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Linear Regression

Chapter 3
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1 3.1. Simple linear regression

2 3.2 Multiple linear regression

3 3.3. The least squares estimation

4 3.4. The statistical properties of the least squares estimates.

5 3.5 The variance decomposition and analysis of variance (ANOVA).

6 3.6. More about prediction

7 3.7. The optimality of the least squares estimation.

8 3.8. Assessing the regression model.

9 3.9. Variable selection.

10 3.10. A comparison with KNN through a simulated example

Chapter 3 2 / 77



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

About linear regression model

• Fundamental statistical models. (supervised learning)

• Covering one-sample, two-sample, multiple sample problems.

• Most illustrative on various important issues: fitting, prediciton,
model checking, ...

• In-depth understanding of linear model helps learning further topics.

• This chapter is slightly more advanced than Chapter 3 of
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3.1. Simple linear regression

The formulation

• Consider linear regression model:

yi = β0 + β1xi + ϵi , i = 1, ..., n

where yi , xi are the i-th observation of the response and covariates.
Here xi is of 1-dimension.

• Responses are sometimes called dependent variables or outputs;

• covariates called independent variables or inputs or regressors.

• obtain the parameter estimation and making prediction of any
responses on given covariates.
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3.1. Simple linear regression

Example: Advertising data

The data contains 200 observations.
Sample size: n = 200.
Sales: yi , i = 1..., n.
TV (bugdets): xi1, i = 1, ..., n.
Radio (budgets): xi2, i = 1, ..., n.
Newspaper (budgets): xi3, i = 1, ..., n.
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3.1. Simple linear regression

Example: Advertising data
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3.1. Simple linear regression

Simple linear regression

For the time being, we only consider one covariate: TV.
The linear regression model is

yi = β0 + β1xi1 + ϵi , i = 1, ..., n
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3.1. Simple linear regression

Estimating the coefficient by the least
squares

Minimizing the sum of squares of error:

n∑
i=1

(yi = β0 + β1xi1)
2.

The estimator is

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

β̂0 = ȳ − β̂1x̄

Here xi = xi1.
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3.1. Simple linear regression

Illustrating least squares
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3.1. Simple linear regression

Inference

β̂1 − β1

s
√
1/

∑n
i=1(xi − x̄)2

∼ tn−2

β̂0 − β0

s
√

1/n + x̄2/
∑n

i=1(xi − x̄)2
∼ tn−2

where
s2 = RSS/(n − 2)

is an unbiased estimator of the variance of the error, and, setting
ŷi = β̂0 + β̂1xi as the so-called fitted value,

RSS =
n∑

i=1

(yi − ŷi )
2

are so-called residual sum of squares.
Details would be provided in multiple linear regression.
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3.1. Simple linear regression

Result of the estimation

TABLE 3.1. (from ISLR) The advertising data: coefficients of the LSE for
the regression on number of units sold on TV advertising budget. An
increase of $1000 in the TV advertising budget would cause an increase of
sales of about 50 units.

Coefficient Std.error t-statistic p-value

Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001
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3.2 Multiple linear regression

Linear models formulation

• Consider linear regression model:

yi = β0 + β1xi1 + · · ·+ βpxip + ϵi , i = 1, ..., n (2.1)

where yi , xi = (xi1, ..., xip) are the i-th observation of the response
and covariates.

• Responses are sometimes called dependent variables or outputs;

• covariates called independent variables or inputs or regressors.

• obtain the parameter estimation and making prediction of any
responses on given covariates.
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3.2 Multiple linear regression

Example: Advertising data

Now, we consider three covariates: TV, radio and newspapers.
The number of covarites p = 3.
The linear regression model is

yi = β0 + β1xi1 + β2xi2 + β3xi3 + ϵi , i = 1, ..., n
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3.2 Multiple linear regression

Estimating the coefficient by the least
squares

Minimizing the sum of squares of error:

n∑
i=1

(yi − β0 − β1xi1 − β2xi2 − β3xi3)
2.

which is
n∑

i=1

(yi − βT xi )
2

The expression of the LSE of β, as a vector, has a simple matrix
expression, even though the estimator of the individual β̂i is not eqaully
simple.
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3.2 Multiple linear regression

Illustrating the least squares

Sales

Radio

TV
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3.2 Multiple linear regression

Result of the estimation

TABLE 3.9. (from ISLR) The advertising data: coefficients of the LSE for
the regression on number of units sold on TV, radio and newspaper
advertising budgets.

Coefficient Std.error t-statistic p-value

Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.89 < 0.0001
newspaper -0.001 0.0059 -0.18 0.8599
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3.3. The least squares estimation

Notations

With slight abuse of notation, in this chapter, we use

X =


1 x11 x12 ... x1p
1 x21 x22 ... x2p
...

...
... ...

...
1 xn1 xn2 ... xnp


=

(
1
...x1

...x2
... · · ·

...xp

)
.

Here a column of ones, 1, is added, which corresponds to the intercept β0.
Then X is a n by p + 1 matrix.
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3.3. The least squares estimation

Recall that

y =

y1
...
yn

 β =

β0
...
βp

 , ϵ =

ϵ1
...
ϵn

 , xj =

x1j
...
xnj
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3.3. The least squares estimation

The least squares criterion

The least squares criterion is try to minimize the sum of squares:

n∑
i=1

(yi − β0 − β1xi1 − · · · − βpxip)
2.

Using matrix algebra, the above sum of squares is

∥y − Xβ∥2 = (y − Xβ)T (y − Xβ).
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3.3. The least squares estimation

The LSE, fitted values and residuals

By some linear algebra calcuation, the least squares estimator of β is then

β̂ = (XTX)−1XTy.

Then
ŷ = Xβ̂

is called the fitted values; viewed as the predicted values of the reponses
based on the linear model.
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3.3. The least squares estimation

Terminology and notation

y − ŷ

are called residuals, which is denoted as ϵ̂. The sum of squares of these
residuals

n∑
i=1

ϵ̂2i =
n∑

i=1

(yi − ŷi )
2 = ∥y − ŷ∥2.
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3.3. The least squares estimation

• The zero-correlation of two variables from multivariate normal
random variable implies their independence.

• Suppose z = (z1, ..., zn)
T , and zi are iid standard normal random

variables.

• Let z1 = Az and z2 = Bz with A and B are two nonrandom matrices.

• Then
cov(z1, z2) = ABT = 0

implies the independence between z1 and z2.

• We also call z1 and z2 orthogonal.
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3.3. The least squares estimation

Orthogonality

• The residual ϵ̂ is orthogonal to all columns of X, i.e, all 1, x1, ..., xp.
This can be seen by

XT ϵ̂ = XTy − XTXβ̂

= XTy − XTX(XTX)−1XTy = 0.

• The residual vector ϵ̂ is orthogonal to the hyperplane formed by
vectors 1, x1, ..., xp in n dimensional real space.
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3.3. The least squares estimation

A proof of the LSE

∥y − Xb∥2

= ∥y − Xβ̂ − X(b− β̂)∥2

= ∥y − Xβ̂∥2 + ∥X(b− β̂)∥2 by orthogonality

≥ ∥y − Xβ̂∥2
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3.3. The least squares estimation

• The fitted value ŷ = Xβ̂, which, also as a vector in n dimensional real
space, is a linear combination of the vectors 1, x1, ..., xp, with the
p + 1 linear combination coefficients being the components of β̂.

• The fitted values are orthogonal to the residuals, i.e., ŷ is orthogonal
to y − ŷ or

ŷT (y − ŷ) = 0.

This implies
∥y∥2 = ∥ŷ∥2 + ∥y − ŷ∥2.
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3.3. The least squares estimation

The projection matrix

• Let H = X(XTX)−1XT .

• This n by n matrix is called projection matrix or hat matrix.

• It has the property that, for any vector, b in n dimensional real space
Hb projects b onto the linear space formed by the columns of X.

• Hb is in this linear space formed by the columns of X.

• And b−Hb is orthogonal to this space.
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3.3. The least squares estimation

The least squares projection

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 3

x1

x2

y

ŷ

FIGURE 3.2. The N-dimensional geometry of least
squares regression with two predictors. The outcome
vector y is orthogonally projected onto the hyperplane
spanned by the input vectors x1 and x2. The projection
ŷ represents the vector of the least squares predictionsChapter 3 27 / 77
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3.3. The least squares estimation

symmetric and idempotent

• projection matrix H is symmetric and idempotent; i.e., H2 = H.

• eigenvalues are either 1 or 0.

• All eigenvectors associated with eigenvalue 1 form a space, say L1;

• Those with eigenvalue 0 form the orthogonal space, L0, of L1.

• Then H is the projection onto space L1 and I−H is the projection
onto L0, where I is the n by n identity matrix.
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3.3. The least squares estimation

Matrix decomposition

• Suppose, for convenience n ≥ p, any matrix n by p matrix A can
always be decomposed into

A = UDVT

where U is n× p orthogonal matrix, D is a p × p diagonal matrix and
V is p × p orthogonal matrix. In particular

X = UR,

where R = DV.

• If A and BT are two matrices of same dimension, then

trace(AB) = trace(BA).
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3.4. The statistical properties of the least squares estimates.

Model assumptions

• The linear regression model general assumes the error ϵi has zero
conditional mean and constant conditional variance σ2, and the
covariates xi are non-random;

• Independence across the observations

• A more restrictive (but common) assumption: the errors follow
normal distribution, i.e, N(0, σ2).

Chapter 3 30 / 77



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3.4. The statistical properties of the least squares estimates.

Statistical properties of LSE

β̂ ∼ N(β, σ2(XTX)−1);

RSS =
∑n

i=1 ϵ̂
2
i =

∑n
i=1(yi − ŷi )

2 ∼ σ2χ2
n−p−1

β̂ and RSS are independent

s2 = RSS/(n − p − 1) unbiased estimate of σ2

β̂j−βj

s
√
cjj

∼ tn−p−1

(β̂−β)T (XTX)(β̂−β)/p
s2

∼ Fp+1,n−p−1

where c00, c11, ..., cpp are the diagonal elements of (XTX)−1.
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3.4. The statistical properties of the least squares estimates.

Understanding

cov(β̂, ϵ̂)

= cov(X(XTX)−1XT ϵ, (I−H)ϵ)

= X(XTX)−1XT var(ϵ)(I−H)

= 0

because H is idempotent.
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3.4. The statistical properties of the least squares estimates.

Confidence intervals

For example,
β̂j ± tn−p−1(α/2)s

√
cjj

is a confidence interval for βj at confidence level 1− α. Here tn−p−1(α/2)
is the 1− α/2 percentile of the t-distribution with degree of freedom
n − p − 1.
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3.4. The statistical properties of the least squares estimates.

Confidence intervals

For a given value of input x which is a p + 1 vector (the first component is
constant 1), its mean response is βTx. The confidence interval for this
mean response is

β̂Tx± tn−p−1(α/2)s
√

xT (XTX)−1x

The confidence interval for βj is a special case of the above formula by
taking x as a vector that all zero except the (j + 1) entry corresponding
βj . (Because of β0, βj is at the j + 1th position of β̂.)
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3.4. The statistical properties of the least squares estimates.

Prediction interval

• To predict the actual response y , rather than its mean, we would use
the same point estimator β̂Tx, but the accuracy is much decreased as
more uncertainty in the randomness of the actual response from the
error is involved.

• The confidence interval, often called prediction interval, for y is

β̂Tx± tn−p−1(α/2)s
√

1 + xT (XTX)−1x.
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3.5 The variance decomposition and analysis of variance
(ANOVA).

Variance decomposition

Recall that
∥y∥2 = ∥ŷ∥2 + ∥y − ŷ∥2.

The common variance decomposition takes a similar form, but leaving out
sample mean,

∥y − ȳ∥2 = ∥ŷ − ȳ∥2 + ∥y − ŷ∥2;

which is often written as

SStotal = SSreg + SSerror .
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3.5 The variance decomposition and analysis of variance
(ANOVA).

Understanding

• SStotal , the total sum of squares, measures the total variation in
response.

• SSreg , the sum of squares due to regression or, more precisely, due to
the inputs, measures variation in response explained by that of the
inputs.

• SSerror , the sum of squares due to error, measures the size of
randomness due to error or noise.
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3.5 The variance decomposition and analysis of variance
(ANOVA).

The ANOVA table

Source of Variation SumOfSquares Degree of Freedom Mean Squared F-statistic

Regression SSreg p MSreg MSreg/MSerror
Error SSerror n − p − 1 MSerror
Total SStotal n − 1
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3.5 The variance decomposition and analysis of variance
(ANOVA).

where MSreg = SSreg/p and MSerror = SSerror/(n − p − 1).
And the F -statistic follows Fp,n−p−1 distribution under the hypothesis that
β1 = β2 = ...βp = 0, i.e., all inputs are unrelated with the output.
The p-value is the probability for the distribution Fp+1,n−p−1 taking value
greater than the value of the F -statistic.

Chapter 3 39 / 77



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3.5 The variance decomposition and analysis of variance
(ANOVA).

General variance decomposition

• The above ANOVA is a special case of a general variance
decomposition.

• Let L be the linear space spanned by 1, x1, ..., xp, all columns of X.

• The linear model assumption:

y = Xβ + ϵ

can be written as E (y) = Xβ, or

E (y) ∈ L.

• The fitted values ŷ is projection of y onto L.
• s2 = ∥y − ŷ∥2/(n − p − 1) is the unbiased estimator of σ2.
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3.5 The variance decomposition and analysis of variance
(ANOVA).

• Further assume that
E (y) ∈ L0

where L0 is some linear subspace of L of dimension r < p + 1.

• Let ŷ0 be the project of y on to L0.

• Pythagorean theorem implies

∥y − ŷ0∥2 = ∥y − ŷ∥2 + ∥ŷ − ŷ0∥2

• By the same token, s20 = ∥y − ŷ0∥2/(n − r) is the unbiased estimator
of σ2 under the hypothesis E (y) ∈ L0.
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3.5 The variance decomposition and analysis of variance
(ANOVA).

The F-test

F =
∥ŷ − ŷ0∥2/(p + 1− r)

∥y − ŷ∥2/(n − p − 1)
∼ Fp+1−r ,n−p−r

This F -statistic is used to test the hypothesis that H0 : E (y) ∈ L0, against
the alternative Ha : otherwise.
The commonly considered hypothesis, as dealt with in the ANOVA table,
H0 : β1 = · · · = βp = 0 can be formulated as H0 : E (y) ∈ L(1), where
L(1) represent the linear space of a single vector 1.
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3.5 The variance decomposition and analysis of variance
(ANOVA).

Variable selection

• We may be concerned with a subset of the p variables are irrelevant
with the response.

• Let the subset be denoted as A = {i1, ..., ir}, where r ≤ p. Then, the
null hypothesis is

H0 : βi1 = βi2 = · · · = βir = 0,

which again is equivalent to

H0 : E (y) ∈ L(Ac),

where L(A) is the linear space in Rn spanned by xi1 , ..., xir , which is
of r dimension.

Chapter 3 43 / 77



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3.6. More about prediction

The expected prediction error (EPE)

Consider a general model
y = f (x) + ϵ

Given a new input value x, we wish to predict its response using ŷ , which
is obtained from analysis of existing data.
The EPE is

E{(y − ŷ)2} = E{(ϵ+ f (x)− ŷ)2}
= E{(ϵ+ f (x)− E (ŷ) +−ŷ + E (ŷ))2}
= σ2 + (f (x)− E (ŷ))2 + var(ŷ)

= Irreducible error + bias2 + variance
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3.6. More about prediction

Back to linear regression

• Here the covariate x has its first component being 1, slightly abusing
the notatoin.

• Bias = 0

variance = var(xT ((XTX)−1XTy)

= var(xT ((XTX)−1XT ϵ)

= σ2xT (XTX)−1x

• As a result, the EPE for this particular covairate x is

σ2 + σ2xT (XTX)−1x
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3.6. More about prediction

The average EPE
Take x as the observations x1, ..., xn (first component is 1). Then the
average EPE over all observations in the data is

σ2 + σ2 1

n

n∑
i=1

xTi (XTX)−1xi = σ2 + σ2 1

n

n∑
i=1

trace(xTi (XTX)−1xi )

= σ2 + σ2 1

n

n∑
i=1

trace((XTX)−1xix
T
i )

= σ2 + σ2 1

n
trace(

n∑
i=1

(XTX)−1xix
T
i )

= σ2 + σ2 1

n
trace(XTX)−1XTX)

= σ2 + σ2 1

n
trace(Ip+1)

= σ2(1 +
p + 1

n
)
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3.6. More about prediction

The average EPE

The average EPE reflects the prediction accuracy of the model.
Suppose p is large relative to n, and among p inputs, only a few, say q, of
them are relevant to the response. Assume q is far smaller than p.
For simplicity, say p ≈ n/2, if we use all p variables, the average EPE is

σ2(1 +
p + 1

n
) ≈ 3

2
σ2

If we use those relevant q inputs, the average EPE is

σ2(1 +
q + 1

n
) ≈ σ2.

This implies, using more inputs, although always increase the R-squared,
may reduce the prediction accuracy!!!
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3.7. The optimality of the least squares estimation.

Superiority of LSE

• Easy computation

• consistency

• efficiency, etc.

• BLUE (best linear unbiased estimator), among estimates of β, that
are linear unbiased estimates:

∑n
i=1 aiyi , with ai being nonrandom.
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3.7. The optimality of the least squares estimation.

• Theorem (Gauss-Markov Theorem). Among all linear unbiased
estimates, the least squares estimate has the smallest variance, thus
smallest mean squared error.
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3.7. The optimality of the least squares estimation.

Proof

• Let A = (a1, a2, ..., an). Then, unbiased estimate of β is Ay with
mean AXβ = β by the unbiasedness, and variance matrix AAT .

• Write A = (XTX)−1XT +D. Then, DX = 0.

• Then,
AAT = (XTX)−1 +DDT ≥ (XTX)−1.

Here the inequality is for symmetric matrices, i.e., A ≥ B is defined
as A− B is nonnegative definite.
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3.8. Assessing the regression model.

a). Error distribution (normality check).

• Non-normality may cause the normality-based inference such as t-test
and F -test being inaccurate.

• Use graphics, such histogram, boxplot and qqnorm to visualize the
the distribution of the residuals.

Chapter 3 51 / 77



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3.8. Assessing the regression model.

Adjusted residuals

• the residuals ϵ̂i does not follow the distribution N(0, σ2), even if all
model assumptions are correct!

•
ϵ̂ = y − ŷ = (I−H)ϵ ∼ N(0, σ2(I−H)).

So, ϵ̂i ∼ N(0, (1− hii )σ
2).

• Training error is one of the measurement of the quality of fit.

• An (internally) studentized residual is

ei =
ϵ̂i

s
√
1− hii

.

• A more appropirate one is the (externally) studentized residual which
uses an s from the least squares fitting by deleting the i-th
observation.
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3.8. Assessing the regression model.

b). Homoscedasticity versus
heteroscedasticity.

• Heteroscedasticity can cause the estimate being not the optimal one

• May be fixed by weighted least squares estimation.

• Use scatter plot of residuals against the fitted values to check the
heteroscedasticity (the variance of the errors are not equal).
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3.8. Assessing the regression model.

c). Error dependence.

• The error dependence cause the inference to be incorrect.

• Use autocorrelation of the residuals (ACF) to check the independence
assumption of the errors.

• One can also use Durbin-Watson test, which tests whether the first
few autocorrelations are 0.
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3.8. Assessing the regression model.

d). Leverage and Cook’s D.

• Recall the hat matrix

H = X(XTX)−1XT .

Let hij = xTi (X
TX)−1xj be the (i , j) elements of H.

• The leverage of the i-th observation is just the i-th diagonal element
of H, denoted as hii .

• A high leverage implies that observation is quite influential. Note that
the average of hii is (p + 1)/n.

• So, if hii is greater than 2(p + 1)/n, twice of the average, is generally
considered large.
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3.8. Assessing the regression model.

• The Cook’D is often used measure how important an observation is.
Cook’s D is defined

Di =

∑n
k=1(ŷk − ŷ

(−i)
k )2

(p + 1)s2

where ŷk is the k-th fitted value; and ŷ
(−i)
k is the k-th fitted value by

deleting the i-th observation.

• If Di is large, it implies once i-th observation is not available, the
prediction would be much different, thus reflecting the importance of
this observation.

• In general, the observations with large Di , such as larger than a
quarter of the sample size, may be considered influential.
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3.8. Assessing the regression model.

e). Multicollinearity.

• The multicollinarity can cause the parameter estimation to be very
unstable.

• Suppose two inputs are strongly correlated, their separate effect on
regression is difficult to identify from the regression.

• When data change slightly, the two regression coefficients can differ
greatly, though their joint effect may stay little changed.

• Use variance inflation factor (VIF) to measure one input’s correlation
with the others.

VIF(β̂j) =
1

1− R2
Xj |X−j
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3.8. Assessing the regression model.

• The largest value of VIF, ∞, means this input is perfectly linearly
related with the other inputs.

• The smallest value of VIF, 1, means this input is uncorrelated with
the other inputs.

• In general, variable selection methods may be used to reduce the
number of highly correlated variables.
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3.9. Variable selection.

• Variable selection, or more generally, model selection, is an important
tool in minimizing prediction error.

• There are substantial research development regarding methods of
model selection.

• The aim is to minimize generalization error or prediction error.

• The naive approach is to exhaust all models. However, with the curse
of dimensionality, this is quickly prohibitive when the number of
variables increase.

• More sophisticated methods such as cross validation or regularization
methods, such as LASSO (Tibshirani 1996).
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3.9. Variable selection.

Caution

• More inputs do not imply better prediction, particularly if the inputs
in the model are irrelevant with the response.

• Moreover, more inputs also imply more danger of overfit, resulting in
small training error but large test error.

• Here we introduce more basic and simple methods.
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3.9. Variable selection.

a). Adjusted R-squared.

• The R-squared is the percentage of the total variation in response due
to the inputs. The R-squared is commonly used as a measurement of
how good the linear fit is.

• However, a model with larger R-squared is not necessarily better than
another model with smaller R-squared!

• If model A has all the inputs of model B, then model A’s R-squared
will always be greater than or as large as that of model B.

• If model A’s additional inputs are entirely uncorrelated with the
response, model A contain more noise than model B. As a result, the
prediction based on model A would inevitably be poorer or no better.
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3.9. Variable selection.

• b). Recall that the R-squared is defined as:

R2 =
SSreg
SStotal

= 1− SSerror
SStotal

where SSerror =
∑n

i=1 ϵ̂
2
i is often called residual sum of squares (RSS).
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3.9. Variable selection.

• The adjusted R-squared, taking into account of the degrees of
freedom, is defined as

adjusted R2 = 1− MSerror
MStotal

= 1− SSerror/(n − p − 1)

SStotal/(n − 1)

= 1− s2∑n
i=1(yi − ȳ)2/(n − 1)

With more inputs, the R2 always increase, but the adjusted R2 could
decrease since more inputs is penalized by the smaller degree of
freedom of the residuals.

• The adjusted R-squared is preferred over the R-squared in evaluating
models.
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3.9. Variable selection.

b). Mallows’ Cp.

Recall that our linear model (2.1) has p covariates, and
s2 = SSerror/(n − p − 1) is the unbiased estimator of σ2.
Assume now more covariates are available. Suppose we use only p of the
K covariates with K ≥ p.
The statistic of Mallow’s Cp is defined as

SSerror (p)

s2K
− 2(p + 1)− n.

where SSerror is the residual sum of squares for the linear model with p
inputs and s2K is the unbiased estimator of σ2 based on K inputs.
The smaller Mallows’ Cp is, the better the model is.
The following AIC is more often used, despite that Mallws’ Cp and AIC
usually give the same best model.
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3.9. Variable selection.

c). AIC.

AIC stands for Akaike information criterion, which is defined as

AIC = log(s2) + 2(1 + p)/n,

for a linear model with p inputs, where s2 = SSerror/(n− p − 1). AIC aims
at maximizing the predictive likelihood. The model with the smallest AIC
is preferred.
The AIC criterion is try to maximize the expected predictive likelihood. In
general, it can be roughly derived in the following. Let θ be a parameter of
d dimension. θ̂ is the maximum likelihood estimator of θ based on
observations y1, ..., yn. Let θ0 be the true (unknown) value of θ, and I(θ0)
be the Fisher information.
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3.9. Variable selection.

the (expected) predictive log-likelihood

E (log f (Y |θ))|θ=θ̂

≈ E (log f (Y |θ))|θ=θ0 −
1

2
(θ̂ − θ0)

TI(θ0)(θ̂ − θ0)

≈ 1

n

n∑
i=1

log f (yi |θ̂)−
1

2
(θ̂ − θ0)

TI(θ0)(θ̂ − θ0)

−1

2
(θ̂ − θ0)

TI(θ0)(θ̂ − θ0)

≈ 1

n
(maximum log likelihood)− (θ̂ − θ0)

TI(θ0)(θ̂ − θ0)

≈ 1

n
(maximum log likelihood)− d/n

The approximations are due to the Taylor expansion.
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3.9. Variable selection.

• Then, maximizing the above predictive likelihood is the same as
minimize

−2(maximum log likelihood) + 2d

where, the first term is called deviance. In the case of linear
regression with normal errors, the deviance is the same as log(s2).
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3.9. Variable selection.

d). BIC.

• BIC stands for Schwarz’s Bayesian information criterion, which is
defined as

BIC = log(s2) + (1 + p) log(n)/n,

for a linear model with p inputs. Again, the model with the smallest
BIC is perferred. The derivation of BIC results from Bayesian
statistics and has Bayesian interpretation. It is seen that BIC is
formally similar to AIC. The BIC penalizes more heavily the models
with more number of inputs.
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3.10. A comparison with KNN through a simulated example

Simulated Example of KNN

yy

x
1

x
1

x
2

x
2

Figure: 3.16. Plots of f̂ (X ) using KNN regression on a two-dimensional data set
with 64 observations (orange dots). Left: K = 1 results in a rough step function
fit. Right: K = 9 produces a much smoother fit.

Chapter 3 69 / 77



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3.10. A comparison with KNN through a simulated example

Simulated Example of KNN

−1.0 −0.5 0.0 0.5 1.0

1
2

3
4

−1.0 −0.5 0.0 0.5 1.0

1
2

3
4

yy

xx

Figure: 3.17. Plots of f̂ (X ) using KNN regression on a one-dimensional data set
with 100 observations. The true relationship is given by the black solid line. Left:
The blue curve corresponds to K = 1 and interpolates (i.e. passes directly
through) the training data. Right: The blue curve corresponds to K = 9, and
represents a smoother fit.
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3.10. A comparison with KNN through a simulated example

Simulated Example of KNN
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3.10. A comparison with KNN through a simulated example

FIGURE 3.18.The same data set shown in Figure 3.17 is investigated
further. Left: The blue dashed line is the least squares fit to the data.
Since f (X ) is in fact linear (displayed as the black line), the least squares
regression line provides a very good estimate of f(X). Right: The dashed
horizontal line represents the least squares test set MSE, while the green
solid line corresponds to the MSE for KNN as a function of 1/K (on the
log scale). Linear regression achieves a lower test MSE than does KNN
regression, since f (X ) is in fact linear. For KNN regression, the best results
occur with a very large value of K , corresponding to a small value of 1/K .
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3.10. A comparison with KNN through a simulated example

Simulated Example of KNN
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3.10. A comparison with KNN through a simulated example

Simulated Example of KNN

FIGURE 3.19. Top Left: In a setting with a slightly non-linear relationship
between X and Y (solid black line), the KNN fits with K = 1 (blue) and
K = 9 (red) are displayed. Top Right: For the slightly non-linear data, the
test set MSE for least squares regression (horizontal black) and KNN with
various values of 1/K (green) are displayed. Bottom Left and Bottom
Right: As in the top panel, but with a strongly non-linear relationship
between X and Y .
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3.10. A comparison with KNN through a simulated example

Simulated Example of KNN
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Figure: 3.20.Test MSE for linear regression (black dashed lines) and KNN (green
curves) as the number of variables p increases. The true function is non linear in
the first variable, as in the lower panel in Figure 3.19, and does not depend on
the additional variables. The performance of linear regression deteriorates slowly
in the presence of these additional noise variables, whereas KNNs performance
degrades much more quickly as p increases.
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3.10. A comparison with KNN through a simulated example

Homework

• ISLR Chapter 3: 1; 2; 5; 8.
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3.10. A comparison with KNN through a simulated example

End of Chapter 3
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