4.11 Let $I=[0,1]$ be the closed unit interval. Suppose f is a continuous mapping of I into I. Prove that $f(x)=x$ for at least one $x \in I$.
Proof Put $g(x)=x-f(x)$ for $x \in I$. It is clear that g is continuous on I. If $g(0)=0$ or $g(1)=0$, the conclusion of the problem holds either for $x=0$ or $x=1$. Otherwise, we have $g(0)=-f(0)<0$ and $g(1)=1-f(1)>0$. By Theorem 4.23 (the Intermediate Value Theorem), there exists a $x \in(0,1)$ such that $g(x)=0$, since $g(0)<0<g(1)$. This gives $f(x)=x$ for this x.
4.14 Let f be a real function defined on (a, b). Prove that the set of points at which f has a simple discontinuity is at most countable.

Proof Put

$$
D=\{x \in(a, b): f \text { is discontinuous at } x, f(x-) \text { and } f(x+) \text { exist }\}
$$

and

$$
\begin{aligned}
& E=\{x \in(a, b): f(x-)<f(x+)\} \\
& F=\{x \in(a, b): f(x-)>f(x+)\} \\
& G=\{x \in(a, b): f(x-)=f(x+)>f(x)\}, \\
& H=\{x \in(a, b): f(x-)=f(x+)<f(x)\} .
\end{aligned}
$$

It is clear that $D=E \cup F \cup G \cup H$. We shall prove that E and G are at most countable. For F and H, we only need to replace f by $-f$.

To show that E is at most countable, for each $x \in E$, we associate it with a triple (p, q, r) of rational numbers such that $f(x-)<p<f(x+)$ and $a<q<x<r<b$. Since $\lim _{t \rightarrow x^{-}} f(t)=f(x-)<p$, we can further require that q is sufficient close to x such that $q<t<x$ implies $f(t)<p$. Similarly, we can require that r is sufficient close to x such that $x<t<r$ implies $p<f(t)$.
Conversely, we show that if a triple (p, q, r) of rational numbers associates with x_{1} and x_{2} in E, then $x_{1}=x_{2}$. If fact, if $x_{1}<x_{2}$, we take a point t such that $x_{1}<t<x_{2}$. Hence, by the construction of the triple, we have $q<x_{1}<t<x_{2}<r$. This leads to a contradiction, since $q<t<x_{2}$ implies $f(t)<p$ while $x_{1}<t<r$ implies $f(t)>p$. Similarly $x_{1}>x_{2}$ is also impossible. Thus, $x_{1}=x_{2}$.
Therefore, E is at most countable, by Theorem 2.13.
The proof of G being at most countable is similar to that of E. A triple (p, q, r) of rational numbers is associated with a point $x \in G$ such that $f(x-)=f(x+)>p>$ $f(x)$ and $a<q<x<r<b$. We further require q and r are so close to x such that $q<t<x$ implies that $f(t)>p$ and $x<t<r$ implies $f(t)>p$.
We can similarly prove that a triple (p, q, r) of rational numbers associates with x_{1} and x_{2} in G, then $x_{1}=x_{2}$. In fact, if $x_{1}<x_{2}$, then $q<x_{1}<x_{2}<r$. The choice of q gives $f\left(x_{1}\right)>p$, but the choice of p gives $p>f\left(x_{1}\right)$, a contradiction. Similarly, $x_{1}>x_{2}$ also leads to a contradiction. Thus, $x_{1}=x_{2}$.
Since E, F, G, H are all at most countable, so is D. \quad
4.15 Every rational x can be written in the form $x=m / n$, where $n>0$, and m and n are integers without any common divisors. When $x=0$, we take $n=1$. Consider the function f defined on \mathbb{R} by

$$
f(x)= \begin{cases}0, & \text { if } x \text { irrational } \\ \frac{1}{n}, & \text { if } x=\frac{m}{n}\end{cases}
$$

Prove that f is continuous at every irrational point, and that f has a simple discontinuity at every rational point.
Proof By the definition of f, the only numbers x satisfying $f(x) \geq \frac{1}{n}$ are those rational numbers $x=\frac{p}{q}$ with $1 \leq q \leq n$. For any $x \in \mathbb{R}$, if we put

$$
S_{q}=\left\{\frac{p}{q}: p \in \mathbb{Z},\left|\frac{p}{q}-x\right|<1\right\}
$$

then $\left|S_{q}\right| \leq 2 q$, since $x=[x]+(x)$. Hence, for any fixed positive integer n, on any bounded interval, we have $0 \leq f(x)<\frac{1}{n}$ for all but finitely many rational x. For any irrational a, let $\delta>0$ be the smallest distance between a and these rational numbers. Then, for $|x-a|<\delta$, we have

$$
|f(x)-f(a)|<\frac{1}{n}
$$

which implies f is continuous at irrational a. On the other hand, for any rational $a=\frac{p}{q}$, since the set of irrational numbers in any segment uncountable, we can find a sequence of irrational numbers $\left\{x_{n}\right\}$ such that $x_{n} \rightarrow a$. Hence, for this sequence, we have

$$
\left|f\left(x_{n}\right)-f(a)\right|=\frac{1}{q} \nrightarrow 0
$$

as $n \rightarrow \infty$. Hence, f is not continuous at rational a.
4.16 Suppose f is a real function with domain \mathbb{R} which has the intermediate value property: If $f(a)<c<f(b)$, then $f(x)=c$ for some x between a and b. Suppose also, for every rational r, that the set of all x with $f(x)=r$ is closed. Prove that f is continuous.
Proof If f is not continuous at some point $a \in \mathbb{R}$, then there is a sequence $\left\{x_{n}\right\}$ satisfying $x_{n} \rightarrow x_{0}$, such that $f\left(x_{n}\right) \nrightarrow f(a)$. This implies that for some $\epsilon_{0}>0$, there is a subsequence $\left\{x_{n_{k}}\right\}$ such that $\left|f\left(x_{n_{k}}\right)-f(a)\right| \geq \epsilon_{0}$. Without loss of generality, we assume that $\left\{x_{n_{k}}\right\}$ is monotonic and

$$
f\left(x_{n_{k}}\right) \geq f(a)+\epsilon_{0} .
$$

Take a rational number r such that

$$
f\left(x_{n_{k}}\right)>r>f(a), \quad k=1,2,3, \ldots
$$

By the intermediate value property, there is a sequence $\left\{t_{k}\right\}$ between a and $x_{n_{k}}$ such that $f\left(t_{k}\right)=r$ for each k. By $x_{n_{k}} \rightarrow a$, we know that $t_{k} \rightarrow a$. By the hypothesis, the set

$$
S_{r}=\{x: f(x)=r\}
$$

is closed, we conclude that $a \in S_{r}$, i.e., $f(a)=r$. This contradicts to $r>f(a)$. Therefore, f is continuous. -
4.17 If E is nonempty subst of a metric space X, define the distance from $x \in X$ to E by Rudin's Ex. 20

$$
\rho_{E}(x)=\inf _{y \in E} d(x, y)
$$

(a) Prove that $\rho_{E}(x)=0$ if and only if $x \in \bar{E}$.
(b) Prove that ρ_{E} is a uniformly continuous function on X, by showing that

$$
\left|\rho_{E}(x)-\rho_{E}(y)\right| \leq d(x, y)
$$

for all $x \in X, y \in X$.
Proof (a) It is obvious that $\rho_{E}(x) \geq 0$. If $x \in \bar{E}$, then either $x \in E$ or $x \in E^{\prime}-E$. If $x \in E$, from

$$
0=d(x, x) \geq \inf _{y \in E} d(x, y)=\rho_{E}(x)
$$

we have $\rho_{E}(x)=0$. If $x \in E^{\prime}-E$, then x is a limit point of E. Hence any neighborhood $N_{1 / n}(x)$ of x contains a point $y_{n} \neq x$ such that $y_{n} \in E$. Hence, we have

$$
\rho_{E}(x)=\inf _{y \in E} d(x, y) \leq \inf _{n} d\left(x, y_{n}\right)<1 / n \rightarrow 0
$$

which also implies $\rho_{E}(x)=0$.
Conversely, if $\rho_{E}(x)=0$, and if $x \notin E$, then, by the definition of inf, for any positive integer n, there is a point y_{n} in E such that

$$
d\left(x, y_{n}\right)<\inf _{y \in E} d(x, y)+1 / n=1 / n
$$

Hence $y_{n} \rightarrow x$, so x is a limit point of E, i.e., $x \in \bar{E}$.
(b) Let $x \in X, y \in X$. For any $z \in E$, we have

$$
\rho_{E}(x)=\inf _{z^{\prime} \in E} d\left(x, z^{\prime}\right) \leq d(x, z) \leq d(x, y)+d(y, z)
$$

Since z is arbitrary in E, the last inequality implies

$$
\rho_{E}(x) \leq d(x, y)+\inf _{z \in E} d(y, z)=d(x, y)+\rho_{E}(y)
$$

Hence $\rho_{E}(x)-\rho_{E}(y) \leq d(x, y)$. Reversing the roles of x and y, we similarly have $\rho_{E}(y)-\rho_{E}(x) \leq d(x, y)$. Hence

$$
\left|\rho_{E}(x)-\rho_{E}(y)\right| \leq d(x, y)
$$

This inequality implies uniform continuity of the function ρ_{E}. In fact, for any $\epsilon>0$, if we take $\delta=\epsilon$, then $d(x, y)<\delta$ implies

$$
\left|\rho_{E}(x)-\rho_{E}(y)\right|<\epsilon
$$

4.18 Suppose K and F are disjoint sets in a metric space X, K is compact, F is closed. Rudin's Ex. 21 Prove that there exists $\delta>0$ such that $d(p, q)>\delta$ if $p \in K, q \in F$. Show that the conclusion may fail for two disjoint closed sets if neither is compact.
Proof Suppose there exists no such δ. Then, for any positive integer n, there exist $x_{n} \in K$ and $y_{n} \in F$ such that $d\left(x_{n}, y_{n}\right)<1 / n$. If $\left\{x_{n}\right\}$ is eventually constant, that is, there is a N such that $x_{n}=a$ for $n \geq N$, then the last inequality implies that $y_{n} \rightarrow a$. Since F is closed, we have $a \in F$. Hence $a \in K \cap F$, which contradicts to the hypothesis $K \cap F=\emptyset$. If $\left\{x_{n}\right\}$ is a infinite set, by Theorem 2.37, it has a subsequence $\left\{x_{n_{k}}\right\}$ such that $x_{n_{k}} \rightarrow a$ for some a in K.
Let $\epsilon>0$ be given. By $x_{n_{k}} \rightarrow a$, there exists K_{1} such that $k \geq K_{1}$ implies

$$
d\left(x_{n_{k}}, a\right)<\epsilon / 2
$$

Since $d\left(x_{n}, y_{n}\right) \rightarrow 0$, there exists K_{2} such that $k \geq K_{2}$ implies

$$
d\left(x_{n_{k}}, y_{n_{k}}\right)<\epsilon / 2
$$

Hence, if $k \geq \max \left\{K_{1}, K_{2}\right\}$,

$$
d\left(y_{n_{k}}, a\right) \leq d\left(x_{n_{k}}, y_{n_{k}}\right)+d\left(x_{n_{k}}, a\right)<\epsilon .
$$

This means that $y_{n_{k}} \rightarrow a \in F$, since F is closed. We again have $a \in K \cap F$ that contradicts to $K \cap F=\emptyset$.

Consider two disjoint subsets in \mathbb{R} :

$$
F_{1}=\left\{n-\frac{1}{n}: n \in \mathbb{Z}\right\} \quad \text { and } \quad F_{2}=\left\{n+\frac{1}{n}: n \in \mathbb{Z}\right\}
$$

Both are closed, since they have no limit points. Since

$$
\left|\left(n-\frac{1}{n}\right)-\left(n+\frac{1}{n}\right)\right|=\frac{2}{n} \rightarrow 0
$$

there exists no $\delta>0$ such that $|p-q|>\delta$ for $p \in F_{1}, q \in F_{2}$.

