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Linear Model Selection and Regularization

Chapter 6
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1 Subset selection

2 Shrinkage methods

3 Dimension reduction methods (using derived inputs)

4 High dimension data analysis
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About this chapter

• Linear model already addressed in detail in Chapter 3.

• This chapter is only about model selection.

• Part of the techniques: AIC, BIC, Mallow’s Cp already taught in
Chapter 3.

• The model selection techniques can be extended beyond linear
models.

• But this chapter considers only linear model with p inputs.

Y = β0 + β1X1 + ...+ βpXp + ϵ
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Feature/variable selection

• Not all existing input variables are useful for predicting the output.

• Keeping redundant inputs in model can lead to poor prediction
and poor interpretation.

• We consider three ways of variable/model selection:
1. Subset selection.
2. Shrinkage/regularization: constraining some regression
parameters to 0.
3. Dimension reduction: (actually using the “derived inputs” by,
for example, principal component approach.)
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Subset selection

Best subset selection

• Exhaust all possible combinations of inputs.

• With p variables, there are 2p many distinct combinations.

• Identify the best model among these models.
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Subset selection

The algorithm of best subset selection

• Step 1. Let M0 be the null model, Y = β0 + ϵ. The predictor is
the sample mean of response.

• Step 2. For k = 1, 2, ..., p,
Fit all

(
p
k

)
= p!/(k!(n− k)!)] models that contain exactly k

predictors.
Pick the best model, that with largest R2, among them and call it
Mk.

• Step 3. Select a single best model from M0, ...,Mp by cross
validation or AIC or BIC or Cp or adjusted R2.
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Subset selection

Comments

• Step 2 reduces to p+ 1 models, using training error.

• Step 3 identifies the best model using predition error.

• Why using R2 for step 2: they are of same complexity; the RSS is
easy to compute.

• Cannot use training error in Step 3.
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Subset selection

Example: Credit data

2 4 6 8 10

2
e
+

0
7

4
e
+

0
7

6
e
+

0
7

8
e
+

0
7

Number of Predictors

R
e

s
id

u
a

l 
S

u
m

 o
f 

S
q

u
a

re
s

2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of Predictors

R
2

Figure: 6.1. For each possible model containing a subset of the ten predictors
in the Credit data set, the RSS and R2 are displayed. The red frontier tracks
the best model for a given number of predictors, according to RSS and R2.
Though the data set contains only ten predictors, the x-axis ranges from 1 to
11, since one of the variables is categorical and takes on three values, leading
to the creation of two dummy variables.
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Subset selection

Pros and Cons of best subset selection

• Seems straightforward to carry out.

• Conceptually clear.

•
• The search space too large (2p models), may lead to overfit.

• Computationally infeasible: too many models to run.

• if p = 20, there are 220 > 1000, 000 models.
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Subset selection

Forward stepwise selection

• Start with the null model.

• Find the best one-variable model.

• With the best one-varialbe model, add one more variable to get
the best two-variable model.

• With the best two-varialbe model, add one more variable to get
the best three-variable model.

• ....

• Find the best among all these best k-variable models.
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Subset selection

The algorithm of forward stepwise
selection

• Step 1. Let M0 be the null model, Y = β0 + ϵ. The predictor is
the sample mean of response.

• Step 2. For k = 0, 1, ..., p− 1,
Consider all p− k models that augment the predictors in Mk with
one additional predictor.
Choose the best among these p− k models, and call it Mk+1.
Here best is defined as having smallest RSS or highest R2.

• step 3. Select a single best model from M0, ...,Mp by cross
validation or AIC or BIC or Cp or adjusted R2.
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Subset selection

Pros and Cons of forward stepwise
selection

• Less computation

• Less models (
∑p−1

k=0(p− k) = 1 + p(p+ 1)/2 models).

• (if p = 20, only 211 models, compared with more than 1 million
models for best subset selection).

• No problem for first n-steps if p > n.

• Once an input is in, it does not get out.

Chapter 6 12 / 80



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Subset selection

Example: credit dataset

Variables Best subset Forward stepwise

one rating rating
two rating, income rating, income
three rating, income, student rating, income, student
four cards, income, student, limit rating, income, student, limit

TABLE 6.1. The first four selected models for best subset selection and
forward stepwise selection on the Credit data set. The first three
models are identical but the fourth models differ.
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Subset selection

Backward stepwise selection

• Start with the largest model (all p inputs in).

• Find the best (p− 1)-variable model, by reducing one from the
largest model

• Find the best (p− 2)-variable model, by reducing one variable
from the best (p− 1)-variable model.

• Find the best (p− 3)-variable model, by reducing one variable
from the best (p− 2)-variable model.

• ....

• Find the best 1-varible model, by reducing one variable from the
best 2-variable model.

• The null model.
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Subset selection

The algorithm of backward stepwise
selection

• Step 1. Let Mp be the full model.

• Step 2. For k = p, p− 1, ..., 1,
Consider all k models that contain all but one of the predictors in
Mk for a total of k − 1 predictors
Choose the best among these k models, and call it Mk−1. Here
best is defined as having smallest RSS or highest R2.

• Step 3. Select a single best model from M0, ...,Mp by cross
validation or AIC or BIC or Cp or adjusted R2.
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Subset selection

Pros and Cons of backward stepwise
selection

• Less computation

• Less models (
∑p−1

k=0(p− k) = 1 + p(p+ 1)/2 models).

• (if p = 20, only 211 models, compared with more than 1 million
models for best subset selection).

• Once an input is out, it does not get in.

• No applicable to the case with p > n.
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Subset selection

Find the best model based on prediction
error.

• Validation/cross-validation approach (addressed in Chapter 5).

• Use Adjusted R2, AIC, BIC or Cp (addressed in Chapter 3).
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Subset selection

Example
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Figure: 6.2. Cp, BIC, and adjusted R2 are shown for the best models of each
size for the Credit data set (the lower frontier in Figure 6.1). Cp and BIC are
estimates of test MSE. In the middle plot we see that the BIC estimate of test
error shows an increase after four variables are selected. The other two plots
are rather flat after four variables are included.
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Subset selection

Example
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Figure: 6.3. For the Credit data set, three quantities are displayed for the best
model containing d predictors, for d ranging from 1 to 11. The overall best
model, based on each of these quantities, is shown as a blue cross. Left:
Square root of BIC. Center: Validation set errors (75% training data). Right:
10-fold Cross-validation errors.
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Subset selection

The one standard deviation rule

• In the above figure, model with 6 inputs do not seem to be much
better than model with 4 or 3 inputs.

• Keep in mind the Occam’s razor: Choose the simplest model if
they are similar by other criterion.
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Subset selection

The one standard deviation rule

• Calculate the standard error of the estimated test MSE for each
model size,

• Consider the models with estimated test MSE of one standard
deviation within the smallest test MSE.

• Among them select the one with the smallest model size.

• (Apply this rule to the Example in Figure 6.3 gives the model with
3 variable.)
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Shrinkage methods

Ridge Regression

• The least squares estimator β̂ is minimizing

RSS =

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2

• The ridge regression β̂R
λ is minimizing

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 + λ

p∑
j=1

β2
j

where λ ≥ 0 is a tuning parameter.

• The first term measuares goodness of fit, the smaller the better.

• The second term λ
∑p

j=1 β
2
j is called shrikage penalty, which

shrinks βj towards 0.

• The shrinkage reduces variance (at the cost increased bias)!
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Shrinkage methods

Tuning parameter λ.

• λ = 0: no penalty, β̂R
0 = β̂.

• λ = ∞: infinity penalty, β̂R
0 = 0.

• Large λ: heavy penalty, more shrinkage of the estimator.

• Note that β0 is not penalized.

Chapter 6 23 / 80



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Shrinkage methods

Stanardize the inputs.

• For j-th input Xj with obsevations: (x1j , ..., xnj), standarize it as

x̃ij =
xij − x̄j√

(1/n)
∑n

i=1(xij − x̄j)2

to get rid of the scale of Xj .

• Suggest to apply standardization before trying ridge regression.

• Least squares is unaffected by the scale of Xj . (i.e.,

Xj β̂j = (cXj)(β̂j/c))

• Ridge is affected by λ as well as the scale of the inputs.
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Shrinkage methods

Example
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Figure: 6.4. The standardized ridge regression coefficients are displayed for the

Credit data set, as a function of λ and ∥β̂R
λ ∥2/∥β̂∥2. Here ∥a∥2 =

√∑p
j=1 a

2
j .
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Shrinkage methods

Bias-variance tradeoff (why ridge
improves over LSE)
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Figure: 6.5. Simulated data (p = 45, n = 50). Squared bias (black), variance
(green), and test mean squared error (purple) for the ridge regression

predictions on a simulated data set, as a function of λ and ∥β̂R
λ ∥2/∥β̂∥2. The

horizontal dashed lines indicate the minimum possible MSE. The purple
crosses indicate the ridge regression models for which the MSE is smallest.
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Shrinkage methods

Remark.

• Suppose the response and the predictors is close to linear.

• the least squares estimates will have low bias.

• It may have high variance for relatively large p: small change in
the training data can cause a large change in the least squares
coefficient estimates.

• For large p, as in the example in Figure 6.5, the least squares
estimates will be extremely variable.

• If p > n, then the least squares estimates do not even have a
unique solution
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Shrinkage methods

Remark.

• If p > n, ridge regression can still perform well by trading off a
small increase in bias for a large decrease in variance.

• Ridge regression works best in situations where the least squares
estimates have high variance.

• Ridge regression also has substantial computational advantages

•
β̂R
λ = (XTX) + λI)−1XTy

where I is p+ 1 by p+ 1 diagnal with diagonal elements
(0, 1, 1, ..., 1).

Chapter 6 28 / 80



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Shrinkage methods

The Lasso

• Lasso stands for Least Absolute Shrinkage and Selection Operator.

• The Lasso estimator β̂L
λ is the minimizer of

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 + λ

p∑
j=1

|βj |

• We may use ∥β∥1 =
∑p

j=1 |βj |, which is the l1 norm.

• LASSO often shrinks coefficients to be identically 0. (This is not
the case for ridge)

• Hence it performs variable selection, and yields sparse models.
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Shrinkage methods

Example: Credit data.
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Figure: 6.6. The standardized lasso coefficients on the Credit data set are
shown as a function of λ and ∥β̂L

λ ∥1/∥β̂∥1.
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Shrinkage methods

Another formulation
• For Lasso: Minimize

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 subject to

p∑
j=1

|βj | ≤ s

• For Ridge: Minimize

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 subject to

p∑
j=1

β2
j ≤ s

• For l0: Minimize
n∑

i=1

(yi − β0 −
p∑

j=1

βjxij)
2 subject to

p∑
j=1

I(β ̸= 0) ≤ s

l0 method penalizes number of non-zero coefficients. A difficult
(NP-hard) problem for optimization.
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Shrinkage methods

Variable selection property for Lasso

Figure: 6.7. Contours of the error and constraint functions for the lasso (left)
and ridge regression (right). The solid blue areas are the constraint regions,
|β1|+ |β2| ≤ s and β2

1 + β2
2 ≤ s , while the red ellipses are the contours of the

RSS.
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Shrinkage methods

Simulated data as in Figure 6.5 for
comparing Lasso and ridge
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Figure: 6.8. Left: Plots of squared bias (black), variance (green), and test MSE (purple)

for the lasso on a simulated data set. Right: Comparison of squared bias, variance and test

MSE between lasso (solid) and ridge (dotted). Both are plotted against their R2 on the

training data, as a common form of indexing. The crosses in both plots indicate the lasso

model for which the MSE is smallest.
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Shrinkage methods

The Lasso

• In the previous example, ridge is slightly better than Lasso.

• The data in Figure 6.8 were generated in such a way that all 45
predictors were related to the response.

• None of the true coefficients β1, ..., β45 equaled zero.

• The lasso implicitly assumes that a number of the coefficients
truly equal zero.

• Not surprising that ridge regression outperforms the lasso in terms
of prediction error in this setting.

• In the next figure, only 2 out of 45 predictors are related with the
response.
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Shrinkage methods

Comparing Lasso and ridge, different
data
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Figure: 6.9. Left: Plots of squared bias (black), variance (green), and test MSE (purple)

for the lasso. The simulated data is similar to that in Figure 6.8, except that now only two

predictors are related to the response. Right: Comparison of squared bias, variance and test

MSE between lasso (solid) and ridge (dotted). Both are plotted against their R2 on the

training data. The crosses in both plots indicate the lasso model for which the MSE is

smallest. Chapter 6 35 / 80
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Shrinkage methods

Summary remark

• Both ridge and Lasso can improve over the traditional least
squares by trade off variance with bias.

• There are significant improvement when the variance of the least
squares is large, mostly with small n and large p.

• Lasso has feature selection, while ridge does not.

• Use cross validation to determine which one has better prediction.
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Shrinkage methods

Simple cases

• Ridge has closed form solution. Lasso generally does not have
closed form solution.

• Consider the simple model yi = βi + ϵi, i = 1, ..., n and n = p.
Then,
The least squares β̂j = yj ; the ridge β̂R

j = yj/(1 + λ)

The Lasso β̂L
j = sign(yj)(|yj | − λ/2)+.

• Slightly more generally, suppose input columns of the X are
standarized to be mean 0 and variance 1 and are orthogonal.

β̂R
j = β̂LSE

j /(1 + λ)

β̂L
j = sign(β̂LSE

j )(|β̂LSE
j | − λ/2)+

for j = 1, ..., p.
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Shrinkage methods

Example
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Figure: 6.10. The ridge regression and lasso coefficient estimates for a simple
setting with n = p and X a diagonal matrix with 1s on the diagonal. Left:
The ridge regression coefficient estimates are shrunken proportionally towards
zero, relative to the least squares estimates. Right: The lasso coefficient
estimates are soft-thresholded towards zero.

Chapter 6 38 / 80



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Shrinkage methods

Bayesian interpretation

• Suppose β = (β0, ..., βp) are random variables with a prior
distribution p(·).

• Given β and the input X, Y has conditional density f(y|X,β).

• The posterior distribution of the parameter β is

p(β|X,Y ) ∝ f(Y |X,β)p(β|X) = f(Y |X,β)p(β)

The proporionality means a constant (not related with β)
multiplier. (β and X are independent.)
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Shrinkage methods

Bayesian interpretation

• Now consider the linear regression model,
Y = β0 +X1β1 + ...+Xpβp + ϵ, with ϵ conditioning on X follows
N(0, σ2).

• If the β has the normal prior, the prior of β following normal
distribution with mean 0 then the posterior mode for β is ridge
estimator.

• If the β has the double exponential prior:

f(t) = λe−λ|t|/2

the prior of β following normal distribution with mean 0 then the
posterior mode for β is ridge estimator.
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Shrinkage methods

The Gaussian and double expoential
curves
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Figure: 6.11. Left: Ridge regression is the posterior mode for β under a
Gaussian prior. Right: The lasso is the posterior mode for β under a
double-exponential prior.
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Shrinkage methods

Tuning parameter selection by
cross-validation: Credit data
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Figure: 6.12. Left: Cross-validation errors that result from applying ridge
regression to the Credit data set with various value of λ. Right: The
coefficient estimates as a function of λ. The vertical dashed lines indicate the
value of λ selected by cross-validation.
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Shrinkage methods

Example
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Figure: 6.13. Left: Ten-fold cross-validation MSE for the lasso, applied to the
sparse simulated data set from Figure 6.9. Right: The corresponding lasso
coefficient estimates are displayed. The vertical dashed lines indicate the lasso
fit for which the cross-validation error is smallest.
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Dimension reduction methods (using derived inputs)

Dimension reduction methods (using
derived inputs)

• When p is large, we may consider to regress on, not the orignal
inputs X1, ..., Xp, but some small number of derived inputs
Z1, ..., ZM with M < p.

yi = θ0 +

M∑
m=1

θmzm + ϵi, i = 1, ..., n.

• A natural choice of Zi is through linear combination of X1, ..., Xp

Zm =

p∑
j=1

ϕjmXj
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Dimension reduction methods (using derived inputs)

• Essentially still a linear model with inputs X1, ...Xp but with
restricted parameters

βj =

M∑
m=1

θmϕjm

• A key step is how to determine the linear combination.
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Dimension reduction methods (using derived inputs)

Principal Components as major
statistical methodology

• Let

X =

X1
...
Xp


be the random vector of p dimension that we are concerned with.
For example, X may represent the returns of p stocks. As before,
we use

Σ = var(X) =

σ11 · · · σ1p
...

...
...

σp1 · · · σpp

 , where σkl = cov(Xk, Xl).

to denote the variance matrix X.
The mean of X plays no role in PCs, and we assume here
E(X) = 0 for convenience.
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Dimension reduction methods (using derived inputs)

PCA
• By matrix singular value decomposition, we know

Σ = eΛe′

where

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λp

 with λ1 ≥ · · · ≥ λp > 0

and

e = (e1
... · · ·

...ep) =

e11 · · · e1p
...

...
...

ep1 · · · epp

 is an orthonormal matrix,

i.e., ee′ = Ip. Note that e is a p× p matrix and ek is its k-th
column and therefore is a p-vector. And (λk, ek), k = 1, ..., p, are
the eigenvalue-eigenvector pairs of the matrix Σ.Chapter 6 47 / 80
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Dimension reduction methods (using derived inputs)

PCA

• The variation of a one dimensional random variable can be
quantified by its variance.
For a random variable X of p-dimension, its variation, fully
described by its variance matrix Σ. One commonly used
quantification of the total “amount” of variation of X is the trace
of Σ, trace(Σ).
Suppose we wish to use one single variable (1-dim) to maximumly
quantify the variation of all p variables, say through linear
combination of the components of X. We may try to construct it
so that its variance is the largest.
Let Y1 = aTX, where a is a p-dimensional constant vector. Then

var(Y1) = aTvar(X)a = aTΣa.
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Dimension reduction methods (using derived inputs)

PCA

• We wish to identify a Y1, so that its variance is the largest. This
variance depends on the scale of a, which can be measured by its
Euclidean norm.

• A fair comparison should require a to be of a fixed norm, say norm
1.

• The problem becomes searching for a of unit norm such that
var(Y1) is the largest, i.e.,

a = argmax{bTΣb : ∥b∥ = 1}.

• Recall the singular value decomposition, Σ = eΛeT and that
(λi, ei) are eigenvalue-eigenvalue pairs, such that λ1 ≥ ... ≥ λp.
Notice that ei are orthogonal to each other with unit norms.

• It follows that the solution is e1. That is, Y1 = eT1 X achieves the
maximum variance which is λ1. And we call this Y1 the first
principal component.
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Dimension reduction methods (using derived inputs)

• After finding the first principal component that is the “most
important”, one can mimic the procedure to find the “second most
important” variable: Y2 = aTX, such that

a = argmax{bTΣb : ∥b∥ = 1,b⊥e1}

Note that b⊥e1 is equivalent to the zero correlation between Y1
and the search space of of Y2.

• This implies we are looking the “second most important” in an
attempt to explain most of the variation in X not explained by Y1.
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Dimension reduction methods (using derived inputs)

PCA

• Along the line, one can formulate the second, third ... p-th
principal components. Mathematically, the solutions are:

Yk = eTkX, k = 1, ..., p

where Yk is the k-th principal component with variance λk. Note
again that

var(y) = Λ =

λ1

. . .

λp

 (1)

It implies the principal components are orthorganal to each other,
and the first being most important, second being the second most
important, ..., with the importance measured by their variances.
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Dimension reduction methods (using derived inputs)

A summary

• Set

Y =

Y1
...
Yp

 = e′(X − µ) =

e′1
...
e′p

 (X − µ).

Clearly, Yj = e′j(X − µ). By a simply calculation,

var(Y ) = e′var(X)e = e′Σe = e′eΛe′e = Λ.

In particular, var(Yj) = λj , j = 1, ..., p, and cov(Yk, Yl) = 0, for
1 ≤ k ̸= l ≤ p.
Then, Yj is called the j-th population P.C. The interpretation of
the P.C.s is presented in the following.
To make it clearer, we call a linear combination of X, b′X with
∥b∥ = 1 a unitary linear combination.
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Dimension reduction methods (using derived inputs)

• (1). The first P.C. Y1 explains the most variation among all
unitary linear combinations of X. Namely,

var(Y1) = λ1 = max{var(b′X) : ∥b∥ = 1, b ∈ Rp}.
The fraction of total variation of X explained by Y1 is

var(Y1)

var(Y1) + · · ·+ var(Yp)
=

λ1

λ1 + · · ·+ λp
.

Note that λ1 + · · ·+ λp = trace(Σ) is used to measure total
variation of X.

• (2). The k-th P.C. Yk explains the most variation not explained by
the previous k − 1 P.C.s Y1, ..., Yk−1 among all unitary linear
combination. Specifically,

var(Yk) = λk = max{var(b′X) : ∥b∥ = 1, b′X⊥Y1, ..., b′X⊥Yk−1, b ∈ Rp}
Here and throughout, ⊥ means 0 correlation. The fraction of total
variation of X explained by Yk is

var(Yk)

var(Y1) + · · · var(Yp)
=

λk

λ1 + · · ·λp
.
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Dimension reduction methods (using derived inputs)

A summary table of PCs

eigenvalue eigenvector percent of P.C.s as
(variance) (combination variation linear combination

coefficient) explained of X − µ
1st P.C. Y1 λ1 e1 λ1/

∑p
j=1 λj Y1 = e′1(X − µ)

2nd P.C. Y2 λ2 e2 λ2/
∑p

j=1 λj Y2 = e′2(X − µ)
...

...
...

...
...

...
p-th P.C. Yp λp ep λp/

∑p
j=1 λj Y1 = e′p(X − µ)
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Dimension reduction methods (using derived inputs)

Ramarks

• Note that ej = (e1j , ..., epj)
′ is the j-th column of e. As the P.C.s

are orthogonal to each other (0 correlated), the part of variation
explained by each P.C.s are distinct or non-overlapping with each
other.

• The relative size of the variance of a P.C. or the percentage of
total variation explained measures the importance of the P.C..
Thus the 1st P.C. is the most important, the 2nd P.C. the 2nd
important, and so on.
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Dimension reduction methods (using derived inputs)

• It is often desired to reduce the number of variables, especially
when the number of variables in concern are too many. But the
reduction must be done without much loss of information. P.C.s
provide an ideal way of such reduction. One may retain the first k
P.C.s, which altogether explains

λ1 + · · ·+ λk

λ1 + · · ·+ λp

of the total variation.
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Dimension reduction methods (using derived inputs)

Viewpoint from the autoencoder

• The autoencoding is an important part of the deep learning
technology.

• It involves representing the variables in two-steps: encoding and
decoding; and the PCA serves as a basic example.

• For X to Y (the principal components) is the encoding step and
from Y back to X is the decoding step.

X
encoding

=⇒
Y = eTX

decoding

=⇒
X = e

Or, specifically,

X
encoding

=⇒
Yk = eTkX, k = 1, ..., p.

decoding

=⇒
X =

p∑
k=1

Ykek
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Dimension reduction methods (using derived inputs)

• The preceeding representation is only mathematically useful.

• only the first few, say r, important principal compoents are
retained. And the process becomes

X
encoding

=⇒
Yk = eTkX, k = 1, ..., r.

decoding

=⇒
X∗ =

r∑
j=1

Yjej .

• A simpler view is that encoding is the zipping of original variales
or data, and decoding is the unzipping of the encoded variables or
data.
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Dimension reduction methods (using derived inputs)

• The population P.C.s are only theoretical, in data analysis we
need to work with their sample analogues: the sample P.C.s.
Suppose there are n observations of p variables presented as

X =
(
X(1)

...X(2)

... · · ·
...X(p)

)
=

x11 · · · x1p
...

...
...

xn1 · · · xnp


n×p

.

Then X(k), an n-vector, contains all n observations of the k-th
variable.
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Dimension reduction methods (using derived inputs)

• Let S be the sample variance matrix. By decomposition,

S = êΛ̂ê′

Let

Yn×p =
(
Y(1)

...Y(2)
... · · ·

...Y(p)

)
=

(
X(1) − X̄1

...X(2) − X̄2
... · · ·

...X(p) − X̄p

)
ê

where X̄k = (1/n)
∑n

i=1 xik is the sample average of the n
observations of the k-th variable.
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Dimension reduction methods (using derived inputs)

A summary of sample P.C.s

eigenvalue eigenvector percent of P.C.s as
(variance) (combination variation linear combination

coefficient) explained of X − µ

1st P.C. Y(1) λ̂1 ê1 λ̂1/
∑p

j=1 λ̂j Y(1) =
∑p

j=1 êj1(X(j) − X̄1)

2nd P.C. Y(2) λ̂2 ê2 λ̂1/
∑p

j=1 λ̂j Y(2) =
∑p

j=1 êj2(X(j) − X̄1)

...
...

...
...

...
...

p-th P.C. Y(p) λ̂p ê1 λ̂p/
∑p

j=1 λ̂j Y(p) =
∑p

j=1 êjp(X(j) − X̄1)
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Dimension reduction methods (using derived inputs)

• Interpretations analogous to the population P.C.s applies to the
sample P.C.s. We omit the details.
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Dimension reduction methods (using derived inputs)

Principal component regression.

• Key assumption: a small number of principal components suffice
to explain most of the variability in the data, as well as the
relationship with the response.

• Choose Z1, .., ZM as the first M principal components.

• This assumption may not hold !!!
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Dimension reduction methods (using derived inputs)

Example
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Figure: 6.18. PCR was applied to two simulated data sets. Left: Simulated
data from Figure 6.8. Right: Simulated data from Figure 6.9. In comparison
with figures 6.5, 6.8, 6.9, PCR does not perform as well as ridge or Lasso.
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Dimension reduction methods (using derived inputs)

Example
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Figure: 6.19. PCR, ridge regression, and the lasso were applied to a simulated
data set in which the first five principal components of X contain all the
information about the response Y . In each panel, the irreducible error var(ϵ)
is shown as a horizontal dashed line. Left: Results for PCR. Right: Results for
lasso (solid) and ridge regression (dotted). The x-axis displays the shrinkage
factor of the coefficient estimates, defined as the l2 norm of the shrunken
coefficient estimates divided by the l2 norm of the least squares estimate.
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Dimension reduction methods (using derived inputs)

Example
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Figure: 6.20. Left: PCR standardized coefficient estimates on the Credit data
set for different values of M . Right: The ten-fold cross validation MSE
obtained using PCR, as a function of M .
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Dimension reduction methods (using derived inputs)

Partial least squares approach

• Principal components are designed to explain variation within X,
not the relation of X with Y .

• The key assumption with principal components regression may not
hold.

• Partial least squares approach avoids this shortcoming.
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Dimension reduction methods (using derived inputs)

Partial least squares approach

• standardize each input xj to have mean 0 and variance 1. set

ŷ(0) = ȳ1 and x
(0)
j = xj .

• For m = 2, ..., p,

zm =
∑p

j=1 ϕ̂mjx
(m−1)
j , where ϕ̂mj = yTx

(m−1)
j .

θ̂m = zTmy/zTmzm
ŷ(m) = ŷ(m−1) + θ̂mzm.

x
(m)
j = x

(m−1)
j − sjmzm, where sjm = zTmx

(m−1)
j /zTmzm

• β̂pls(m) = (XTX)−1XTy(m)

Chapter 6 68 / 80



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dimension reduction methods (using derived inputs)

Example
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Figure: 6.21. For the advertising data, the first PLS direction (solid line) and
first PCR direction (dotted line) are shown.Chapter 6 69 / 80
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Dimension reduction methods (using derived inputs)

Partial least squares approach

• Partial least squares puts more weights on the variables with
higher correlation with the response.

• It seeks the directions that have high variance and have high
correlation with the reposne (while PCR only seeks those direction
with high variance.)

• But it generally has lower bias but higher variance than PCR

• Popular in chemometrics.

• Many studies show it does not outperform other regularization
methods such as ridge or Lasso or even PCR.
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High dimension data analysis

General remark

• Digitization of the society brings big data.

• Many of the datasets contain large number of varaibles.

• It is common that p >> n.

• Example: predition of blood pressure.
Response: blood pressure.
Inputs: SNPs; (Individual DNA mutations).
n may be of hundreds, but p can be of millions.
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High dimension data analysis

The trouble

• Large p makes our linear regression model too flexible (or too
large).

• It can easily lead to overfit.

• If p > n, the LSE is not even uniquely determined.

• A common phenomenon: small training error, but large test error.
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High dimension data analysis

Example: low dimension
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Figure: 6.22. Left: Least squares regression in the low-dimensional setting.
Right: Least squares regression with n = 2 observations and two parameters
to be estimated (an intercept and a coefficient).
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High dimension data analysis

Example: No relation and overfit
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Figure: 6.23. On a simulated example with n = 20 training observations, and
features that are completely unrelated to the outcome are added to the
model. Left: The R2 increases to 1 as more features are included. Center:
The training set MSE decreases to 0 as more features are included. Right:
The test set MSE increases as more features are included.
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High dimension data analysis

Deal with high dimensional data

• Fit less flexible models to avoid overfit.

• Use forward stepwise selection, ridge regression, the lasso, and
principal components regression

• Regularization or shrinkage plays important role.

• Tuning parameter choice
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High dimension data analysis

Example for curse of dimensionality
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Figure: 6.24. see next page
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High dimension data analysis

Figure 6.24. The lasso was performed with n = 100 observations and
three values of p, the number of features. Of the p features, 20 were
associated with the response. The boxplots show the test MSEs that
result using three different values of the tuning parameter λ in (6.7).
For ease of interpretation, rather than reporting , the degrees of
freedom are reported; for the lasso this turns out to be simply the
number of estimated non-zero coefficients. When p = 20, the lowest test
MSE was obtained with the smallest amount of regularization. When
p = 50, the lowest test MSE was achieved when there is a substantial
amount of regularization. When p = 2, 000 the lasso performed poorly
regardless of the amount of regularization, due to the fact that only 20
of the 2,000 features truly are associated with the outcome.
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High dimension data analysis

Caution when p > n.

• Extreme multicollinearity.

• Refrain from over-statement. (What we find may be one of many
possible models.)

• Avoid using sum of squares, p-values, R2, or other traditional
measures of model on training as evidence of good fit.

• Place more emphasis on test error or cross validation error.
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High dimension data analysis

Exercises

Exercise 6.8 of ISLR: Problems 2-7.
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High dimension data analysis

End of Chapter 6.
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