4.11 Let I = [0, 1] be the closed unit interval. Suppose f is a continuous mapping of I Rudin's Ex. 14 into I. Prove that f(x) = x for at least one $x \in I$.

Proof Put g(x) = x - f(x) for $x \in I$. It is clear that g is continuous on I. If q(0) = 0 or q(1) = 0, the conclusion of the problem holds either for x = 0 or x = 1. Otherwise, we have q(0) = -f(0) < 0 and q(1) = 1 - f(1) > 0. By Theorem 4.23 (the Intermediate Value Theorem), there exists a $x \in (0,1)$ such that q(x) = 0, since g(0) < 0 < g(1). This gives f(x) = x for this x.

4.14 Let f be a real function defined on (a, b). Prove that the set of points at which f has a simple discontinuity is at most countable.

Proof Put

$$D = \{x \in (a, b) : f \text{ is discontinuous at } x, f(x) \text{ and } f(x) \text{ exist}\},\$$

f has a simple discontinuity at x if fis discontinuous at \boldsymbol{x} with f(x-) and f(x+)existing.

Rudin's Ex. 17

and

$$\begin{split} E &= \{ x \in (a,b) \colon f(x-) < f(x+) \}, \\ F &= \{ x \in (a,b) \colon f(x-) > f(x+) \}, \\ G &= \{ x \in (a,b) \colon f(x-) = f(x+) > f(x) \}, \\ H &= \{ x \in (a,b) \colon f(x-) = f(x+) < f(x) \}. \end{split}$$

It is clear that $D = E \cup F \cup G \cup H$. We shall prove that E and G are at most countable. For F and H, we only need to replace f by -f.

To show that E is at most countable, for each $x \in E$, we associate it with a triple (p,q,r) of rational numbers such that f(x-) and <math>a < q < x < r < b. Since $\lim_{t \to x^-} f(t) = f(x-) < p$, we can further require that q is sufficient close to x such that q < t < x implies f(t) < p. Similarly, we can require that r is sufficient close to x such that x < t < r implies p < f(t).

Conversely, we show that if a triple (p,q,r) of rational numbers associates with x_1 and x_2 in E, then $x_1 = x_2$. If fact, if $x_1 < x_2$, we take a point t such that $x_1 < t < x_2$. Hence, by the construction of the triple, we have $q < x_1 < t < x_2 < r$. This leads to a contradiction, since $q < t < x_2$ implies f(t) < p while $x_1 < t < r$ implies f(t) > p. Similarly $x_1 > x_2$ is also impossible. Thus, $x_1 = x_2$.

Therefore, E is at most countable, by Theorem 2.13.

The proof of G being at most countable is similar to that of E. A triple (p, q, r) of rational numbers is associated with a point $x \in G$ such that f(x-) = f(x+) > p > pf(x) and a < q < x < r < b. We further require q and r are so close to x such that q < t < x implies that f(t) > p and x < t < r implies f(t) > p.

We can similarly prove that a triple (p, q, r) of rational numbers associates with x_1 and x_2 in G, then $x_1 = x_2$. In fact, if $x_1 < x_2$, then $q < x_1 < x_2 < r$. The choice of q gives $f(x_1) > p$, but the choice of p gives $p > f(x_1)$, a contradiction. Similarly, $x_1 > x_2$ also leads to a contradiction. Thus, $x_1 = x_2$.

Since E, F, G, H are all at most countable, so is D.

4.15 Every rational x can be written in the form x = m/n, where n > 0, and m and n are integers without any common divisors. When x = 0, we take n = 1. Consider the function f defined on \mathbb{R} by

$$f(x) = \begin{cases} 0, & \text{if } x \text{ irrational,} \\ \frac{1}{n}, & \text{if } x = \frac{m}{n}. \end{cases}$$

Prove that f is continuous at every irrational point, and that f has a simple discontinuity at every rational point.

Proof By the definition of f, the only numbers x satisfying $f(x) \ge \frac{1}{n}$ are those rational numbers $x = \frac{p}{q}$ with $1 \le q \le n$. For any $x \in \mathbb{R}$, if we put

$$S_q = \left\{ \frac{p}{q} : p \in \mathbb{Z}, \left| \frac{p}{q} - x \right| < 1 \right\},$$

then $|S_q| \leq 2q$, since x = [x] + (x). Hence, for any fixed positive integer n, on any bounded interval, we have $0 \leq f(x) < \frac{1}{n}$ for all but finitely many rational x. For any irrational a, let $\delta > 0$ be the smallest distance between a and these rational numbers. Then, for $|x - a| < \delta$, we have

$$|f(x) - f(a)| < \frac{1}{n}$$

which implies f is continuous at irrational a. On the other hand, for any rational $a = \frac{p}{q}$, since the set of irrational numbers in any segment uncountable, we can find a sequence of irrational numbers $\{x_n\}$ such that $x_n \to a$. Hence, for this sequence, we have

$$|f(x_n) - f(a)| = \frac{1}{q} \nrightarrow 0,$$

as $n \to \infty$. Hence, f is not continuous at rational a.

4.16 Suppose f is a real function with domain \mathbb{R} which has the intermediate value property: If f(a) < c < f(b), then f(x) = c for some x between a and b. Suppose also, for every rational r, that the set of all x with f(x) = r is closed. Prove that f is continuous.

Proof If f is not continuous at some point $a \in \mathbb{R}$, then there is a sequence $\{x_n\}$ satisfying $x_n \to x_0$, such that $f(x_n) \not \to f(a)$. This implies that for some $\epsilon_0 > 0$, there is a subsequence $\{x_{n_k}\}$ such that $|f(x_{n_k}) - f(a)| \ge \epsilon_0$. Without loss of generality, we assume that $\{x_{n_k}\}$ is monotonic and

$$f(x_{n_k}) \ge f(a) + \epsilon_0.$$

Take a rational number r such that

$$f(x_{n_k}) > r > f(a), \qquad k = 1, 2, 3, \dots$$

2

integer contained in x, and (x) is the fractional part of x.

[x] is the largest

Rudin's Ex. $18\,$

This function is known as Thomae's function, named after Johannes Karl Thomae (1840-1921), also known as the popcorn function, the raindrop function, the ruler function, the Riemann function or the Stars over Babylon. By the intermediate value property, there is a sequence $\{t_k\}$ between a and x_{n_k} such that $f(t_k) = r$ for each k. By $x_{n_k} \to a$, we know that $t_k \to a$. By the hypothesis, the set

$$S_r = \{x \colon f(x) = r\}$$

is closed, we conclude that $a \in S_r$, i.e., f(a) = r. This contradicts to r > f(a). Therefore, f is continuous.

4.17 If E is nonempty subst of a metric space X, define the distance from $x \in X$ to E by Rudin's Ex. 20

$$\rho_E(x) = \inf_{y \in E} d(x, y).$$

- (a) Prove that $\rho_E(x) = 0$ if and only if $x \in \overline{E}$.
- (b) Prove that ρ_E is a uniformly continuous function on X, by showing that

$$|\rho_E(x) - \rho_E(y)| \le d(x, y)$$

for all $x \in X, y \in X$.

Proof (a) It is obvious that $\rho_E(x) \ge 0$. If $x \in \overline{E}$, then either $x \in E$ or $x \in E' - E$. If $x \in E$, from

$$0 = d(x, x) \ge \inf_{y \in E} d(x, y) = \rho_E(x),$$

we have $\rho_E(x) = 0$. If $x \in E' - E$, then x is a limit point of E. Hence any neighborhood $N_{1/n}(x)$ of x contains a point $y_n \neq x$ such that $y_n \in E$. Hence, we have

$$\rho_E(x) = \inf_{y \in E} d(x, y) \le \inf_n d(x, y_n) < 1/n \to 0,$$

which also implies $\rho_E(x) = 0$.

Conversely, if $\rho_E(x) = 0$, and if $x \notin E$, then, by the definition of inf, for any positive integer n, there is a point y_n in E such that

$$d(x, y_n) < \inf_{y \in E} d(x, y) + 1/n = 1/n.$$

Hence $y_n \to x$, so x is a limit point of E, i.e., $x \in \overline{E}$.

(b) Let $x \in X$, $y \in X$. For any $z \in E$, we have

$$\rho_E(x) = \inf_{z' \in E} d(x, z') \le d(x, z) \le d(x, y) + d(y, z).$$

Since z is arbitrary in E, the last inequality implies

$$\rho_E(x) \le d(x, y) + \inf_{z \in E} d(y, z) = d(x, y) + \rho_E(y).$$

Hence $\rho_E(x) - \rho_E(y) \leq d(x, y)$. Reversing the roles of x and y, we similarly have $\rho_E(y) - \rho_E(x) \leq d(x, y)$. Hence

$$\rho_E(x) - \rho_E(y) \le d(x, y).$$

This inequality implies uniform continuity of the function ρ_E . In fact, for any $\epsilon > 0$, if we take $\delta = \epsilon$, then $d(x, y) < \delta$ implies

$$\rho_E(x) - \rho_E(y)| < \epsilon.$$

4.18 Suppose K and F are disjoint sets in a metric space X, K is compact, F is closed. Prove that there exists $\delta > 0$ such that $d(p,q) > \delta$ if $p \in K$, $q \in F$. Show that the conclusion may fail for two disjoint closed sets if neither is compact.

Proof Suppose there exists no such δ . Then, for any positive integer n, there exist $x_n \in K$ and $y_n \in F$ such that $d(x_n, y_n) < 1/n$. If $\{x_n\}$ is eventually constant, that is, there is a N such that $x_n = a$ for $n \ge N$, then the last inequality implies that $y_n \to a$. Since F is closed, we have $a \in F$. Hence $a \in K \cap F$, which contradicts to the hypothesis $K \cap F = \emptyset$. If $\{x_n\}$ is a infinite set, by Theorem 2.37, it has a subsequence $\{x_{n_k}\}$ such that $x_{n_k} \to a$ for some a in K.

Let $\epsilon > 0$ be given. By $x_{n_k} \to a$, there exists K_1 such that $k \ge K_1$ implies

$$d(x_{n_k}, a) < \epsilon/2$$

Since $d(x_n, y_n) \to 0$, there exists K_2 such that $k \ge K_2$ implies

$$d(x_{n_k}, y_{n_k}) < \epsilon/2.$$

Hence, if $k \geq \max\{K_1, K_2\}$,

$$d(y_{n_k}, a) \le d(x_{n_k}, y_{n_k}) + d(x_{n_k}, a) < \epsilon.$$

This means that $y_{n_k} \to a \in F$, since F is closed. We again have $a \in K \cap F$ that contradicts to $K \cap F = \emptyset$.

Consider two disjoint subsets in \mathbb{R} :

$$F_1 = \left\{ n - \frac{1}{n} : n \in \mathbb{Z} \right\}$$
 and $F_2 = \left\{ n + \frac{1}{n} : n \in \mathbb{Z} \right\}$.

Both are closed, since they have no limit points. Since

$$\left| \left(n - \frac{1}{n} \right) - \left(n + \frac{1}{n} \right) \right| = \frac{2}{n} \to 0,$$

there exists no $\delta > 0$ such that $|p - q| > \delta$ for $p \in F_1, q \in F_2$.

Rudin's Ex. 21