mathbb{Z}_{+} \rightarrow \mathbb{Z}_{+}$such that $\sigma(k)=k$ for large enough $k \in \mathbb{Z}_{+}$, i.e., there exists an integer N such that $\sigma(k)=k$ for all $k>N$. For each $\sigma \in \mathfrak{S}_{\infty}$, the inversion set of σ is the collection

$$
\operatorname{Inv}(\sigma)=\left\{\left(s_{i}, s_{j}\right): i<j \text { and } s_{i}>s_{j}\right\}
$$

and $\operatorname{inv}(\sigma)=|\operatorname{Inv}(\sigma)|$. Given nonnegative integers $a_{1}, a_{2}, \ldots, a_{m}$; we denote by $\mathfrak{S}_{\infty}\left(a_{1}, \ldots, a_{m}\right)$ the set of permutations $\sigma \in \mathfrak{S}_{\infty}$ such that

$$
\operatorname{Des}(\sigma) \subseteq\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}
$$

where $b_{i}=a_{1}+\cdots+a_{i}, \quad 1 \leq i \leq m$.
For example, for $\left(a_{1}, a_{2}, a_{3}\right)=(3,2,2)$ we have $\left(b_{1}, b_{2}, b_{3}\right)=(3,5,7)$. For the permutation $\sigma=s_{1} s_{2} \ldots s_{n} \ldots$ with $s_{1} s_{2} \ldots s_{9}=368472915$ and $s_{i}=i$ for $i \geq 10$, we have

$$
\operatorname{Inv}(\sigma)=\#\left\{(i, j) \in \mathbb{Z}_{+}^{2}: i<j, s_{i}>s_{j}\right\}
$$

$\operatorname{inv}(\sigma)=19$, and $\operatorname{Des}(\sigma)=\{3,5,7\}$.

$$
\left(\begin{array}{ccccccccc|cc}
* & * & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \tag{4.11}\\
* & * & 0 & * & * & 1 & 0 & 0 & 0 & 0 & \cdots \\
* & * & 0 & * & * & 0 & * & 1 & 0 & 0 & \cdots \\
\hline * & * & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
* & * & 0 & 0 & * & 0 & 1 & 0 & 0 & 0 & \cdots \\
\hline * & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
* & 0 & 0 & 0 & * & 0 & 0 & 0 & 1 & 0 & \cdots \\
\hline \hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \cdots \\
\vdots & I_{\infty}
\end{array}\right)
$$

Definition 4.2. For nonnegative integers a_{1}, \ldots, a_{m}, the q-analog of multinomial coefficient of infinite type $\left(\infty ; a_{1}, \ldots, a_{m}\right)$ is

$$
\left[\begin{array}{c}
\infty \\
a_{1}, \ldots, a_{m}
\end{array}\right]_{q}:=\prod_{i=1}^{m} \frac{1}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{a_{i}}\right)}
$$

Theorem 4.3. For non-negative integers a_{1}, \ldots, a_{m}, let $\mathfrak{S}_{\infty}\left(a_{1}, \ldots, a_{m}\right)$ denote the set of bijections $\sigma: \mathbb{Z}_{+} \rightarrow \mathbb{Z}_{+}$such that $\sigma(k)=k$ for k large enough. Then

$$
\sum_{\sigma \in \mathfrak{S}_{\infty}\left(a_{1}, \ldots, a_{m}\right)} q^{\operatorname{inv}(\sigma)}=\left[\begin{array}{c}
\infty \tag{4.12}\\
a_{1}, \ldots, a_{m}
\end{array}\right]_{q}
$$

Proof. Fix a permutation $\sigma=s_{1} s_{2} \cdots \in \mathfrak{S}_{\infty}\left(a_{1}, \ldots, a_{m}\right)$. Let $\left(1, s_{1}\right), \ldots,\left(a_{1}, s_{a_{1}}\right)$ denote the pivot positions of the echelon form E_{1} for the first block. The number of stars in E_{1} on the left of the s_{1} th column is $k_{1} a_{1}$, where $k_{1} \geq 0$. The number of stars in E_{1} between the columns s_{1} and s_{2} is $k_{2}\left(a_{1}-1\right)$, where $k_{2} \geq 0$. And the number of stars in E_{1} between the columns $s_{a_{1}-1}$ and $s_{a_{1}}$ is $k_{a_{1}} \geq 0$. So the total number of stars in E_{1} is $k_{1} a_{1}+k_{2}\left(a_{2}-1\right)+\cdots+k_{a_{1}-1} \cdot 2+k_{a_{1}} \cdot 1$. Likewise, the total number of stars in the echelon form E_{i} of the i th block is

$$
k_{i 1} a_{i}+k_{i 2}\left(a_{i}-1\right)+\cdots+k_{i\left(a_{i}-1\right)} \cdot 2+k_{i a_{i}} \cdot 1 .
$$

The left-hand side of (4.12) becomes

$$
\begin{aligned}
\mathrm{LHS} & =\sum_{\left[k_{i j_{i} \geq 0} \geq 0\right]_{1 \leq i \leq m, 1 \leq j_{i} \leq a_{i}}}^{\prod_{i=1}^{m} \prod_{j_{i}=1}^{a_{i}} q^{k_{i j_{i}}\left(a_{i}-j_{i}+1\right)}} \underset{ }{ }=\prod_{i=1}^{m} \prod_{j_{i}=1}^{a_{i}} \sum_{k_{i j_{i}}=0}^{\infty} q^{k_{i j_{i}}\left(a_{i}-j_{i}+1\right)} \\
& =\prod_{i=1}^{m} \prod_{j_{i}=1}^{a_{i}} \frac{1}{1-q^{a_{i}-j_{i}+1}}
\end{aligned}
$$

5. Stirling Numbers

5.1. Stirling numbers of the first kind.

Definition 5.1. The Stirling numbers of the first kind are the numbers $s_{n, k}$ determined by the expansion

$$
[x]_{(n)}=\sum_{k=0}^{n} s_{n, k} x^{k}, \quad n \geq k \geq 0
$$

for $n \geq 1$ and with $s_{0,0} \equiv 1$.
Proposition 5.2. The Stirling numbers of the first kind $s_{n, k}$ satisfy the recurrence relation:

$$
\begin{cases}s_{n, n}=1 & \text { for } n \geq 0 \tag{5.1}\\ s_{n, 0}=0 & \text { for } n \geq 1 \\ s_{n+1, k}=s_{n, k-1}-n s_{n, k} & \text { for } n \geq k \geq 1\end{cases}
$$

Proof. Expanding the falling factorial $[x]_{(n)=} x(x-1) \cdots(x-n+1)$ for $n \geq 1$, it is clear that $s_{n, n}=1$ and $s_{n, 0}=0$. Since

$$
\begin{aligned}
\sum_{k=0}^{n+1} s_{n+1, k} x^{k} & =[x]_{(n+1)}=[x]_{(n)}(x-n) \\
& =\sum_{k=0}^{n} s_{n, k} x^{k+1}-n \sum_{k=0}^{n} s_{n, k} x^{k} \\
& =\sum_{k=1}^{n+1} s_{n, k-1} x^{k}-\sum_{k=0}^{n} n s_{n, k} x^{k},
\end{aligned}
$$

we see that $s_{n+1, k}=s_{n, k-1}-n s_{n, k}$ for $n \geq k \geq 1$.

Exercise 3.

$$
s_{n+1, k}=\sum_{i=0}^{n}(-1)^{i}[n]_{(i)} s_{n, k-1}, \quad n \geq k \geq 1
$$

Corollary 5.3. The numbers $a_{n, k}:=(-1)^{n-k} c_{n, k}$ satisfy the same recurrence relation (5.1) for the Stirling numbers of the first kind $s_{n, k}$. Thus

$$
s_{n, k}=(-1)^{n-k} c_{n, k}
$$

and the absolute value $\left|s_{n, k}\right|$ counts the number of permutations of an n-set with exactly k cycles.

Proof. Obviously, $a_{0,0}=1$, and $a_{n, 0}=0, a_{n, n}=1$ for all $n \geq 1$. For $n \geq k \geq 1$, we have

$$
\begin{aligned}
a_{n+1, k} & =(-1)^{n+1-k} c_{n+1, k} \\
& =(-1)^{n-k+1} c_{n, k-1}-n(-1)^{n-k} c_{n, k} \\
& =a_{n, k-1}-n a_{n, k} .
\end{aligned}
$$

Proposition 5.4.

$$
[x]^{(n)}=\sum_{k=0}^{n} c_{n, k} x^{k}=\sum_{k=0}^{n}\left|s_{n, k}\right| x^{k} .
$$

Proof. By the Reciprocity Law for the rising factorial function and falling factorial function, we have

$$
\begin{aligned}
{[x]^{(n)} } & =(-1)^{n}[-x]_{n}=(-1)^{n} \sum_{k=0}^{n} s_{n, k}(-x)^{k} \\
& =\sum_{k=0}^{n}(-1)^{n-k} s_{n, k} x^{k}=\sum_{k=0}^{n} c_{n, k} x^{k} .
\end{aligned}
$$

5.2. Stirling numbers of the second kind.

Definition 5.5. The Stirling number of the second kind $S_{n, k}$ is the number of ways to partition an n-set into k nonempty subsets. We take convention $S_{0,0}=1$ and $S_{n, 0}=1$ for all $n \geq 1$.

Proposition 5.6. The Stirling numbers of the second kind $S_{n, k}$ are given by

$$
S_{n, k}=\frac{1}{k!} \sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i} i^{n}, \quad n \geq k \geq 0
$$

Proof. The formula follows from the identity

$$
|\operatorname{Sur}(N, K)|=k!S_{n, k},
$$

where N and K are finite sets with $|N|=n$ and $|K|=k$.

Proposition 5.7. The numbers $S_{n, k}$ satisfy the recurrence relation:

$$
\begin{cases}S_{0,0}=S_{n, n}=1 & \text { for } n \geq 0 \tag{5.2}\\ S_{n, 0}=0 & \text { for } n \geq 1 \\ S_{n, 1}=1 & \text { for } n \geq 1 \\ S_{n+1, k}=S_{n, k-1}+k S_{n, k} & \text { for } n \geq k \geq 1\end{cases}
$$

Proof. The initial conditions $S_{n, 1}=S_{n, n}=1$ for $n \geq 1$ are obvious. As for the recurrence relation, consider the set of all partitions of an $(n+1)$-set N into k non-empty subsets; there $S_{n+1, k}$ such partitions. Let w be an element of N. We divide these partitions into two kinds:
(a) Partitions that the singleton set $\{w\}$ is a block. There $S_{n, k-1}$ such partitions.
(b) Partitions that w is contained in a block of at least two elements. Such partitions can be obtained from the partitions of the set $N-\{w\}$ into k blocks by joining w into any of the k blocks. There are $k S_{n, k}$ such partitions.

Proposition 5.8. The sequence $\left\{S_{n, k} \mid 0 \leq k \leq n\right\}$ is unimodal for all $n \geq 0$. In fact, set $M(n)=\max \left\{k \mid S_{n, k}=\max \right\}$. The sequence $\left\{S_{n, k}\right\}$ has the one of the following two types:
(1) $S_{n, 0}<s_{n, 1}<\cdots<S_{n, M(n)}>S_{n, M(n)+1}>\cdots>S_{n, n}$,
(2) $S_{n, 0}<s_{n, 1}<\cdots<S_{n, M(n)-1}=S_{n, M(n)}>\cdots>S_{n, n}$.

Proposition 5.9.

$$
x^{n}=\sum_{k=0}^{n} S_{n, k}[x]_{k}
$$

Proof. For finite sets N and X with $|N|=n$ and $|X|=x$, we have

$$
\operatorname{Map}(N, X)=\bigsqcup_{S \subset X} \operatorname{Sur}(N, S)
$$

Then

$$
\begin{aligned}
x^{n} & =|\operatorname{Map}(N, X)| \\
& =\sum_{S \subset X}|\operatorname{Sur}(N, S)| \\
& =\sum_{k=0}^{n}\binom{x}{k} k!S_{n, k} \\
& =\sum_{k=0}^{n} S_{n, k}[x]_{(k)} .
\end{aligned}
$$

Theorem 5.10. The Stirling inversion formula:

$$
\begin{align*}
{[x]_{(n)} } & =\sum_{k=0}^{n} s_{n, k} x^{k}, \tag{5.3}\\
x^{n} & =\sum_{k=0}^{n} S_{n, k}[x]_{(k)} . \tag{5.4}
\end{align*}
$$

Theorem 5.11.

$$
\sum_{k=0}^{n} s_{n, k} S_{k, m}=\sum_{k=0}^{n} S_{n, k} s_{k, m}=\delta_{n, m}
$$

Proposition 5.12.

$$
S_{n+1, k}=\sum_{i=1}^{n}\binom{n}{i} S_{i, k-1} .
$$

Exercise 4.

$$
\sum_{n=k}^{\infty} \frac{S_{n, k}}{n!} t^{n}=\frac{\left(e^{t}-1\right)^{k}}{k!}
$$

5.3. Lah Numbers.

Definition 5.13. The Lah numbers $L_{n, k}$ are defined by the identity

$$
[-x]_{(n)}=\sum_{k=0}^{n} L_{n, k}[x]_{(k)}, \quad n \geq k \geq 0
$$

with convention $L_{0,0}=1$.
Theorem 5.14. The Lah inversion formula:

$$
\begin{align*}
{[-x]_{(n)} } & =\sum_{k=0}^{n} L_{n, k}[x]_{(k)}, \tag{5.5}\\
{[x]_{(n)} } & =\sum_{k=0}^{n} L_{n, k}[-x]_{(k)} . \tag{5.6}
\end{align*}
$$

Proposition 5.15. The numbers $L_{n, k}$ satisfy the recurrence relation:

$$
\begin{cases}L_{n, n}=(-1)^{n} & \text { for } n \geq 0 \tag{5.7}\\ L_{n, 0}=0 & \text { for } n \geq 1 \\ L_{n+1, k}=-L_{n, k-1}-(n+k) L_{n, k} & \text { for } n \geq k \geq 1\end{cases}
$$

Proof. Since $[-x]_{(n)}=(-x)(-x-1)(-x-2) \cdots(-x-n+1)$, it follows that $L_{n, n}=(-1)^{n}$ and $L_{n, 0}=0$ (because there is no constant term) for all $n \geq 1$. The recursion formula follows from

$$
\begin{aligned}
\sum_{k=0}^{n+1} L_{n+1, k}[x]_{(k)} & =[-x]_{(n+1)}=(-x-n)[-x]_{(n)} \\
& =(-x-n) \sum_{k=0}^{n} L_{n, k}[x]_{(k)} \\
& =\sum_{k=0}^{n} L_{n, k}(-(x-k)-(n+k))[x]_{(k)} \\
& =-\sum_{k=0}^{n} L_{n, k}[x]_{k+1}-(n+k) \sum_{k=0}^{n} L_{n, k}[x]_{(k)} \\
& =-\sum_{k=1}^{n+1} L_{n, k-1}[x]_{(k)}-(n+k) \sum_{k=0}^{n} L_{n, k}[x]_{(k)} .
\end{aligned}
$$

Theorem 5.16. The number of ways of placing n distinguishable objects into k indistinguishable boxes with no box left empty and objects in each box are linearly ordered, is given by

$$
\begin{equation*}
d_{n, k}=\frac{n!}{k!}\binom{n-1}{k-1}, \quad n \geq k \geq 1 \tag{5.8}
\end{equation*}
$$

Proof. Let the k indistinguishable boxes be divided into the distinguishable boxes $B_{1}, B_{2}, \ldots, B_{k}$ (linearly ordered) by inserting the bars "|" in between. Now we place the n objects of an n-set N into the distinguishable boxes so that no one is empty. Each such placement can be obtained from the permutations

$$
a_{1 \wedge} a_{2 \wedge} a_{3 \wedge} a_{4 \wedge} \cdots \wedge a_{n-1 \wedge} a_{n}
$$

of N by inserting $k-1$ bars "|" in the $n-1$ positions indicated by " \wedge ". There are n ! permutations and $\binom{n-1}{k-1}$ ways of insertion. So there are $n!\binom{n-1}{k-1}$ ways of placing n distinct objects into k distinct boxes so that no one is empty. Since the boxes in question are indistinguishable, the answer in question is given by $\frac{n!}{k!}\binom{n-1}{k-1}$.
Proposition 5.17. The sequence $d_{n, k}$ defined by (5.8) satisfy the recurrence relation:

$$
\begin{cases}d_{n, n}=1 & \text { for } n \geq 0 \tag{5.9}\\ d_{n, 0}=0 & \text { for } n \geq 1 \\ d_{n+1, k}=d_{n, k-1}+(n+k) d_{n, k} & \text { for } \quad n \geq k \geq 1\end{cases}
$$

Proof. First, $d_{n+1,1}=(n+1)!=0+(n+1) \cdot n!=d_{n, 0}+d_{n, 1}$. For $n \geq k \geq 2$,

$$
\begin{aligned}
d_{n, k-1}+(n+k) d_{n, k}= & \frac{n!(n-1)!}{(k-1)!(k-2)!(n-k+1)!} \\
& +(n+k) \cdot \frac{n!(n-1)!}{k!(k-1)!(n-k)!} \\
= & \frac{(n+1)!n!}{k!(k-1)!(n-k+1)!}=d_{n+1, k} .
\end{aligned}
$$

Theorem 5.18. The Lah numbers can be expressed by

$$
L_{n, k}=(-1)^{n} \frac{n!}{k!}\binom{n-1}{k-1}, \quad n \geq k \geq 0
$$

and the absolute value $\left|L_{n, k}\right|$ counts the number of ways of placing n distinguishable objects into k indistinguishable boxes such that no boxes are empty and objects in each box are linearly ordered.

Proof. It follows from Proposition 5.17 that the sequence $b_{n, k}=(-1)^{n} d_{n, k}$ satisfies the same recurrence relation (5.7) of Lah numbers $L_{n, k}$. Hence $L_{n, k}=b_{n, k}$.

Proposition 5.19. The number of surjective monotone functions from a totally ordered n-set to a totally ordered r-set $=$ the number of ordered r-partitions of a positive integer n, and is equal to

$$
\binom{n-1}{r-1} .
$$

Proof. For $n=1$ it is obviously true. For $n>1$, the map

$$
\phi: n_{1}+n_{2}+\cdots+n_{r} \mapsto\left(n_{1}, n_{1}+n_{2}, \ldots, n_{1}+\cdots+n_{r-1}\right)
$$

from the set of r-partitions of n to the set of strict monotone words of length $r-1$ in $\{1,2, \ldots, n-1\}_{<}$is a bijection because it has the inverse

$$
\psi:\left(s_{1}, s_{2}, \ldots, s_{r-1}\right) \mapsto s_{1}+\left(s_{2}-s_{1}\right)+\cdots+\left(s_{r-1}-s_{r-2}\right)+\left(n-s_{r-1}\right)
$$

Then the two sets have the same cardinality; and the second set has cardinality $\binom{n-1}{r-1}$.

Proposition 5.20.

$$
\begin{equation*}
[x]^{(n)}=\sum_{k=0}^{n}\left|L_{n, k}\right|[x]_{(k)} . \tag{5.10}
\end{equation*}
$$

Proof. Let N and X be totally ordered sets such that $|N|=n$ and $|X|=x$. Then

$$
\operatorname{Mon}(N, X)=\bigsqcup_{S \subset X} \operatorname{Surj}-\operatorname{Mon}(N, S)
$$

Since $|\operatorname{Sur}-\operatorname{Mon}(N, S)|=\binom{n-1}{k-1}$ for $|S|=k$ by Proposition 5.19, we have

$$
\frac{[x]^{(n)}}{n!}=\sum_{S \subset X}|\operatorname{Sur}-\operatorname{Mon}(N, S)|=\sum_{k=0}^{n}\binom{x}{k}\binom{n-1}{k-1}=\sum_{k=0}^{n} \frac{1}{k!}\binom{n-1}{k-1}[x]_{(k)} .
$$

Therefore

$$
[x]^{(n)}=\sum_{k=0}^{n} \frac{n!}{k!}\binom{n-1}{k-1}[x]_{(k)}
$$

Exercise 5. Prove the following identities.
(1) $\sum_{k=m}^{n} L_{n, k} L_{k, m}=\delta_{n, m}$.
(2) $L_{n, m}=\sum_{k=m}^{n}(-1)^{k} s_{n, k} S_{k, m}$.

5.4. Bell Numbers.

Definition 5.21. The number of partitions of an n-set is called the Bell number and is denoted by B_{n} with $B_{0}=1$. In other words,

$$
B_{n}=\sum_{k=1}^{n} S_{n, k}
$$

Proposition 5.22. (Dobinski's Formula)

$$
B_{n}=\frac{1}{e} \sum_{k=0}^{\infty} \frac{k^{n}}{k!}
$$

Proposition 5.23. (Recursion for the Bell Numbers)

$$
\begin{gathered}
B_{0}=1, \\
B_{n+1}=\sum_{k=0}^{n}\binom{n}{k} B_{k} . \\
\sum_{n=0}^{\infty} \frac{B_{n}}{n!} t^{n}=e^{e^{t}-1}
\end{gathered}
$$

6. Bernoulli Numbers and Eulerian Numbers

Definition 6.1. The Bernoulli numbers B_{n} are defined by

$$
\frac{x}{e^{x}-1}=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} x^{n}
$$

Proposition 6.2. $B_{0}=1, B_{2 n+1}=0$ for $n \geq 1$, and

$$
B_{n}=-\frac{1}{n} \sum_{k=0}^{n-2}\binom{n}{k} B_{k}
$$

Definition 6.3. The Euler numbers $A_{n, k}$ are defined by

$$
x^{n}=\sum_{k=0}^{n}\binom{x+k-1}{n} A_{n, k}
$$

with $A_{0,0}=1$.
Proposition 6.4.

$$
A_{n, k}=\sum_{i=1}^{k}(-1)^{i}\binom{n+1}{i}(k-i)^{n}
$$

7. Catalan, Fibonacci, and Lucas Numbers

Definition 7.1. The Catalan numbers C_{n} are the positive integers

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}, \quad n \geq 0
$$

Proposition 7.2. (1) The number of diagonal triangulations of a labelled ngon is given by

$$
C_{n-2}
$$

(2) The number of associations to compute the noncommutative product $a_{1} a_{2} \cdots a_{n}$ is given by

$$
C_{n-1}
$$

(3) The number of increasing lattice path from $(0,0)$ to (n, n) such that all intermediate points (a, b) satisfying $a \leq b$, is given by

$$
2 C_{n}
$$

8. Grassmannian of ∞-Dimensional subspaces

Let \mathbb{K} be a field. Let $\mathbb{K}^{\infty}=\left\{\left(x_{1}, x_{2}, \ldots\right): x_{i} \in \mathbb{K}, x_{i}=0\right.$ for large enogh $\left.i\right\}$. For each $k \geq 0$, let $\operatorname{Gr}\left(k, \mathbb{K}^{\infty}\right)$ be the Grassmannian of k-subspaces of \mathbb{K}^{∞}. There are natural embeddings

$$
\operatorname{Gr}\left(k, \mathbb{K}^{\infty}\right) \hookrightarrow \operatorname{Gr}\left(k+l, \mathbb{K}^{\infty}\right), \quad V \mapsto \mathbb{K}^{l} \times V
$$

such that the following diagram is commutative:

So the collection $\mathrm{Gr}:=\left\{\operatorname{Gr}\left(k, \mathbb{K}^{\infty}\right) \mid k \in \mathbb{Z}_{\geq 0}\right\}$ is a directed system. We define the Grassmannian $\operatorname{Gr}\left(\infty, \mathbb{K}^{\infty}\right)$ as the algebraic limit of the directed system Gr. If $\operatorname{Gr}\left(k, \mathbb{K}^{\infty}\right)$ is identified with the image under the embedding, then $\operatorname{Gr}\left(k, \mathbb{K}^{\infty}\right)$ is a subset of $\operatorname{Gr}\left(k+1, \mathbb{K}^{\infty}\right)$ and

$$
\operatorname{Gr}\left(\infty, \mathbb{K}^{\infty}\right)=\bigcup_{k=0}^{\infty} \operatorname{Gr}\left(k, \mathbb{K}^{\infty}\right)
$$

Each element of $\operatorname{Gr}\left(\infty, \mathbb{K}^{\infty}\right)$ can be viewed as a full flag of infinite length. Let $\mathrm{GL}_{\infty}(\mathbb{K})$ denote the group of all invertible $\infty \times \infty$ matrices of the form

$$
\left(\begin{array}{cc}
M & 0 \\
0 & I
\end{array}\right),
$$

where M is an invertible square matrix over \mathbb{K} and I is an infinite identity matrix.
Theorem 8.1. The space $\operatorname{Gr}\left(\infty, \mathbb{K}^{\infty}\right)$ can be viewed as the Grassmannian of ∞ dimensional subspaces of \mathbb{K}^{∞}, and has the following cellular decomposition

$$
\operatorname{Gr}\left(\infty, \mathbb{K}^{\infty}\right)=\bigsqcup_{\sigma} X_{\sigma}
$$

where $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}\right)$ is extended over all sequences such that $2 \leq \sigma_{1}<\sigma_{2}<$ $\cdots<\sigma_{k}$, and when $k \geq 0, \sigma=(1)$. Moreover,

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\#\left(\operatorname{Gr}\left(\infty, \mathbb{K}_{q}^{\infty}\right)\right)=\sum_{\sigma \in \mathfrak{T}_{\infty}} q^{\operatorname{inv}(\sigma)}=\prod_{n=1}^{\infty} \frac{1}{1-q^{n}}
$$

Proof. Let $\mathcal{M}(\infty)$ be the vector space of $\infty \times \infty$ matrices M over \mathbb{K} such that the (i, j)-entry of M is zero when i or j is large enough. Let \sim be the equivalence relation on $\mathcal{M}(\infty)$, generated by (1) $M \sim A M$, where $A \in \mathrm{GL}_{\infty}(\mathbb{K})$, and (2) $M \sim\left(\begin{array}{cc}1 & 0 \\ 0 & M\end{array}\right)$. Then $\operatorname{Gr}\left(\infty, \mathbb{K}^{\infty}\right)$ can be viewed as the quotient space of $M(\infty)$ under the above equivalence relation.

Viewing in this way, for every element M of $\mathcal{M}(\infty)$, there exists a unique permutation σ of $\{1,2, \ldots\}$ such that M is equivalent to the matrix of the schubert cell X_{σ}, where $\sigma=(1)$ or $\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right), \sigma_{1} \geq 2$. For instance, the matrices of the Schubert cell

$$
X_{\tau}=\left(\right)
$$

where $\tau=(1) \cdots(r)(r+1, r+4, r+2)(r+3, r+5, r+6, r+7)$, are equivalent to the matrices of the Schubert cell

$$
X_{\sigma}=\left(\begin{array}{ccccccc}
* & 1 & 0 & 0 & 0 & 0 & 0 \\
* & 0 & * & 1 & 0 & 0 & 0 \\
* & 0 & * & 0 & * & * & 1
\end{array}\right)
$$

where $\sigma=(1,4,2)(3,5,6,7)$, respectively.
For each $\sigma \in \mathfrak{S}_{\infty}$, let $\sigma=\left(a_{1}, \ldots, a_{i}\right)\left(b_{1}, \ldots, b_{j}\right) \cdots\left(c_{1}, \ldots, c_{k}\right)$, where the leading entries $a_{1}, b_{1}, \ldots, c_{1}$ are the smallest in the corresponding cycles. For $0 \leq r<a_{1}$, we define

$$
\sigma+r=\left(a_{1}+r, \ldots, a_{i}+r\right)\left(b_{1}+r, \ldots, b_{j}+r\right) \cdots\left(c_{1}+r, \ldots, c_{k}+r\right)
$$

Two permutations σ and τ are called equivalent if $\tau=\sigma+r$ for some $r \geq 0$. Let

$$
\mathfrak{T}_{\infty}:=\mathfrak{S}_{\infty} / \sim .
$$

Let \sim be an equivalence relation on \mathfrak{S}_{∞}, defined by

$$
\left(\right)
$$

$\operatorname{Gr}\left(\infty, \mathbb{K}^{\infty}\right)$ is decomposed into disjoint union

$$
\operatorname{Gr}\left(\infty, \mathbb{K}^{\infty}\right)=\bigcup_{\sigma} X_{\sigma}
$$

where $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}\right)$ is extended over all sequences such that $2 \leq \sigma_{1}<\sigma_{2}<$ $\cdots<\sigma_{k}$, and when $k \geq 0, \sigma=(1)$.

