
3.7 If
∑
an converges, and if {bn} is monotonic and bounded, prove that

∑
anbn con- Rudin’s Ex. 8, this is

the so-called Abel’s
Test.

verges.

Proof Suppose {bn} is increasing, otherwise we use −bn to replace bn in the proof.
Since {bn} is also bounded, by Theorem 3.14, it converges. Suppose the limit is b.
Then the series

∑
an(bn − b) satisfies the conditions in Theorem 3.42 (Dirichlet’s

Test). Hence
∑
an(bn − b) coverges. The series

∑
anbn converges follows from∑

anbn =
∑
an(bn − b) + b

∑
an.

3.10 Prove that the Cauchy product of two absolutely convergent series converges abso-
lutely. Rudin’s Ex. 13

Proof For given two series
∑
an and

∑
bn, their Cauchy product is the series

∑
cn,

where cn =
∑n
k=0 akbnk. Put An =

∑n
k=0 |ak| and Bn =

∑n
k=0 |bk|. By the condi-

tion, we can assume that An → A and Bn → B. Since An and Bn are increasing,
we know An ≤ A and Bn ≤ n for all n. To see that

∑
cn converges absolutely, we

have

|Cn| =
n∑
k=0

|cn| = |a0b0|+ |a0b1 + a1b0|+ · · ·+ |a0bn + a1bn−1 + · · · anb0|

≤ |a0| |b0|+ (|a0| |b1|+ |a1| |b0|) + · · ·
+ (|a0| |bn + |a1| |bn−1|+ · · · |an| |b0|)

= |a0|Bn + |a1|Bn−1 + · · ·+ |an|B0

≤ |a0|Bn + |a1|Bn + · · ·+ |an|Bn = AnBn ≤ AB.

Thus,
∑
cn converges absolutely.

3.11 Fix a positive number α. Choose x1 >
√
α, and define x2, x3, x4, . . . , by the recursion

formula Rudin’s Ex. 16

xn+1 =
1

2

(
xn +

α

xn

)
.

(a) Prove that {xn} decreasing monotonically and that limxn =
√
α.

(b) Put εn = xn −
√
α, and show that

εn+1 =
ε2n

2xn
<

ε2n
2
√
α

so that, setting β = 2
√
α,

εn+1 < β

(
ε1
β

)2n

, n = 1, 2, 3, . . . .

(c) This is a good algorithm for computing square roots, since the recursion formula
is simple and the convergence is extremely rapid. For example, if α = 3 and
x1 = 2, show that ε1/β = 1

10 and that therefore

ε5 < 4 · 10−16, ε6 = 4 · 10−32.
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Proof It is clear that xn > 0 for all n. We can prove that

xn ≥
√
α, n ≥ 1,

by mathematical induction. In fact, x1 ≥
√
α by the initial choice. If xn ≥

√
α, then

xn+1 =
1

2

(
xn +

α

xn

)
≥ 1

2
· 2
√
xn ·

α

xn
=
√
α.

Moreover, the sequence {xn} is decreasing monotonically, since

xn − xn+1 = xn −
1

2

(
xn +

α

xn

)
=
x2n − α

2xn
≥ 0.

Hence, by Theorem 3.14, limxn exists. Put limxn = x. Thenx ≥
√
α > 0. Letting

n→∞ in the formula

xn+1 =
1

2

(
xn +

α

xn

)
,

we have

x =
1

2

(
x+

α

x

)
,

which gives x = ±
√
α. We have x =

√
α because {xn} is bounded below by

√
α > 0.

(b) By using xn >
√
α in part (a), for εn = xn −

√
α, we have

εn+1 =
1

2

(
xn +

α

xn

)
−
√
α =

(xn −
√
α)2

2xn
=

ε2n
2xn

<
ε2n

2
√
α
.

We prove that for n ≥ 1, with β = 2
√
α,

εn+1 < β

(
ε1
β

)2n

,

by mathematical induction.

In fact, for n = 1,

ε2 <
ε21

2
√
α

= 2
√
α

(
ε1

2
√
α

)2

= β

(
ε1
β

)21

.

Suppose the inequality holds for n = k:

εk+1 < β

(
ε1
β

)2k

.

Then,

ε(k+1)+1 <
ε2k+1

2
√
α
<

(
β
(
ε1
β

)2k)2

2
√
α

= β

(
ε1
β

)2k+1

.
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This completes the proof of part (b).

(c) If take α = 3 and x1 = 2, then

ε1/β = (x1 −
√
α)/2

√
α = (2−

√
3)/2
√

3 =
1

6
(2
√

3− 3).

Use the fact that
√

3 < 1.8, we have 1
6 (2
√

3− 3) = 0.1. Thus,

ε1/β <
1

10
.

The error bounds for the computation are

ε5 = x5 −
√

3 < 2
√

3× 10−24 < 4 · 10−16;

ε6 = x6 −
√

3 < 2
√

3× 10−25 < 4 · 10−32.
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