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About this chapter

Decisions trees: splitting each variable sequentially, creating
rectugular regions.

Making fitting/prediction locally at each region.
It is intuitive and easy to implement, may have good interpreation.
Generally of lower prediction accuracy.

Bagging, random forests and boosting ... make fitting/prediction
based on a number of trees.

Bagging and Boosting are general methodologies, not just limited
to trees.
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8.1 The basics of decision trees.

Regression trees

e Trees can be applied to both regression and classifcation.
e CART refers to classification and regression trees.

e We first consider regression trees through an example of predicting
Baseball players’ salaries.
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8.1 The basics of decision trees.

The Hitters data

e Response/outputs: Salary.

e Covarites/Inputs:
Years (the number of years that he has played in the major
leagues)
Hits (the number of hits that he made in the previous year).

e preparing data: remove the observations with missing data and
log-transformed the Salary (preventing heavy right-skewness)
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8.1 The basics of decision trees.
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Figure: 8.1. Next page
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8.1 The basics of decision trees.

Figure 8.1. For the Hitters data, a regression tree for predicting the log
salary of a baseball player, based on the number of years that he has
played in the major leagues and the number of hits that he made in the
previous year. At a given internal node, the label (of the form X; < t;)
indicates the left-hand branch emanating from that split, and the
right-hand branch corresponds to X; > t;. For instance, the split at
the top of the tree results in two large branches. The left-hand branch
corresponds to Years< 4.5, and the right-hand branch corresponds to
Years> 4.5. The tree has two internal nodes and three terminal nodes,
or leaves. The number in each leaf is the mean of the response for the
observations that fall there.
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8.1 The basics of decision trees.
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Figure: 8.2. The three-region partition for the Hitters data set from the
regression tree illustrated in Figure 8.1.
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8.1 The basics of decision trees.

Estimation /prediction

e On Regions R;, Ro, R3, the mean-log-salary is 5.107, and 6.74.

e Our prediction for any players in Ry, Ro and R3 are, respectively
1000 x 5197 = $165, 174, 1,000 x €999 = $402, 834, and
1,000 x €574 = $845, 346.
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8.1 The basics of decision trees.

Estimation /prediction

Trees involve a series of splittings of the data, each time by one
variable.

The series of actions taken place sequentially creates a tree-like
results.

As in Figure 8.1, the terminal nodes are the three indexed by the
numbers, which represent the regions R, Ro and R3. These
regions constitute he final partiation of the data.

Terminal nodes are also called leaves.
Each internal node represents a splitting,

In Figure 8.1, the two internal nodes are indexed by Y < 4.5 and
Hits < 117.5.

The lines connecting nodes are called branches.

Trees are typically drawn upside down.
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8.1 The basics of decision trees.

Two step towards prediction

e Run the splitting according to input values sequentially, and
obtain final partition of the data in regions Ry, ..., RJ.

e For any new observation with covariates in region Ry, we predict
its response by the average of the reponses of the data points in
region Ry.
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8.1 The basics of decision trees.

How to split

Suppose we wish to partition a region R. In other words, we wish
to separate the data in region R into two parts, day R; and Ro,
according to one input values.

What would be the optimal or efficient split in some sense?

Only two flexibility in the split: 1. Choice of the input variable to
split, 2. the cutpoint of the split of that chose input.

Imagine that this is the final split of R: R; and Re would be
leaves.

And we would use the mean response of data in R and Ry to
predict the response of any new/old observations.

We wish our choice of Ry and Ry would be optimal in the sense of
achieving miminum prediction error on the training data in region

R.
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8.1 The basics of decision trees.

Recursive binary splitting

e A greedy algorithm (geedy means it is optimal at the current step):
For j =1,...,p and all real value s, let Ri(j,s) ={i € R: X; < s}
and Ry(j,s) ={i € R: X; > s}. And let §; and g be the mean
response of all observations in Ry (j, s) and Ra(j, s), respectively.
Consider the following prediction error:

RSSnew = Z (yi — ) + Z (yi — G2)°

iERl(j,S) iERQ(j,S)

Choose the split which has the smallest prediction error. This split
is the optimal one, denoted as R; and Rs.

e Continue the split till the final partition.
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8.1 The basics of decision trees.

Figure 8.3. Top Left: A partition of two-dimensional feature space that
could not result from recursive binary splitting. Top Right: The
output of recursive binary splitting on a two-dimensional example.
Bottom Left: A tree corresponding to the partition in the top right
panel. Bottom Right: A perspective plot of the prediction surface
corresponding to that tree.
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8.1 The basics of decision trees.

When to stop split

e The problem of when to stop.

e If too many steps of splitting: many leaves, too complex model,
small bias but large variance, may overfit.

o If too few steps of splitting: few leaves, too simple model, large
bias but small variance, may underfit.
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8.1 The basics of decision trees.

One natural idea

e When splitting R into Ry and Rs, consider the RSS before the split

RSSoia = Y (i — 9)°
iR

where ¢ is the average of the response of data in R. With the
optimal split, the reduction of RSS is

1:{Ssold - Rssnew

e We can pre-choose a threshold, h, and decide the worthiness of the
split.

e If the reduction is smaller than h, we do not do it, and stop right
there; then R is one terminal node (a leave).

o If the reduction is greater than h, we make the split, and continue
with next step.
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8.1 The basics of decision trees.

One natural idea

e The idea is seemingly reasonable, but is too near-sighted.
e Only look at the effect of the current split.

e It is possible that even if the current split is not effective, the
future splits could be effective and, maybe, very effective.
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8.1 The basics of decision trees.

Tree pruning

Grow a very large tree.
Prune the true back to obtain a subtree.
Objective: find the subtree that has the best test error.

Cannot use cross-validation to examine the test errors for all
possible subtrees, since there are just too many.

Even if we can, this would probably be overfitting, since model
space is too large.

Chapter 8 19 / 55



8.1 The basics of decision trees.

Cost complexity pruning

Let Ty be the original (large) tree. Let T be any subtree. Use |Tp|
and |T'| to denote their numbers of teminal nodes, which represent
complexity.

Consider “Loss + Penalty”:

Z Z )2+ alT)|

m=1i€R,

where R,, are the terminal nodes of the subtree T', and the mean
response of R, is §m,; « is tuning parameter.

Denote the minimized subtree as Tp,.
If @ = 0, no penalty the optimal tree is the original Tj.
If @ = 00, the tree has no split at all. The predictor is just .

The larger the «, the more penalty for model complexity.
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8.1 The basics of decision trees.

Cost complexity pruning

o Just like Lasso, there exists efficient computation algorithm to
compute the entire sequence of T, for all a.

e Use cross-validation to find the best o to minimize the test error.
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8.1 The basics of decision trees.

The algorithm

e 1. Use recursive binary splitting to grow a large tree on the
training data, stopping only when each terminal node has fewer
than some minimum number of observations.

e 2. Apply cost complexity pruning to the large tree in order to
obtain a sequence of best subtrees, as a function of a.
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8.1 The basics of decision trees.

The algorithm

e 3. Use K-fold cross-validation to determine best .. That is, divide
the training observations into K folds. For each k =1, ..., K
(a) Repeat Steps 1 and 2 on all but the kth fold of the training
data.
(b) Evaluate the mean squared prediction error on the data in the
left-out k-th fold, as a function of a.
(c) Average the results for each value of a, and pick « to minimize
the average error.

e 4. Return the subtree from Step 2 that corresponds to the chosen
value of a.
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8.1 The basics of decision trees.

Years,< 4.5

t
RBI 4 60.5 Hits </117.5
Putouts < 82 Years|<3.5
Years|< 3.5
5.487 5394  6.189
4622 5183
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Runs £ 47.5 ‘ RBId 805
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Figure: 8.4. Regression tree analysis for the Hitters data. The unpruned tree
that results from top-down greedy splitting on the training data is shown.
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8.1 The basics of decision trees.
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Figure: 8.5. Regression tree analysis for the Hitters data. The training,
cross-validation, and test MSE are shown as a function of the number of
terminal nodes in the pruned tree. Standard error bands are displayed. The
minimum cross-validation error occurs at a tree size of three.
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8.1 The basics of decision trees.

Classification trees

e Regression has numerical responses; and classification has
qualitative responses.

e Recall that for regression trees, we chose to obtain the greatest
reduction of RSS.
RSS is using sum of squares to measure the error.

e For classification trees, one can follow the same line of procedure
as that of regression trees, but using error measurements that are
more appropriate for classification.
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8.1 The basics of decision trees.

Classification error rates

e For a region R, let pi be the percentage of observations in this
region that belong to class k.

e We assign any new observation in region R as from the class with
largest pr, which is the so-called most commonly occuring class in
training data.

Chapter 8 27 / 55



8.1 The basics of decision trees.

The impurity measure

e The classification error rate (for this region R) is
E=1- Hlanﬁk.

e The Gini index is

e The cross-entropy is
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8.1 The basics of decision trees.

If R is nearly pure, most of the observations are from one class,
then the Gini-index and cross-entropy would take smaller values
than classfication error rate.

Gini-index and cross-entropy are more sentive to node purity.

To evaluate the quality of a particluar split, the Gini-index and
cross-entropy are more popularly used as error measurement
crietria than classification error rate.

Any of these three approaches might be used when pruning the
tree.

The classification error rate is preferable if prediction accuracy of
the final pruned tree is the goal.
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8.1 The basics of decision trees.

Figure 8.6. Heart data. Top: The unpruned tree. Bottom Left:
Cross-validation error, training, and test error, for different sizes of the
pruned tree. Bottom Right: The pruned tree corresponding to the
minimal cross-validation error.

Chapter 8 31 /55



8.1 The basics of decision trees.

Trees vs. Linear models

For regression model:
Y =f(X)+e

Linear model assumes

p
F(X) =B+ X;B;

j=1

Regression trees assume
M
F(X) =) eml(X € Ry)
j=1

where Ry, ..., Ry are rectagular partitions of the input space.

If the underlying realation is close to linear, linear model is better.
Otherwise, regression trees are generally better. (Useless
comments)
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8.1 The basics of decision trees.

Figure 8.7. Top Row: A two-dimensional classification example in
which the true decision boundary is linear, and is indicated by the
shaded regions. A classical approach that assumes a linear boundary
(left) will outperform a decision tree that performs splits parallel to the
axes (right). Bottom Row: Here the true decision boundary is
non-linear. Here a linear model is unable to capture the true decision
boundary (left), whereas a decision tree is successful (right).
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8.1 The basics of decision trees.

Advantages of Trees

Trees are very easy to explain to people. In fact, they are even
easier to explain than linear regression!

Some people believe that decision trees more closely mirror human
decision-making than do the regression and classification
approaches seen in previous chapters.

Trees can be displayed graphically, and are easily interpreted even
by a non-expert (especially if they are small).

Trees can easily handle qualitative predictors without the need to
create dummy variables.
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8.1 The basics of decision trees.

Disadvantages of Trees

e Trees generally do not have the same level of predictive accuracy
as some of the other regression and classification approaches seen
in this book.

e Trees can be very non-robust. In other words, a small change in
the data can cause a large change in the final estimated tree.

e However, by aggregating many decision trees, using methods like
bagging, random forests, and boosting, the predictive performance
of trees can be substantially improved. We introduce these
concepts in the next section.
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8.2 Bagging, random forests and boosting

Bagging (Boostrap Aggregating)

A general purpose procedure to reduce variance of a learning
method.

A model averaging technique.

Decision tree is generally a high variance method. (Apply the
method based on different data based on same sampling scheme
would lead to very different result.)

Average of iid random variables would have a reduced variance
o?/n
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8.2 Bagging, random forests and boosting

The procedure.

e Model
yi = f(z)+e, i=1,..,n.
e Suppose a statistical learning method gives f () based on the
training data (y;, z;),7 =, 1...,n.
e For example,
©® Linear model: f(ac) = By + BT,
® KNN: f(z) = ijl Yp, with least distance to K-cluster partition.

@® Decision tree: f (z) = Z}I:l yr, with rectangular partition.
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8.2 Bagging, random forests and boosting

The procedure of Bagging

Data (y;,2;),7 = 1,...,n; and a learning method f
Draw a boostrap sample from the data, and compute a fl* based
on this set of bootstrap sample.

Draw another boostrap sample from the data, and compute a f2*
based on this set of bootstrap sample.

Repeat M times, obtain ff, e f}(/[
Produce the learning method with bagging as

1 &L
T
j=1
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8.2 Bagging, random forests and boosting

The Bagging

Bagging is general-purpose.

It works best for high variance low bias learning methods.
This is the case for decision trees, particularly deep trees.
Also the case for large p.

If the response is qualitative, we can take the majority vote (not
averaging) of the predicted class based on all learning methods
based on boostrap samples.
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8.2 Bagging, random forests and boosting
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Figure: 8.8. Bagging and random forest results for the Heart data. The test error (black
and orange) is shown as a function of B, the number of bootstrapped training sets used.
Random forests were applied with m = /p. The dashed line indicates the test error
resulting from a single classification tree. The green and blue traces show the OOB error,
which in this case is considerably lower
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8.2 Bagging, random forests and boosting

Out-of-Bag (OOB) error estimation

Estimation of test error for the bagged model.

For each bootstrap sample, observation ¢ is bootstrap sampled
with probabilty (1 —1/n)" ~ 1/e.

For each bootstrap sample, the number of observations not taken
into this bootstrap sample is n(1 — 1/n)" ~ n/e. These are
referred to as out-of-bag (OOB) observations.

For totally B bootstrap samples, about B/e times, the bootstrap
sample does not contain observation i.

The trees based on these bootstrap sample can be used to predict
the response of observation i. Tatoally about B/e predictions.

We average these predictions (for regression) or take majority vote
(for classification) to produce the Bagged prediction for
observation i, denote it as f*(x;).
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8.2 Bagging, random forests and boosting

Out-of-Bag (OOB) error estimation

The OOB MSE is

> (i — fr(@:)?
i=1
The OOB classification error is

n

D Iy & [ ()

i=1

The resulting OOB error is a valid estimate of the test error for the
bagged model, since the response for each observation is predicted
using only the trees that were not fit using that observation.

It can be shown that with B sufficiently large, OOB error is
virtually equivalent to leave-one-out cross-validation error.
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8.2 Bagging, random forests and boosting

Variable importance measures

Bagging improves prediction accuracy at the expense of
interpretability.

An overall summary of the importance of each predictor using the
RSS (for bagging regression trees) or the Gini index (for bagging
classification trees).

Bagging regression trees, we can record the total amount that the
RSS is decreased due to splits over a given predictor, averaged
over all B trees.

A large value indicates an important predictor.

Bagging classification trees, we can add up the total amount that
the Gini index is decreased by splits over a given predictor,
averaged over all B trees.
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8.2 Bagging, random forests and boosting
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Figure: 8.9. A variable importance plot for the Heart data. Variable importance is

computed using the mean decrease in Ginj, index, and expressed relative to the maximum.
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8.2 Bagging, random forests and boosting

Random forest

e Same as bagging decision trees, except ...

e When building these decision trees, each time a split in a tree is
considered, a random sample of m predictors is chosen as split
candidates from the full set of p predictors

e Typically m =~ /p.
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8.2 Bagging, random forests and boosting

Random forest

Every step, the split is constrained on a small number m and
randomly selected inputs.

Avoid all trees are too similar to each other.

Too similar trees are too highly correlated, average highly
correlated trees cannot achieve large amount of variance reduction.

Extreme case: If all trees are the same, average of them is still the
same one.

Averaging uncorrelated or low-correlated trees can achieve large
amount of variance reduction.

Random forest produces less correlated trees.

Random forest reduces to bagging if m = p.
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8.2 Bagging, random forests and boosting
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Figure: 8.10. Results from random forests for the 15-class gene expression data set with
p = 500 predictors. The test error is displayed as a function of the number of trees. Each
colored line corresponds to a different value of m, the number of predictors available for

splitting at each interior tree node. Random forests (m < p) lead to a slight improvement

over bagging (m = p). A single classification tree has an error rate of 45.7%.
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8.2 Bagging, random forests and boosting

Boosting

General purpose for improving learning methods by combining
many weaker learners in attempt to produce a strong learner.
Like bagging, boosting involves combining a large number of
weaker learners.

The weaker learners are created sequentially. (no boostrap
involved).

Bagging create large variance and possibly over-fit boostrap
learners and try to reduce their variance by averaging.

Boosting create weak learners sequentially and slowly (to avoid

over-fit).
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8.2 Bagging, random forests and boosting

Boosting

Suppose we have model

yi = f(z;) + ¢

and a learning method to produce f based on (y;,2;),i =1,..,n
Start with an initial predictor f = 0. Let r; = y;.
Start loop:
® Fit the data (331,7“1) i=1,..,n, to produce g.
® Update f by f + \g.
® Update r; by r; — Ag(z;).
Continue the loop ... till a stop.
Outputf
Note that the output f is the sum of A\g at each step.
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8.2 Bagging, random forests and boosting

Algorithm for tree boosting

e 1. Set f(x) =0 and r; = y; for all 7 in the training set.
e 2. Forb=1,2,..., B, repeat:
@ Fit a tree with d splits (d + 1 terminal nodes) to the training data
((Ei, 7‘2').
® Update f by adding in a shrunken version of the new tree:
f(@) = f(@) + Afy(x)

® Update the residuals,

ri = M) = yi — f).

e 3. Output the boosted model f In fact,
~ B A
flz) =) Af(x).
i=1
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8.2 Bagging, random forests and boosting

Tuning parameters for boosting trees

e The number of trees B. Large B leads to overfit. (not a tuning
parameter for bagging)

e The learning rate A.

e The number d in splits in each tree (the size of each tree). Often
d = 1 works well, in which case each tree is a stump, consisting of
a single split
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8.2 Bagging, random forests and boosting
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Figure: 8.11. Results from performing boosting and random forests on the 15-class gene
expression data set in order to predict cancer versus normal. The test error is displayed as a
function of the number of trees. For the two boosted models, A = 0.01. Depth-1 trees
slightly outperform depth-2 trees, and both outperform the random forest, although the
standard errors are around 0.02, making none of these differences significant. The test error
rate for a single tree is 24%.
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8.2 Bagging, random forests and boosting

Exercises

Run the R-Lab codes in Section *.3 of ISLR
Exercises 1-4 and 7-8 of Section 8.4 of ISLR
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8.2 Bagging, random forests and boosting

End of Chapter 8.
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