3.7 If $\sum a_{n}$ converges, and if $\left\{b_{n}\right\}$ is monotonic and bounded, prove that $\sum a_{n} b_{n}$ converges.
Proof Suppose $\left\{b_{n}\right\}$ is increasing, otherwise we use $-b_{n}$ to replace b_{n} in the proof. Since $\left\{b_{n}\right\}$ is also bounded, by Theorem 3.14, it converges. Suppose the limit is b. Then the series $\sum a_{n}\left(b_{n}-b\right)$ satisfies the conditions in Theorem 3.42 (Dirichlet's Test). Hence $\sum a_{n}\left(b_{n}-b\right)$ coverges. The series $\sum a_{n} b_{n}$ converges follows from $\sum a_{n} b_{n}=\sum a_{n}\left(b_{n}-b\right)+b \sum a_{n}$.
3.10 Prove that the Cauchy product of two absolutely convergent series converges absolutely.
Proof For given two series $\sum a_{n}$ and $\sum_{n} b_{n}$, their Cauchy product is the series $\sum c_{n}$, where $c_{n}=\sum_{k=0}^{n} a_{k} b_{n k}$. Put $A_{n}=\sum_{k=0}^{n}\left|a_{k}\right|$ and $B_{n}=\sum_{k=0}^{n}\left|b_{k}\right|$. By the condition, we can assume that $A_{n} \rightarrow A$ and $B_{n} \rightarrow B$. Since A_{n} and B_{n} are increasing, we know $A_{n} \leq A$ and $B_{n} \leq n$ for all n. To see that $\sum c_{n}$ converges absolutely, we have

$$
\begin{aligned}
\left|C_{n}\right|=\sum_{k=0}^{n}\left|c_{n}\right|= & \left|a_{0} b_{0}\right|+\left|a_{0} b_{1}+a_{1} b_{0}\right|+\cdots+\left|a_{0} b_{n}+a_{1} b_{n-1}+\cdots a_{n} b_{0}\right| \\
\leq & \left|a_{0}\right|\left|b_{0}\right|+\left(\left|a_{0}\right|\left|b_{1}\right|+\left|a_{1}\right|\left|b_{0}\right|\right)+\cdots \\
& +\left(\left|a_{0}\right|\left|b_{n}+\left|a_{1}\right|\right| b_{n-1}|+\cdots| a_{n}| | b_{0} \mid\right) \\
= & \left|a_{0}\right| B_{n}+\left|a_{1}\right| B_{n-1}+\cdots+\left|a_{n}\right| B_{0} \\
\leq & \left|a_{0}\right| B_{n}+\left|a_{1}\right| B_{n}+\cdots+\left|a_{n}\right| B_{n}=A_{n} B_{n} \leq A B .
\end{aligned}
$$

Thus, $\sum c_{n}$ converges absolutely.
3.11 Fix a positive number α. Choose $x_{1}>\sqrt{\alpha}$, and define $x_{2}, x_{3}, x_{4}, \ldots$, by the recursion formula

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{\alpha}{x_{n}}\right) .
$$

(a) Prove that $\left\{x_{n}\right\}$ decreasing monotonically and that $\lim x_{n}=\sqrt{\alpha}$.
(b) Put $\varepsilon_{n}=x_{n}-\sqrt{\alpha}$, and show that

$$
\varepsilon_{n+1}=\frac{\varepsilon_{n}^{2}}{2 x_{n}}<\frac{\varepsilon_{n}^{2}}{2 \sqrt{\alpha}}
$$

so that, setting $\beta=2 \sqrt{\alpha}$,

$$
\varepsilon_{n+1}<\beta\left(\frac{\varepsilon_{1}}{\beta}\right)^{2^{n}}, \quad n=1,2,3, \ldots
$$

(c) This is a good algorithm for computing square roots, since the recursion formula is simple and the convergence is extremely rapid. For example, if $\alpha=3$ and $x_{1}=2$, show that $\varepsilon_{1} / \beta=\frac{1}{10}$ and that therefore

$$
\varepsilon_{5}<4 \cdot 10^{-16}, \quad \varepsilon_{6}=4 \cdot 10^{-32}
$$

Proof It is clear that $x_{n}>0$ for all n. We can prove that

$$
x_{n} \geq \sqrt{\alpha}, \quad n \geq 1
$$

by mathematical induction. In fact, $x_{1} \geq \sqrt{\alpha}$ by the initial choice. If $x_{n} \geq \sqrt{\alpha}$, then

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{\alpha}{x_{n}}\right) \geq \frac{1}{2} \cdot 2 \sqrt{x_{n} \cdot \frac{\alpha}{x_{n}}}=\sqrt{\alpha}
$$

Moreover, the sequence $\left\{x_{n}\right\}$ is decreasing monotonically, since

$$
x_{n}-x_{n+1}=x_{n}-\frac{1}{2}\left(x_{n}+\frac{\alpha}{x_{n}}\right)=\frac{x_{n}^{2}-\alpha}{2 x_{n}} \geq 0
$$

Hence, by Theorem 3.14, $\lim x_{n}$ exists. Put $\lim x_{n}=x$. Then $x \geq \sqrt{\alpha}>0$. Letting $n \rightarrow \infty$ in the formula

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{\alpha}{x_{n}}\right)
$$

we have

$$
x=\frac{1}{2}\left(x+\frac{\alpha}{x}\right)
$$

which gives $x= \pm \sqrt{\alpha}$. We have $x=\sqrt{\alpha}$ because $\left\{x_{n}\right\}$ is bounded below by $\sqrt{\alpha}>0$.
(b) By using $x_{n}>\sqrt{\alpha}$ in part (a), for $\varepsilon_{n}=x_{n}-\sqrt{\alpha}$, we have

$$
\varepsilon_{n+1}=\frac{1}{2}\left(x_{n}+\frac{\alpha}{x_{n}}\right)-\sqrt{\alpha}=\frac{\left(x_{n}-\sqrt{\alpha}\right)^{2}}{2 x_{n}}=\frac{\varepsilon_{n}^{2}}{2 x_{n}}<\frac{\varepsilon_{n}^{2}}{2 \sqrt{\alpha}}
$$

We prove that for $n \geq 1$, with $\beta=2 \sqrt{\alpha}$,

$$
\varepsilon_{n+1}<\beta\left(\frac{\varepsilon_{1}}{\beta}\right)^{2^{n}}
$$

by mathematical induction.
In fact, for $n=1$,

$$
\varepsilon_{2}<\frac{\varepsilon_{1}^{2}}{2 \sqrt{\alpha}}=2 \sqrt{\alpha}\left(\frac{\varepsilon_{1}}{2 \sqrt{\alpha}}\right)^{2}=\beta\left(\frac{\varepsilon_{1}}{\beta}\right)^{2^{1}}
$$

Suppose the inequality holds for $n=k$:

$$
\varepsilon_{k+1}<\beta\left(\frac{\varepsilon_{1}}{\beta}\right)^{2^{k}}
$$

Then,

$$
\varepsilon_{(k+1)+1}<\frac{\varepsilon_{k+1}^{2}}{2 \sqrt{\alpha}}<\frac{\left(\beta\left(\frac{\varepsilon_{1}}{\beta}\right)^{2^{k}}\right)^{2}}{2 \sqrt{\alpha}}=\beta\left(\frac{\varepsilon_{1}}{\beta}\right)^{2^{k+1}} .
$$

This completes the proof of part (b).
(c) If take $\alpha=3$ and $x_{1}=2$, then

$$
\varepsilon_{1} / \beta=\left(x_{1}-\sqrt{\alpha}\right) / 2 \sqrt{\alpha}=(2-\sqrt{3}) / 2 \sqrt{3}=\frac{1}{6}(2 \sqrt{3}-3)
$$

Use the fact that $\sqrt{3}<1.8$, we have $\frac{1}{6}(2 \sqrt{3}-3)=0.1$. Thus,

$$
\varepsilon_{1} / \beta<\frac{1}{10}
$$

The error bounds for the computation are

$$
\begin{aligned}
& \varepsilon_{5}=x_{5}-\sqrt{3}<2 \sqrt{3} \times 10^{-2^{4}}<4 \cdot 10^{-16} \\
& \varepsilon_{6}=x_{6}-\sqrt{3}<2 \sqrt{3} \times 10^{-2^{5}}<4 \cdot 10^{-32}
\end{aligned}
$$

