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Unsuperivised Learning

Chapter 10
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1 10.1 Principal component analysis.

2 10.2. Clustering methods
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About this chapter

• Supervised learning aims to prediciting ouput/response from
features, and each training data point contains the input and
output. are given in the training data.

• Unsupervised learning do not have a spicific output or response to
predict. It aims at discovering the structure or characteristic of
the variables in study.

• This chapter focuses on two methodologies: PCA and cluster
analysis.
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Unsupervised learning

• Often used as part of exploratory data analysis.

• Examples: Identify the particular subgroups of stocks with close
relations.
Accurate adversiting based on the customers age, profession,
reading, shopping habits, ...
Reduce the dimension of covariates.
....
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10.1 Principal component analysis.

• We have already addressed PCA in Chapter 6.

• Linearly combine the variables to create the new variables, called
principle components.

• The first few explain most of the variation.

• Achieve data reduction, without much loss of information.

• Here we summarize the results and look at the examples.
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10.1 Principal component analysis.

• Data: xi = (xi1, ..., xip), i = 1, ..., n.

• Compute sample variance matrix S.

• Decompose into eigenvalue-eigenvector pairs:

S = êΛ̂êT = (ê1
......

...êp)Λ̂

ê1
...
êp


where Λ̂ = diag(λ̂1, ..., λ̂p).

• (λ̂k, ek) are eigen-value-eigenvector pairs, λ̂1 ≥ ... ≥ λ̂p.
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10.1 Principal component analysis.

• The k-th sample PC.s:

Zk =

z1k
...

znk

 = Xêk

• Component-wise, zik = xi1e1k + xi2e2k + ...+ xipepk are the
pricicple component scores of the i-th observation.

• λ̂k measures the importance of the k-th PC.

• λ̂k/(λ̂1 + ...+ λ̂p) is interpreted as percetage of the total variation
explained by Yk.

• Usually retain the first few PCs.

• PCs are uncorrelated with each other.
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10.1 Principal component analysis.

Example: USArrests data

For each of the 50 states in the United States, the data set contains the
number of arrests per 100, 000 residents for each of three crimes:
Assault, Murder, and Rape.
We also record UrbanPop (the percent of the population in each state
living in urban areas).
The principal component score vectors Zk have length n = 50, and the
principal component loading vectors (ek)have length p = 4.
PCA was performed after standardizing each variable to have mean
zero and standard deviation one.
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10.1 Principal component analysis.

Example: USArrests data

PC1 PC2

Murder 0.5358995 0.4181809
Assault 0.5831836 0.1879856
UrbanPop 0.2781909 0.8728062
Rape 0.5434321 0.1673186

Table 10.1. The principal component loading vectors, e1 and e2, for
the USArrests data. These are also displayed in Figure 10.1.
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10.1 Principal component analysis.
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10.1 Principal component analysis.

Figure 10.1

Figure 10.1. The first two principal components for the USArrests
data. The blue state names represent the scores for the first two
principal components. The orange arrows indicate the first two
principal component loading vectors (with axes on the top and right).
For example, the loading for Rape on the first component is 0.54, and
its loading on the second principal component 0.17 (the word Rape is
centered at the point (0.54, 0.17)). This figure is known as a biplot,
because it displays both the principal component scores and the
principal component loadings.
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10.1 Principal component analysis.

The 1st and 2nd PCs

• The first loading vector places approximately equal weight on
Assault, Murder, and Rape, with much less weight on UrbanPop
This component roughly corresponds to a measure of overall rates
of serious crimes.

• The second loading vector places most of its weight on UrbanPop
and much less weight on the other three features
This component roughly corresponds to the level of urbanization
of the state.
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10.1 Principal component analysis.

Discussion

• The crime-related variables (Murder, Assault, and Rape) are
located close to each other, and that the UrbanPop variable is far
from the other three.

• This indicates that the crime-related variables are correlated with
each other—states with high murder rates tend to have high
assault and rape rates—-and that the UrbanPop variable is less
correlated with the other three.

Chapter 10 13 / 53



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

10.1 Principal component analysis.

Discussion

Our discussion of the loading vectors (PC1 roughly about crime rates
and PC2 about urbanization) suggests:
States with large positive scores on the first component, such as
California, Nevada and Florida, have high crime rates;
States like North Dakota, with negative scores on the first component,
have low crime rates.
California also has a high score on the second component, indicating a
high level of urbanization, while the opposite is true for states like
Mississippi.
States close to zero on both components, such as Indiana, have
approximately average levels of both crime and urbanization. 10.2.2
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10.1 Principal component analysis.

Interpreation of PCs

• Seek one direction say b with ∥b∥ = 1, such that

n∑
i=1

∥xi − aib∥

is the smallest. This direction is b = ê1. And ai = xT
i b =< xi,b >

is the score of the i-th observation on the 1st PC.

• Wish to minimize rescontruction error in reconstructing all xi

using vectors restricted to dimension k linear space.
Then, the this linear space is the space spanned by ê1, ..., êk, the
directions of the first k PCs.
They can be interpreted as the closest k dimension linear
hyperplanes to the data.
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10.1 Principal component analysis.
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Figure: 10.2. Ninety observations simulated in three dimensions. Left: the first two
principal component directions span the plane that best fits the data. It minimizes the sum
of squared distances from each point to the plane. Right: the first two principal component
score vectors give the coordinates of the projection of the 90 observations onto the plane.
The variance in the plane is maximized.
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10.1 Principal component analysis.

Other issues about PCA

• Scaling:

• If the variables are measuared in different units, rescale to
variables to have mean 0 and variance 1 is recommended.

• If the variables are of same unit and same nature (such as stock
returns), PCA with both rescaled and original can be conducted.
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10.1 Principal component analysis.

USArrest data

• In USArrest data, The four variables are measured in different
unites.
Murder, Rape, and Assault are reported as the number of
occurrences per 100, 000 people, and UrbanPop is the percentage
of the states population that lives in an urban area. These four
variables have variance 18.97, 87.73, 6945.16, and 209.5

• Assault, a more common crime than murder and rape, have much
larger variance. Without standardization, it is expected to
contribute much to 1st PC.
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10.1 Principal component analysis.
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Figure: 10.3. Two principal component biplots for the USArrests data. Left: the same as
Figure 10.1, with the variables scaled to have unit standard deviations. Right: principal
components using unscaled data. Assault has by far the largest loading on the first
principal component because it has the highest variance among the four variables. In
general, scaling the variables to have standard deviation one is recommended.
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10.1 Principal component analysis.

• Just like eigenvectors, direction of a PC can be reversed.
(e1 is eighvector, so is −e1.)

• Proportion of variance explained is an importance measure of the
PCs.
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10.1 Principal component analysis.
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Figure: 10.4. Left: a scree plot depicting the proportion of variance explained by each of
the four principal components in the USArrests data. Right: the cumulative proportion of
variance explained by the four principal components in the USArrests data.
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10.1 Principal component analysis.

Number of PCs to retain

• No universal rule.

• Problem specific.

• Recommended:

1 Look for elbow in the scree plot.
2 Enough PCs to explain 90% of total variation.
3 PCs with variance larger than average.

• This is useful to regression, classification and cluster analysis to
work with the first few PCs rather than all the p inputs. p could
be too large and contain many noisy or useless inputs.
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10.2. Clustering methods

About cluster analysis

• Techniques for finding subgroups or data points, or clusters, in a
data set, so that the observations within each group are quite
similar to each other.

• An unsupervised problem: to discover structure — in this case,
distinct clusters — on the basis of a data set.

• Both clustering and PCA seek to simplify the data via a small
number of summaries, but their mechanisms are different:

1 PCA looks to find a low-dimensional representation of the
observations that explain a good fraction of the variance;

2 Clustering looks to find homogeneous subgroups among the
observations.
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10.2. Clustering methods

Market segmentation

• The goal is to perform market segmentation by identifying
subgroups of people who might be more receptive to a particular
form of advertising, or more likely to purchase a particular
product.

• The task of performing market segmentation amounts to
clustering the people in the data set.
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10.2. Clustering methods

K-means clustering and hierarchical
clustering

• Two best-known clustering approaches: K-means clustering and
hierarchical clustering.

1 K-means clustering: seek to partition the observations into a
pre-specified number of clusters.

2 Hierarchical clustering: a tree-like visual representation of the
observations, called a dendrogram, that allows us to view at once
the clusterings obtained for each possible number of clusters, from 1
to n.

• Cluster observations on the basis of the features in order to
identify subgroups among the observations;
Or cluster features on the basis of the observations in order to
discover subgroups
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10.2. Clustering methods

K-Means clustering

• Partition the data set of n observations into K distinct,
non-overlapping subsets.
Each set, denoted as Ck, k = 1, ..,K, is called a cluster.

• Good clustering: the within-cluster variation is as small as possible

• Let W (Ck) be a measure of the within-cluster variation for cluster
Ck.

• We wish to minimize the total within-cluster variations

minmizeC1,...,CK

{ K∑
i=1

W (CK)}
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10.2. Clustering methods

K-Means clustering

• Several different ways to define W (Ck).

• Using squared Euclidan distance, we define

W (Ck) =
1

|Ck|
∑

i,j∈Ck

∥xi − xj∥2
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10.2. Clustering methods

K=2 K=3 K=4

Figure: 10.5. A simulated data set with 150 observations in two-dimensional space. Panels
show the results of applying K-means clustering with different values of K, the number of
clusters. The color of each observation indicates the cluster to which it was assigned using
the K-means clustering algorithm. Note that there is no ordering of the clusters, so the
cluster coloring is arbitrary. These cluster labels were not used in clustering; instead, they
are the outputs of the clustering procedure.
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10.2. Clustering methods

K-Means cluster algorithm

Algorithm 10.1 K-Means Clustering

• 1. Randomly assign a number, from 1 to K, to each of the
observations. These serve as initial cluster assignments for the
observations.

• 2. Iterate until the cluster assignments stop changing:

1 For each of the K clusters, compute the cluster centroid. The kth
cluster centroid is the vector of the p feature means for the
observations in the kth cluster.

2 Assign each observation to the cluster whose centroid is closest
(where closest is defined using Euclidean distance).
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10.2. Clustering methods

K-Means cluster algorithm

• The objective function always decreases at each step.

•
1

|Ck|
∑

i,j∈Ck

∥xi − xj∥2 = 2
∑
i∈Ck

∥xi − x̄∥2

where x̄ is the sample mean xi for i ∈ Ck

• K-means algorithm finds a local minimum.

• The result depends on the initial (random) cluster assignment.

• Try several different initials, and select the best result (the
smallest objective function).
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10.2. Clustering methods

Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results

Figure: 10.6
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10.2. Clustering methods

FIGURE 10.6. The progress of the K-means algorithm on the example
of Figure 10.5 with K = 3. Top left: the observations are shown. Top
center: in Step 1 of the algorithm, each observation is randomly
assigned to a cluster. Top right: in Step 2(a), the cluster centroids are
computed. These are shown as large colored disks. Initially the
centroids are almost completely overlapping because the initial cluster
assignments were chosen at random. Bottom left: in Step 2(b), each
observation is assigned to the nearest centroid. Bottom center: Step
2(a) is once again performed, leading to new cluster centroids. Bottom
right: the results obtained after ten iterations.
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10.2. Clustering methods

320.9 235.8 235.8

235.8 235.8 310.9

Figure: 10.7
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10.2. Clustering methods

FIGURE 10.7. K-means clustering performed six times on the data
from Figure 10.5 with K = 3, each time with a different random
assignment of the observations in Step 1 of the K-means algorithm.
Above each plot is the value of the objective (10.11). Three different
local optima were obtained, one of which resulted in a smaller value of
the objective and provides better separation between the clusters.
Those labeled in red all achieved the same best solution, with an
objective value of 235.8.
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10.2. Clustering methods

Hierarchical clustering

• K-means clustering requres pre-specified number of clusters, a
disadvantage.

• Hierarchical clustering does not require that.

• It results in a tree-based representation of the observations, called
a dendrogram.

• bottom-up or agglomerative clustering
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10.2. Clustering methods

−6 −4 −2 0 2

−
2

0
2

4

X1

X
2

Figure: 10.8. Forty-five observations generated in two-dimensional space. In reality there
are three distinct classes, shown in separate colors. However, we will treat these class labels
as unknown and will seek to cluster the observations in order to discover the classes from
the data.
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10.2. Clustering methods
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Figure: 10.9. Left: dendrogram obtained from hierarchically clustering the data from Figure 10.8 with
complete linkage and Euclidean distance. Center: the dendrogram from the left-hand panel, cut at a
height of nine (indicated by the dashed line). This cut results in two distinct clusters, shown in different
colors. Right: the dendrogram from the left-hand panel, now cut at a height of five. This cut results in
three distinct clusters, shown in different colors. Note that the colors were not used in clustering, but are
simply used for display purposes in this figure.
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10.2. Clustering methods

Interpreting a dendrogram

• Each leaf of the dendrogram represents one of the 45 observations
in Figure 10.8.

• However, as we move up the tree, some leaves begin to fuse into
branches. These correspond to observations that are similar to
each other.

• As we move higher up the tree, branches themselves fuse, either
with leaves or other branches.

• The earlier (lower in the tree) fusions occur, the more similar the
groups of observations are to each other.

• Observations that fuse later (near the top of the tree) can be quite
different
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10.2. Clustering methods

A rough closeness measure

• For any two observations, we can look for the point in the tree
where branches containing those two observations are first fused.
The height of this fusion, as measured on the vertical axis,
indicates how different the two observations are

• Observations that fuse at the very bottom of the tree are quite
similar to each other, whereas observations that fuse close to the
top of the tree will tend to be quite different.
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10.2. Clustering methods

Interpreting dendrogram
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Figure: 10.10. An illustration of how to properly interpret a dendrogram with nine
observations in two-dimensional space. Left: a dendrogram generated using Euclidean
distance and complete linkage. Observations 5 and 7 are quite similar to each other, as are
observations 1 and 6. However, observation 9 is no more similar to observation 2 than it is
to observations 8, 5, and 7, even though observations 9 and 2 are close together in terms of
horizontal distance. This is because observations 2, 8, 5, and 7 all fuse with observation 9 at
the same height, approximately 1.8. Right: the raw data used to generate the dendrogram
can be used to confirm that indeed, observation 9 is no more similar to observation 2 than
it is to observations 8, 5, and 7. Now
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10.2. Clustering methods

Identifying clusters

• Make a horizontal cut across the dendrogram, as Figure 10.9

• The distinct sets of observations beneath the cut can be
interpreted as clusters.

• The lower cuts create more clusters. The higher cuts create less
clusters.

• One single dendrogram can be used to obtain any number of
clusters.

• Choice of cuts can even be done by visual judgment of the
dendrogram.

• When hierarchical structure does not exist in data, the hirarchical
clustering could be worse than K-means clustering.
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10.2. Clustering methods

Hierarchical clustering algorithm

• 1. Begin with n observations and a measure (such as Euclidean
distance) of all the

(
n
2

)
= n(n− 1)/2 pairwise dissimilarities. Treat

each observation as its own cluster.

• 2. For i = n, n− 1, ...2:

1 Examine all pairwise inter-cluster dissimilarities among the i
clusters and identify the pair of clusters that are least dissimilar
(that is, most similar). Fuse these two clusters. The dissimilarity
between these two clusters indicates the height in the dendrogram
at which the fusion should be placed.

2 Compute the new pairwise inter-cluster dissimilarities among the
i− 1 remaining clusters.
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10.2. Clustering methods

Linkage: the dissimilarity measure
between two clusters

Linkage Description
Complete Maximal intercluster dissimilarity. Compute all pairwise

dissimilarities between the observations in cluster A and the
observations in cluster B, and record the largest of these dissimilarities.

Single Minimal intercluster dissimilarity. Compute all pairwise
dissimilarities between the observations in cluster A and the observations
in cluster B, and record the smallest of these dissimilarities. Single
linkage can result in extended, trailing clusters in which single
observations are fused one-at-a-time.

Average Mean intercluster dissimilarity. Compute all pairwise dissimilarities
between the observations in cluster A and the observations in cluster B,
and record the average of these dissimilarities.

Centroid Dissimilarity between the centroid for cluster A (a mean vector
of length p) and the centroid for cluster B. Centroid linkage can
result in undesirable inversions.

TABLE 10.2. A summary of the four most commonly-used types of linkage
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Figure: 10.11. An illustration of the first few steps of the hierarchical clustering algorithm,
using the data from Figure 10.10, with complete linkage and Euclidean distance. Top Left:
initially, there are nine distinct clusters, {1}, {2}, ..., {9}. Top Right: the two clusters that
are closest together, {5} and {7}, are fused into a single cluster. Bottom Left: the two
clusters that are closest together, {6} and {1}, are fused into a single cluster. Bottom
Right: the two clusters that are closest together using complete linkage, {8} and the cluster
{5, 7}, are fused into a single cluster.
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10.2. Clustering methods

Average Linkage Complete Linkage Single Linkage

Figure: 10.12. Average, complete, and single linkage applied to an example data set.
Average and complete linkage tend to yield more balanced clusters.
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10.2. Clustering methods

Dissimilarity measure

• Very important and can greatly affect the final result.

• Euclidean distrance.

• Correlation based distrance: if two observations have high
correlation, the distance is closer.
(Caution: this is not correlation between two variables, but
between two observations.)

• Different problem may need different dissimilarity measure.
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10.2. Clustering methods

The online shopping example

• Using Euclidean distance may not be appropriate.
Those with same shopping habit but different shopping volume
should be but may not be clustered together.

• Using correlation based distrance is more appropriate.

• Variable scaling, as in PCA, whether the variables should be
standardized is problem specific.
Example: High-frequency purchases like socks therefore tend to
have a much larger effect on the inter-shopper dissimilarities, and
hence on the clustering ultimately obtained, than rare purchases
like computers. This may not be desirable.

• Variables measured in different units should be standardized.
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10.2. Clustering methods

FIGURE 10.14. An online retailer sells two items: socks and computers. Left: the number

of pairs of socks, and computers, purchased by eight online shoppers is displayed. Each

shopper is shown in a different color. If inter-observation dissimilarities are computed using

Euclidean distance on the raw variables, then the number of socks purchased by an

individual will drive the dissimilarities obtained, and the number of computers purchased

will have little effect. This might be undesirable, since (1) computers are more expensive

than socks and so the online retailer may be more interested in encouraging shoppers to

buy computers than socks, and (2) a large difference in the number of socks purchased by

two shoppers may be less informative about the shoppers overall shopping preferences than

a small difference in the number of computers purchased. Center: the same data is shown,

after scaling each variable by its standard deviation. Now the number of computers

purchased will have a much greater effect on the inter-observation dissimilarities obtained.

Right: the same data are displayed, but now the y-axis represents the number of dollars

spent by each online shopper on socks and on computers. Since computers are much more

expensive than socks, now computer purchase history will drive the inter-observation

dissimilarities obtained.
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10.2. Clustering methods

• Should the observations or features first be standardized in some
way? For instance, maybe the variables should be centered to have
mean zero and scaled to have standard deviation one.

• In the case of hierarchical clustering,
What dissimilarity measure should be used?
What type of linkage should be used?
Where should we cut the dendrogram in order to obtain clusters?

• In the case of K-means clustering, how many clusters should we
look for in the data?
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10.2. Clustering methods

• Forcing every observation, including outliers, into clusters, can
distort the final outcome. (A soft version of K-means clustering by
mixture model may help)

• Clustering methods generally are not very robust to perturbations
to the data.

• Performing clustering with different choices of these parameters
(linkage, standardization or not, etc), and looking at the full set of
results

• Clustering subsets of the data in order to get a sense of the
robustness
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10.2. Clustering methods

Exercises

Run the R-Lab codes in Section 10.4 of ISLR
Exercises 1-3 and 10 of Section 10.7 of ISLR
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10.2. Clustering methods

End of Chapter 10.
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