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1 8.1 The basics of decision trees.

2 8.2 Bagging, random forests and boosting
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About this chapter

• Decisions trees: splitting each variable sequentially, creating
rectugular regions.

• Making fitting/prediction locally at each region.

• It is intuitive and easy to implement, may have good interpreation.

• Generally of lower prediction accuracy.

• Bagging, random forests and boosting ... make fitting/prediction
based on a number of trees.

• Bagging and Boosting are general methodologies, not just limited
to trees.
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8.1 The basics of decision trees.

Regression trees

• Trees can be applied to both regression and classifcation.

• CART refers to classification and regression trees.

• We first consider regression trees through an example of predicting
Baseball players’ salaries.
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8.1 The basics of decision trees.

The Hitters data

• Response/outputs: Salary.

• Covarites/Inputs:
Years (the number of years that he has played in the major
leagues)
Hits (the number of hits that he made in the previous year).

• preparing data: remove the observations with missing data and
log-transformed the Salary (preventing heavy right-skewness)

Chapter 8 5 / 55



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

8.1 The basics of decision trees.

|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74

Figure: 8.1. Next page
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8.1 The basics of decision trees.

Figure 8.1. For the Hitters data, a regression tree for predicting the log
salary of a baseball player, based on the number of years that he has
played in the major leagues and the number of hits that he made in the
previous year. At a given internal node, the label (of the form Xj < tk)
indicates the left-hand branch emanating from that split, and the
right-hand branch corresponds to Xj ≥ tk. For instance, the split at
the top of the tree results in two large branches. The left-hand branch
corresponds to Years< 4.5, and the right-hand branch corresponds to
Years≥ 4.5. The tree has two internal nodes and three terminal nodes,
or leaves. The number in each leaf is the mean of the response for the
observations that fall there.
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8.1 The basics of decision trees.

Years

H
it
s

1

117.5

238

1 4.5 24

R1

R3

R2

Figure: 8.2. The three-region partition for the Hitters data set from the
regression tree illustrated in Figure 8.1.
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8.1 The basics of decision trees.

Estimation/prediction

• On Regions R1, R2, R3, the mean-log-salary is 5.107, and 6.74.

• Our prediction for any players in R1, R2 and R3 are, respectively
1000× e5.107 = $165, 174, 1, 000× e5.999 = $402, 834, and
1, 000× e6.740 = $845, 346.

Chapter 8 9 / 55



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

8.1 The basics of decision trees.

Estimation/prediction

• Trees involve a series of splittings of the data, each time by one
variable.

• The series of actions taken place sequentially creates a tree-like
results.

• As in Figure 8.1, the terminal nodes are the three indexed by the
numbers, which represent the regions R1, R2 and R3. These
regions constitute he final partiation of the data.

• Terminal nodes are also called leaves.

• Each internal node represents a splitting,

• In Figure 8.1, the two internal nodes are indexed by Y < 4.5 and
Hits < 117.5.

• The lines connecting nodes are called branches.

• Trees are typically drawn upside down.
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8.1 The basics of decision trees.

Two step towards prediction

• Run the splitting according to input values sequentially, and
obtain final partition of the data in regions R1, ..., RJ .

• For any new observation with covariates in region Rk, we predict
its response by the average of the reponses of the data points in
region Rk.
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8.1 The basics of decision trees.

How to split

• Suppose we wish to partition a region R. In other words, we wish
to separate the data in region R into two parts, day R1 and R2,
according to one input values.

• What would be the optimal or efficient split in some sense?

• Only two flexibility in the split: 1. Choice of the input variable to
split, 2. the cutpoint of the split of that chose input.

• Imagine that this is the final split of R: R1 and R2 would be
leaves.
And we would use the mean response of data in R1 and R2 to
predict the response of any new/old observations.
We wish our choice of R1 and R2 would be optimal in the sense of
achieving miminum prediction error on the training data in region
R.
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8.1 The basics of decision trees.

Recursive binary splitting

• A greedy algorithm (geedy means it is optimal at the current step):
For j = 1, ..., p and all real value s, let R1(j, s) = {i ∈ R : Xj < s}
and R2(j, s) = {i ∈ R : Xj ≥ s}. And let ŷ1 and ŷ2 be the mean
response of all observations in R1(j, s) and R2(j, s), respectively.
Consider the following prediction error:

RSSnew =
∑

i∈R1(j,s)

(yi − ŷ1)
2 +

∑
i∈R2(j,s)

(yi − ŷ2)
2

Choose the split which has the smallest prediction error. This split
is the optimal one, denoted as R1 and R2.

• Continue the split till the final partition.
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8.1 The basics of decision trees.

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4
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8.1 The basics of decision trees.

Figure 8.3. Top Left: A partition of two-dimensional feature space that
could not result from recursive binary splitting. Top Right: The
output of recursive binary splitting on a two-dimensional example.
Bottom Left: A tree corresponding to the partition in the top right
panel. Bottom Right: A perspective plot of the prediction surface
corresponding to that tree.
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8.1 The basics of decision trees.

When to stop split

• The problem of when to stop.

• If too many steps of splitting: many leaves, too complex model,
small bias but large variance, may overfit.

• If too few steps of splitting: few leaves, too simple model, large
bias but small variance, may underfit.
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8.1 The basics of decision trees.

One natural idea

• When splitting R into R1 and R2, consider the RSS before the split

RSSold =
∑
i∈R

(yi − ŷ)2

where ŷ is the average of the response of data in R. With the
optimal split, the reduction of RSS is

RSSold − RSSnew

• We can pre-choose a threshold, h, and decide the worthiness of the
split.

• If the reduction is smaller than h, we do not do it, and stop right
there; then R is one terminal node (a leave).

• If the reduction is greater than h, we make the split, and continue
with next step.
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8.1 The basics of decision trees.

One natural idea

• The idea is seemingly reasonable, but is too near-sighted.

• Only look at the effect of the current split.

• It is possible that even if the current split is not effective, the
future splits could be effective and, maybe, very effective.
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8.1 The basics of decision trees.

Tree pruning

• Grow a very large tree.

• Prune the true back to obtain a subtree.

• Objective: find the subtree that has the best test error.

• Cannot use cross-validation to examine the test errors for all
possible subtrees, since there are just too many.

• Even if we can, this would probably be overfitting, since model
space is too large.
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8.1 The basics of decision trees.

Cost complexity pruning

• Let T0 be the original (large) tree. Let T be any subtree. Use |T0|
and |T | to denote their numbers of teminal nodes, which represent
complexity.

• Consider “Loss + Penalty”:

T∑
m=1

∑
i∈Rm

(yi − ŷm)2 + α|T |

where Rm are the terminal nodes of the subtree T , and the mean
response of Rm is ŷm; α is tuning parameter.

• Denote the minimized subtree as Tα.

• If α = 0, no penalty the optimal tree is the original T0.

• If α =∞, the tree has no split at all. The predictor is just ȳ.

• The larger the α, the more penalty for model complexity.
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8.1 The basics of decision trees.

Cost complexity pruning

• Just like Lasso, there exists efficient computation algorithm to
compute the entire sequence of Tα for all α.

• Use cross-validation to find the best α to minimize the test error.
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8.1 The basics of decision trees.

The algorithm

• 1. Use recursive binary splitting to grow a large tree on the
training data, stopping only when each terminal node has fewer
than some minimum number of observations.

• 2. Apply cost complexity pruning to the large tree in order to
obtain a sequence of best subtrees, as a function of α.
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8.1 The basics of decision trees.

The algorithm

• 3. Use K-fold cross-validation to determine best α. That is, divide
the training observations into K folds. For each k = 1, ...,K
(a) Repeat Steps 1 and 2 on all but the kth fold of the training
data.
(b) Evaluate the mean squared prediction error on the data in the
left-out k-th fold, as a function of α.
(c) Average the results for each value of α, and pick α to minimize
the average error.

• 4. Return the subtree from Step 2 that corresponds to the chosen
value of α.
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8.1 The basics of decision trees.

|
Years < 4.5

RBI < 60.5

Putouts < 82

Years < 3.5

Years < 3.5

Hits < 117.5

Walks < 43.5

Runs < 47.5

Walks < 52.5

RBI < 80.5

Years < 6.5

5.487

4.622 5.183

5.394 6.189

6.015 5.571
6.407 6.549

6.459 7.007
7.289

Figure: 8.4. Regression tree analysis for the Hitters data. The unpruned tree
that results from top-down greedy splitting on the training data is shown.
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8.1 The basics of decision trees.
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Cross−Validation

Test

Figure: 8.5. Regression tree analysis for the Hitters data. The training,
cross-validation, and test MSE are shown as a function of the number of
terminal nodes in the pruned tree. Standard error bands are displayed. The
minimum cross-validation error occurs at a tree size of three.
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8.1 The basics of decision trees.

Classification trees

• Regression has numerical responses; and classification has
qualitative responses.

• Recall that for regression trees, we chose to obtain the greatest
reduction of RSS.
RSS is using sum of squares to measure the error.

• For classification trees, one can follow the same line of procedure
as that of regression trees, but using error measurements that are
more appropriate for classification.
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8.1 The basics of decision trees.

Classification error rates

• For a region R, let p̂k be the percentage of observations in this
region that belong to class k.

• We assign any new observation in region R as from the class with
largest p̂k, which is the so-called most commonly occuring class in
training data.
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8.1 The basics of decision trees.

The impurity measure

• The classification error rate (for this region R) is

E = 1−maxkp̂k.

• The Gini index is

G =

K∑
k=1

p̂k(1− p̂k)

• The cross-entropy is

D = −
K∑
k=1

p̂k log(p̂k)

.
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8.1 The basics of decision trees.

• If R is nearly pure, most of the observations are from one class,
then the Gini-index and cross-entropy would take smaller values
than classfication error rate.

• Gini-index and cross-entropy are more sentive to node purity.

• To evaluate the quality of a particluar split, the Gini-index and
cross-entropy are more popularly used as error measurement
crietria than classification error rate.

• Any of these three approaches might be used when pruning the
tree.

• The classification error rate is preferable if prediction accuracy of
the final pruned tree is the goal.
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8.1 The basics of decision trees.

|
Thal:a

Ca < 0.5

MaxHR < 161.5

RestBP < 157

Chol < 244
MaxHR < 156

MaxHR < 145.5

ChestPain:bc

Chol < 244 Sex < 0.5

Ca < 0.5

Slope < 1.5

Age < 52 Thal:b
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RestECG < 1

No Yes
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No No No Yes

Yes No No

No Yes

Yes Yes

Yes

5 10 15

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Tree Size

E
rr

o
r

Training
Cross−Validation
Test

|
Thal:a

Ca < 0.5
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8.1 The basics of decision trees.

Figure 8.6. Heart data. Top: The unpruned tree. Bottom Left:
Cross-validation error, training, and test error, for different sizes of the
pruned tree. Bottom Right: The pruned tree corresponding to the
minimal cross-validation error.
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8.1 The basics of decision trees.

Trees vs. Linear models

• For regression model:
Y = f(X) + ϵ

• Linear model assumes

f(X) = β0 +

p∑
j=1

Xjβj

• Regression trees assume

f(X) =

M∑
j=1

cm1(X ∈ Rm)

where R1, ..., RM are rectagular partitions of the input space.

• If the underlying realation is close to linear, linear model is better.
Otherwise, regression trees are generally better. (Useless
comments)
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8.1 The basics of decision trees.
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8.1 The basics of decision trees.

Figure 8.7. Top Row: A two-dimensional classification example in
which the true decision boundary is linear, and is indicated by the
shaded regions. A classical approach that assumes a linear boundary
(left) will outperform a decision tree that performs splits parallel to the
axes (right). Bottom Row: Here the true decision boundary is
non-linear. Here a linear model is unable to capture the true decision
boundary (left), whereas a decision tree is successful (right).
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8.1 The basics of decision trees.

Advantages of Trees

• Trees are very easy to explain to people. In fact, they are even
easier to explain than linear regression!

• Some people believe that decision trees more closely mirror human
decision-making than do the regression and classification
approaches seen in previous chapters.

• Trees can be displayed graphically, and are easily interpreted even
by a non-expert (especially if they are small).

• Trees can easily handle qualitative predictors without the need to
create dummy variables.
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8.1 The basics of decision trees.

Disadvantages of Trees

• Trees generally do not have the same level of predictive accuracy
as some of the other regression and classification approaches seen
in this book.

• Trees can be very non-robust. In other words, a small change in
the data can cause a large change in the final estimated tree.

• However, by aggregating many decision trees, using methods like
bagging, random forests, and boosting, the predictive performance
of trees can be substantially improved. We introduce these
concepts in the next section.
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8.2 Bagging, random forests and boosting

Bagging (Boostrap Aggregating)

• A general purpose procedure to reduce variance of a learning
method.

• A model averaging technique.

• Decision tree is generally a high variance method. (Apply the
method based on different data based on same sampling scheme
would lead to very different result.)

• Average of iid random variables would have a reduced variance
σ2/n
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8.2 Bagging, random forests and boosting

The procedure.

• Model
yi = f(xi) + ϵi, i = 1, ..., n.

• Suppose a statistical learning method gives f̂(·) based on the
training data (yi, xi), i =, 1..., n.

• For example,

1 Linear model: f̂(x) = β̂0 + β̂Txi

2 KNN: f̂(x) =
∑J

j=1 ȳR̃j
with least distance to K-cluster partition.

3 Decision tree: f̂(x) =
∑J

j=1 ȳRj
with rectangular partition.

4 ...
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8.2 Bagging, random forests and boosting

The procedure of Bagging

• Data (yi, xi), i = 1, ..., n; and a learning method f̂

• Draw a boostrap sample from the data, and compute a f̂∗
1 based

on this set of bootstrap sample.

• Draw another boostrap sample from the data, and compute a f̂∗
2

based on this set of bootstrap sample.

• ....

• Repeat M times, obtain f̂∗
1 , ...., f̂

∗
M .

• Produce the learning method with bagging as

1

M

M∑
j=1

f̂∗
j
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8.2 Bagging, random forests and boosting

The Bagging

• Bagging is general-purpose.

• It works best for high variance low bias learning methods.

• This is the case for decision trees, particularly deep trees.

• Also the case for large p.

• If the response is qualitative, we can take the majority vote (not
averaging) of the predicted class based on all learning methods
based on boostrap samples.
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8.2 Bagging, random forests and boosting
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Figure: 8.8. Bagging and random forest results for the Heart data. The test error (black
and orange) is shown as a function of B, the number of bootstrapped training sets used.
Random forests were applied with m =

√
p. The dashed line indicates the test error

resulting from a single classification tree. The green and blue traces show the OOB error,
which in this case is considerably lower
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8.2 Bagging, random forests and boosting

Out-of-Bag (OOB) error estimation

• Estimation of test error for the bagged model.

• For each bootstrap sample, observation i is bootstrap sampled
with probabilty (1− 1/n)n ≈ 1/e.

• For each bootstrap sample, the number of observations not taken
into this bootstrap sample is n(1− 1/n)n ≈ n/e. These are
referred to as out-of-bag (OOB) observations.

• For totally B bootstrap samples, about B/e times, the bootstrap
sample does not contain observation i.

• The trees based on these bootstrap sample can be used to predict
the response of observation i. Tatoally about B/e predictions.

• We average these predictions (for regression) or take majority vote
(for classification) to produce the Bagged prediction for
observation i, denote it as f̂∗(xi).
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8.2 Bagging, random forests and boosting

Out-of-Bag (OOB) error estimation

• The OOB MSE is
n∑

i=1

(yi − f̂∗(xi))
2

• The OOB classification error is

n∑
i=1

I(yi /∈ f̂∗(xi))

• The resulting OOB error is a valid estimate of the test error for the
bagged model, since the response for each observation is predicted
using only the trees that were not fit using that observation.

• It can be shown that with B sufficiently large, OOB error is
virtually equivalent to leave-one-out cross-validation error.
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8.2 Bagging, random forests and boosting

Variable importance measures

• Bagging improves prediction accuracy at the expense of
interpretability.

• An overall summary of the importance of each predictor using the
RSS (for bagging regression trees) or the Gini index (for bagging
classification trees).

• Bagging regression trees, we can record the total amount that the
RSS is decreased due to splits over a given predictor, averaged
over all B trees.

• A large value indicates an important predictor.

• Bagging classification trees, we can add up the total amount that
the Gini index is decreased by splits over a given predictor,
averaged over all B trees.
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8.2 Bagging, random forests and boosting
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Figure: 8.9. A variable importance plot for the Heart data. Variable importance is
computed using the mean decrease in Gini index, and expressed relative to the maximum.
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8.2 Bagging, random forests and boosting

Random forest

• Same as bagging decision trees, except ...

• When building these decision trees, each time a split in a tree is
considered, a random sample of m predictors is chosen as split
candidates from the full set of p predictors

• Typically m ≈ √p.
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8.2 Bagging, random forests and boosting

Random forest

• Every step, the split is constrained on a small number m and
randomly selected inputs.

• Avoid all trees are too similar to each other.

• Too similar trees are too highly correlated, average highly
correlated trees cannot achieve large amount of variance reduction.

• Extreme case: If all trees are the same, average of them is still the
same one.

• Averaging uncorrelated or low-correlated trees can achieve large
amount of variance reduction.

• Random forest produces less correlated trees.

• Random forest reduces to bagging if m = p.
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8.2 Bagging, random forests and boosting
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Figure: 8.10. Results from random forests for the 15-class gene expression data set with
p = 500 predictors. The test error is displayed as a function of the number of trees. Each
colored line corresponds to a different value of m, the number of predictors available for
splitting at each interior tree node. Random forests (m < p) lead to a slight improvement
over bagging (m = p). A single classification tree has an error rate of 45.7%.
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8.2 Bagging, random forests and boosting

Boosting

• General purpose for improving learning methods by combining
many weaker learners in attempt to produce a strong learner.

• Like bagging, boosting involves combining a large number of
weaker learners.

• The weaker learners are created sequentially. (no boostrap
involved).

• Bagging create large variance and possibly over-fit boostrap
learners and try to reduce their variance by averaging.

• Boosting create weak learners sequentially and slowly (to avoid
over-fit).
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8.2 Bagging, random forests and boosting

Boosting

• Suppose we have model

yi = f(xi) + ϵi

and a learning method to produce f̂ based on (yi, xi), i = 1, .., n.

• Start with an initial predictor f̂ = 0. Let ri = yi.

• Start loop:

1 Fit the data (xi, ri), i = 1, .., n, to produce ĝ.

2 Update f̂ by f̂ + λĝ.
3 Update ri by ri − λĝ(xi).

• Continue the loop ... till a stop.

• Output f̂

• Note that the output f̂ is the sum of λĝ at each step.
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8.2 Bagging, random forests and boosting

Algorithm for tree boosting

• 1. Set f(x) = 0 and ri = yi for all i in the training set.

• 2. For b = 1, 2, ..., B, repeat:
1 Fit a tree with d splits (d+ 1 terminal nodes) to the training data

(xi, ri).

2 Update f̂ by adding in a shrunken version of the new tree:

f̂(x)← f̂(x) + λf̂b(x)

3 Update the residuals,

ri ← ri − λf̂b(xi) = yi − f̂(xi).

• 3. Output the boosted model f̂ . In fact,

f̂(x) =

B∑
i=1

λf̂ b(x).
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8.2 Bagging, random forests and boosting

Tuning parameters for boosting trees

• The number of trees B. Large B leads to overfit. (not a tuning
parameter for bagging)

• The learning rate λ.

• The number d in splits in each tree (the size of each tree). Often
d = 1 works well, in which case each tree is a stump, consisting of
a single split
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8.2 Bagging, random forests and boosting
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Figure: 8.11. Results from performing boosting and random forests on the 15-class gene
expression data set in order to predict cancer versus normal. The test error is displayed as a
function of the number of trees. For the two boosted models, λ = 0.01. Depth-1 trees
slightly outperform depth-2 trees, and both outperform the random forest, although the
standard errors are around 0.02, making none of these differences significant. The test error
rate for a single tree is 24%.
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8.2 Bagging, random forests and boosting

Exercises

Run the R-Lab codes in Section *.3 of ISLR
Exercises 1-4 and 7-8 of Section 8.4 of ISLR
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8.2 Bagging, random forests and boosting

End of Chapter 8.
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