
4.11 Let I = [0, 1] be the closed unit interval. Suppose f is a continuous mapping of I Rudin’s Ex. 14

into I. Prove that f(x) = x for at least one x ∈ I.

Proof Put g(x) = x − f(x) for x ∈ I. It is clear that g is continuous on I. If
g(0) = 0 or g(1) = 0, the conclusion of the problem holds either for x = 0 or x = 1.
Otherwise, we have g(0) = −f(0) < 0 and g(1) = 1 − f(1) > 0. By Theorem 4.23
(the Intermediate Value Theorem), there exists a x ∈ (0, 1) such that g(x) = 0, since
g(0) < 0 < g(1). This gives f(x) = x for this x.

4.14 Let f be a real function defined on (a, b). Prove that the set of points at which f
has a simple discontinuity is at most countable. Rudin’s Ex. 17

Proof Put f has a simple
discontinuity at x if f
is discontinuous at x
with f(x−) and f(x+)
existing.

D = {x ∈ (a, b) : f is discontinuous at x, f(x−) and f(x+) exist},

and

E = {x ∈ (a, b) : f(x−) < f(x+)},
F = {x ∈ (a, b) : f(x−) > f(x+)},
G = {x ∈ (a, b) : f(x−) = f(x+) > f(x)},
H = {x ∈ (a, b) : f(x−) = f(x+) < f(x)}.

It is clear that D = E ∪ F ∪ G ∪ H. We shall prove that E and G are at most
countable. For F and H, we only need to replace f by −f .

To show that E is at most countable, for each x ∈ E, we associate it with a triple
(p, q, r) of rational numbers such that f(x−) < p < f(x+) and a < q < x < r < b.
Since lim

t→x−
f(t) = f(x−) < p, we can further require that q is sufficient close to x

such that q < t < x implies f(t) < p. Similarly, we can require that r is sufficient
close to x such that x < t < r implies p < f(t).

Conversely, we show that if a triple (p, q, r) of rational numbers associates with x1
and x2 in E, then x1 = x2. If fact, if x1 < x2, we take a point t such that x1 < t < x2.
Hence, by the construction of the triple, we have q < x1 < t < x2 < r. This leads to
a contradiction, since q < t < x2 implies f(t) < p while x1 < t < r implies f(t) > p.
Similarly x1 > x2 is also impossible. Thus, x1 = x2.

Therefore, E is at most countable, by Theorem 2.13.

The proof of G being at most countable is similar to that of E. A triple (p, q, r) of
rational numbers is associated with a point x ∈ G such that f(x−) = f(x+) > p >
f(x) and a < q < x < r < b. We further require q and r are so close to x such that
q < t < x implies that f(t) > p and x < t < r implies f(t) > p.

We can similarly prove that a triple (p, q, r) of rational numbers associates with x1
and x2 in G, then x1 = x2. In fact, if x1 < x2, then q < x1 < x2 < r. The choice
of q gives f(x1) > p, but the choice of p gives p > f(x1), a contradiction. Similarly,
x1 > x2 also leads to a contradiction. Thus, x1 = x2.

Since E,F,G,H are all at most countable, so is D.
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4.15 Every rational x can be written in the form x = m/n, where n > 0, and m and n Rudin’s Ex. 18

are integers without any common divisors. When x = 0, we take n = 1. Consider
the function f defined on R by This function is known

as Thomae’s function,
named after Johannes
Karl Thomae
(1840-1921), also
known as the popcorn
function, the raindrop
function, the ruler
function, the Riemann
function or the Stars
over Babylon.

f(x) =

0, if x irrational,

1

n
, if x =

m

n
.

Prove that f is continuous at every irrational point, and that f has a simple discon-
tinuity at every rational point.

Proof By the definition of f , the only numbers x satisfying f(x) ≥ 1

n
are those

rational numbers x =
p

q
with 1 ≤ q ≤ n. For any x ∈ R, if we put

Sq =

{
p

q
: p ∈ Z,

∣∣∣∣pq − x
∣∣∣∣ < 1

}
,

then |Sq| ≤ 2q, since x = [x] + (x). Hence, for any fixed positive integer n, on any [x] is the largest
integer contained in x,
and (x) is the
fractional part of x.

bounded interval, we have 0 ≤ f(x) <
1

n
for all but finitely many rational x. For

any irrational a, let δ > 0 be the smallest distance between a and these rational
numbers. Then, for |x− a| < δ, we have

|f(x)− f(a)| < 1

n
,

which implies f is continuous at irrational a. On the other hand, for any rational

a =
p

q
, since the set of irrational numbers in any segment uncountable, we can find

a sequence of irrational numbers {xn} such that xn → a. Hence, for this sequence,
we have

|f(xn)− f(a)| = 1

q
9 0,

as n→∞. Hence, f is not continuous at rational a.

4.16 Suppose f is a real function with domain R which has the intermediate value prop- Rudin’s Ex. 19

erty: If f(a) < c < f(b), then f(x) = c for some x between a and b. Suppose also,
for every rational r, that the set of all x with f(x) = r is closed. Prove that f is
continuous.

Proof If f is not continuous at some point a ∈ R, then there is a sequence {xn}
satisfying xn → x0, such that f(xn) 9 f(a). This implies that for some ε0 > 0, there
is a subsequence {xnk

} such that |f(xnk
) − f(a)| ≥ ε0. Without loss of generality,

we assume that {xnk
} is monotonic and

f(xnk
) ≥ f(a) + ε0.

Take a rational number r such that

f(xnk
) > r > f(a), k = 1, 2, 3, . . . .
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By the intermediate value property, there is a sequence {tk} between a and xnk
such

that f(tk) = r for each k. By xnk
→ a, we know that tk → a. By the hypothesis,

the set
Sr = {x : f(x) = r}

is closed, we conclude that a ∈ Sr, i.e., f(a) = r. This contradicts to r > f(a).
Therefore, f is continuous.

4.17 If E is nonempty subst of a metric space X, define the distance from x ∈ X to E by Rudin’s Ex. 20

ρE(x) = inf
y∈E

d(x, y).

(a) Prove that ρE(x) = 0 if and only if x ∈ E.

(b) Prove that ρE is a uniformly continuous function on X, by showing that

|ρE(x)− ρE(y)| ≤ d(x, y)

for all x ∈ X, y ∈ X.

Proof (a) It is obvious that ρE(x) ≥ 0. If x ∈ E, then either x ∈ E or x ∈ E′ − E.
If x ∈ E, from

0 = d(x, x) ≥ inf
y∈E

d(x, y) = ρE(x),

we have ρE(x) = 0. If x ∈ E′ − E, then x is a limit point of E. Hence any
neighborhood N1/n(x) of x contains a point yn 6= x such that yn ∈ E. Hence, we
have

ρE(x) = inf
y∈E

d(x, y) ≤ inf
n
d(x, yn) < 1/n→ 0,

which also implies ρE(x) = 0.

Conversely, if ρE(x) = 0, and if x /∈ E, then, by the definition of inf, for any positive
integer n, there is a point yn in E such that

d(x, yn) < inf
y∈E

d(x, y) + 1/n = 1/n.

Hence yn → x, so x is a limit point of E, i.e., x ∈ E.

(b) Let x ∈ X, y ∈ X. For any z ∈ E, we have

ρE(x) = inf
z′∈E

d(x, z′) ≤ d(x, z) ≤ d(x, y) + d(y, z).

Since z is arbitrary in E, the last inequality implies

ρE(x) ≤ d(x, y) + inf
z∈E

d(y, z) = d(x, y) + ρE(y).

Hence ρE(x) − ρE(y) ≤ d(x, y). Reversing the roles of x and y, we similarly have
ρE(y)− ρE(x) ≤ d(x, y). Hence

|ρE(x)− ρE(y)| ≤ d(x, y).
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This inequality implies uniform continuity of the function ρE . In fact, for any ε > 0,
if we take δ = ε, then d(x, y) < δ implies

|ρE(x)− ρE(y)| < ε.

4.18 Suppose K and F are disjoint sets in a metric space X, K is compact, F is closed. Rudin’s Ex. 21

Prove that there exists δ > 0 such that d(p, q) > δ if p ∈ K, q ∈ F . Show that the
conclusion may fail for two disjoint closed sets if neither is compact.

Proof Suppose there exists no such δ. Then, for any positive integer n, there exist
xn ∈ K and yn ∈ F such that d(xn, yn) < 1/n. If {xn} is eventually constant, that
is, there is a N such that xn = a for n ≥ N , then the last inequality implies that
yn → a. Since F is closed, we have a ∈ F . Hence a ∈ K ∩ F , which contradicts
to the hypothesis K ∩ F = ∅. If {xn} is a infinite set, by Theorem 2.37, it has a
subsequence {xnk

} such that xnk
→ a for some a in K.

Let ε > 0 be given. By xnk
→ a, there exists K1 such that k ≥ K1 implies

d(xnk
, a) < ε/2.

Since d(xn, yn)→ 0, there exists K2 such that k ≥ K2 implies

d(xnk
, ynk

) < ε/2.

Hence, if k ≥ max{K1,K2},

d(ynk
, a) ≤ d(xnk

, ynk
) + d(xnk

, a) < ε.

This means that ynk
→ a ∈ F , since F is closed. We again have a ∈ K ∩ F that

contradicts to K ∩ F = ∅.

Consider two disjoint subsets in R:

F1 =

{
n− 1

n
: n ∈ Z

}
and F2 =

{
n+

1

n
: n ∈ Z

}
.

Both are closed, since they have no limit points. Since∣∣∣∣(n− 1

n

)
−
(
n+

1

n

)∣∣∣∣ =
2

n
→ 0,

there exists no δ > 0 such that |p− q| > δ for p ∈ F1, q ∈ F2.
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