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[Y] Kôsaku Yosida, Functional Analysis, 6th ed., Springer-Verlag, 1980.

Abbreviations and Notations

iff if and only if

end of proof

K R or C

1



Chapter 0. Set and Topological Preliminaries.

§1. Axiom of Choice and Zorn’s Lemma. We begin by introducing the following axiom from set theory.

Axiom of Choice. Let A be a nonempty set and for every α ∈ A, let Sα be a nonempty set. Let S = {Sα :
α ∈ A}. Then there exists a function f : A →

⋃
S =

⋃
{Sα : α ∈ A} such that for all α ∈ A, f(α) ∈ Sα.

From this we can deduce Zorn’s lemma, which is a powerful tool in showing the existence of many
important objects. To set it up, we need some terminologies.

Definitions. (1) A relation R on a set X is a subset of X × X.

(2) For a relation R on X, we now write x � y (or y � x) iff (x, y) ∈ R. Also, x ≺ y iff x � y and x 6= y.
R is a partial ordering of X iff it satisfies the reflexive property (x � x for all x ∈ X), the antisymmetric
property (x � y and y � x imply x = y) and the transitive property (x � y and y � z imply x � z). X is a
poset (or a partially ordered set) iff there is a partial ordering R on X.

(3) A poset X is totally ordered (or linearly ordered or simply ordered) iff for all x, y ∈ X, either x � y or
y � x.

(4) A poset X is well-ordered iff every nonempty subset G of X has a least element in G, i.e. there is g0 ∈ G
such that for all g ∈ G, g0 � g. (Taking G = {x, y}, we see X well-ordered implies X totally ordered.)

(5) A chain in a poset X is either the empty set or a totally ordered subset of X.

(6) An element u in a poset X is an upper bound for a subset S of X iff x ∈ S implies x � u. An element m
of X is maximal in X iff m � x implies x=m. (Similarly lower bound and minimal element may be defined.)

Examples. (1) For X = R with the usual ordering (i.e. x � y iff x ≤ y), R is totally ordered. (0,∞) is a
chain in X = R with no upper bound in R. R has no maximal element.

(2) For every set W, the power set X = P (W ) = {A : A ⊆ W} has a partial ordering given by inclusion
(i.e. A � B iff A ⊆ B). X is not totally ordered when W has more than one elements since for distinct
elements d, e of W, neither {d} � {e} nor {e} � {d}. W is the unique maximal element in X = P (W ).

(3) Let X = {2, 3, 4, . . .}. Define x � y iff x is a multiple of y. For example, 24 � 3 since 24 = 3 × 8. Then
this makes X a poset and every prime number is a maximal element of X.

Zorn’s Lemma. For a nonempty poset X, if every chain in X has an upper bound in X, then X has at
least one maximal element. (The statement is also true if ‘upper’ and ‘maximal’ are replaced by ‘lower’ and
‘minimal’ respectively.)

For a proof, see the appendix at the end of the chapter. Below we will present two examples of Zorn’s
lemma, namely (1) for any two nonempty sets, there exists an injection from one of them to the other and
(2) every nonzero vector space has a basis.

Remark. Generalizing example (2) above, let X be a nonempty collection of subsets of some set W. Very
often we consider the set inclusion relation R = {(A, B) | A, B ∈ X, A ⊆ B} on X (i.e. A � B iff A ⊆ B).
We can easily check X is partially ordered by this relation:

(a) For every A ∈ X, we have A = A =⇒ A ⊆ A.

(b) For every A, B ∈ X, we have A ⊆ B and B ⊆ A =⇒ A = B.

(c) For every A, B, C ∈ X, we have A ⊆ B and B ⊆ C =⇒ A ⊆ C.

Example 1. For nonempty sets A and B, there exists an injective function either from A to B or from B
to A.
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Proof. Let W = A× B. For ∅ 6= C ⊆ A, let g : C → B be a function. Then Γ(g) = {
(
c, g(c)

)
| c ∈ C} ⊆ W.

Let X = {Γ(g) | g : C → B is injective, where ∅ 6= C ⊆ A}. Define the set inclusion relation on X,
i.e. Γ(g0) � Γ(g1) iff Γ(g0) ⊆ Γ(g1). By the remark above, this is a partial ordering on X.

Next for every chain C = {Γ(gα) | α ∈ I, gα : Cα → B is injective, where ∅ ⊂ Cα ⊆ A} in X, we will
show S =

⋃

α∈I

Γ(gα) is in X. (Observe that a nonempty subset T of W = A × B is an element of X iff for

every pair of distinct points (a, b), (a′, b′) in T, we have a 6= a′ (by the definition of function) and b 6= b′ (by
injectivity).)

Let (a, b) and (a′, b′) be distinct points in S. Then there are α, α′ ∈ I such that (a, b) ∈ Γ(gα) and
(a′, b′) ∈ Γ(gα′). Since C is a chain in X, we may suppose Γ(gα′) ⊆ Γ(gα). Then (a, b) and (a′, b′) are distinct
points in Γ(gα). Since gα is injective, a 6= a′ and b 6= b′. Therefore, S is in X. Finally, since for all Γ(gα) ∈ C,
Γ(gα) ⊆ S, so S is an upper bound of C.

By Zorn’s lemma, X has a maximal element M = Γ(f). We claim that either the domain of f is A or
the range of f is B. Assume not, then there exist a ∈ A not in the domain of f and b ∈ B not in the range
of f. It follows M ′ = M ∪ {(a, b)} is in X and M � M ′, a contradiction. So the claim is true.

If the domain of f is A, then f : A → B is injective. If the range of f is B, then f−1 : B → A is
injective.

Example 2. Every nonzero vector space W over K = R or C has a basis.

Proof. For a subset S of W, recall that S is linearly independent iff every finite subset of S is linearly
independent. Let X = {S | S is a linearly independent subset of W}. By the remark above, the set inclusion
relation on X is a partial ordering on X.

For every chain C = {Sα | α ∈ I} in X, let SI =
⋃

α∈I

Sα. We will check SI is in X. For every finite subset

{x1, x2, . . . , xn} in SI , there are α1, α2, . . . , αn ∈ I such that x1 ∈ Sα1 , x2 ∈ Sα2 , . . . , xn ∈ Sαn . Since C is a
chain, we may assume Sα2 , . . . , Sαn ⊆ Sα1 . Then {x1, x2, . . . , xn} ⊆ Sα1 . Since Sα1 is linearly independent,
so {x1, x2, . . . , xn} is linearly independent. Therefore, SI is in X. Clearly, SI is an upper bound of C.

By Zorn’s lemma, X has a maximal element M. We claim that the span of M is W. Assume there
exists x ∈ W not in the span of M. By the maximality of M, M ′ = M ∪ {x} cannot be in X, i.e. M ′

is not linearly independent. So there exists x1, x2, . . . , xn ∈ M and c1, c2, . . . , cn, c ∈ K (not all zeros)
such that c1x1 + c2x2 + · · · + cnxn + cx = 0. Since M is linearly independent, we must have c 6= 0. Then
x = (−1/c)(c1x1 + c2x2 + · · ·+ cnxn) is in the span of M, a contradiction. So the claim is true.

Finally, since M ∈ X is linearly independent and M spans W, M is a basis of W.

Exercises. (1) Prove that there exists a collection S of pairwise disjoint open disks on a plane such that
every open disk on the plane must intersect at least one open disk in S. (Hint: Partial order collections
consisted of pairwise disjoint open disks.)

(2) Prove that for every integer n ≥ 3, there exist a set Sn ⊆ [0, 1] such that Sn contains no n-term
arithmetic progression, but for every x ∈ [0, 1]\ Sn, Sn ∪ {x} contains a n-term arithmetic progression.

(3) Prove that a normed space X is nonseparable if and only if there exists uncountably many pairwise
disjoint open balls of radius 1 in X.

Remarks. (1) Actually the axiom of choice and Zorn’s lemma (as well as a few other principles from set
theory) are equivalent, see [HS], pp. 14-17.

(2) Zorn’s lemma also holds if antisymmetric property of a partial ordering is omitted. See [M], p. 8, ex. 1.16.
If ‘chain’ is replaced by ‘well-ordered subset’ everywhere, Zorn’s lemma and the proof are still correct.

(3) The axiom of choice is used to prove that every set of positive outer Lebesgue measure in R has non-
measurable subsets. (See [Ku], pp. 287-288.) Important applications of Zorn’s lemma include the following:
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(a) Every nonzero Hilbert space has an orthonormal basis. (See [RS], pp. 44-45.)

(b) In every nonzero ring with an identity, every ideal is contained in a maximal ideal. (See [Hu], p. 128.)

(c) Every field has an algebraic closure. (See [Mc], pp. 21-22.)

§2. Topology. In the sequel, the phrase a set S in X will mean S ⊆ X. Now we begin by introducing the
concept of topology on a set X, which generalizes the concept of all open sets in R.

Definitions. (1) Let X be a set and T be a collection of subsets of X. T is a topology on X iff

(a) ∅, X ∈ T ,

(b) the union of any collection of elements of T is an element of T ,

(c) the intersection of finitely many elements of T is an element of T .

A set X with a topology is called a topological space. In case the topology is clear, we simply say X is
a topological space. Below let T be a topology on X.

(2) Let S ⊆ X. S is open in X iff S ∈ T . S is closed in X iff X \ S ∈ T . (Using de Morgan’s law, we can get
topological properties for closed sets, namely (a′) ∅, X are closed, (b′) the intersection of any collection of
closed sets is closed and (c′) the union of finitely many closed sets is closed.)

(3) Let S ⊆ X. The interior S◦ of S is the union of all open subsets of S. (This is the largest open subset
of S.) The closure S of S is the intersection of all closed sets containing S. (This is the smallest closed set
containing S.) S is dense iff S = X (equivalently every nonempty open set in X contains a point of S).

(4) For every x ∈ X, a subset N of X is a neighborhood of x iff there exists U ∈ T such that x ∈ U ⊆ N.

(5) A subset T0 of a topology T on X is a base of T iff whenever x ∈ U ∈ T , there exists V ∈ T0 such that
x ∈ V ⊆ U (cf Exercise (4) below).

When we are dealing with more than one topologies T1, T2, . . . , we shall refer to the elements of T1 as
T1-open sets, the elements of T2 as T2-open sets, etc.

Remarks. (1) If T1, T2 are topologies on X and T1 ⊆ T2, then we say T1 is weaker than T2 (or T2 is stronger
than T1). For every set X, there is a weakest topology on X consisted of ∅ and X. It is called the indiscrete
topology on X. Also, there is a strongest topology on X consisted of the collection P (X) of all subsets of X.
This is called the discrete topology on X.

(2) The set of all open sets in a metric space M is a topology on M. It is called the metric topology on M.
In the case M = Rn with the usual metric, it is called the usual topology. The set of all open balls is a base
of the metric topology on M. Every open set in M is a union of open balls.

Exercises. (4) Prove that a subset T0 of the topology T on X is a base if and only if every open set is a
union of elements of T0.

(5) Prove that a collection B of subsets of X is a base of a topology on X if and only if
⋃

V ∈B

V = X and for

every V0, V1 ∈ B and x ∈ V0 ∩ V1, there exists V2 ∈ B such that x ∈ V2 ⊆ V0 ∩ V1. (See [D], pp. 47-48.)

§§2.1. Compactness. We now introduce an important concept in analysis, namely compactness.

Definitions. Let T be a topology on X and S ⊆ X. A subset J of T is an open cover of S iff
⋃

M∈J

M ⊇ S.

S is compact in X iff every open cover J of S has a finite subset J0 which is also an open cover of S. (Such
J0 is a finite subcover of J .) S is precompact (or relatively compact) iff S is compact.
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Definitions. Let T be a topology on X and W ⊆ X. Then TW = {S ∩ W : S ∈ T } is a topology on W
called the relative topology on W. A subset V of W is open in W iff V ∈ TW . If B is a base of T , then
BW = {S ∩ W : S ∈ B} is a base of TW .

Remarks. For V ⊆ W ⊆ X, if V is open (or closed) in X, then V = V ∩ W is open (or closed) in W,
respectively. The converse is false as (0, 1] is open and closed in (0, 1], but neither open nor closed in R.

Intrinsic Property of Compactness. Let T be a topology on X and W ⊆ X. W is compact in W with
the relative topology TW iff W is compact in X with topology T .

Proof. A collection J of open sets in X covers W in X iff JW = {S ∩ W : S ∈ J} covers W in W. J has a
finite subcover iff JW has a finite subcover.

Remark. Applying de Morgan’s law, S compact in X (equivalently, in S) if and only if every collection F
of closed sets in S having the finite intersection property (i.e. the intersection of finitely many members of
F is always nonempty) must satisfy

⋂
{W : W ∈ F} 6= ∅.

§§2.2. Continuity. Observe that if a < b in R, then
(
−∞, (a + b)/2

)
and

(
(a + b)/2, +∞

)
are disjoint open

sets separating a and b. This is a property that makes limit unique if it exists. So we introduce the following.

Definition. A set X with a topology T is a Hausdorff space (or a T2-space) iff for every distinct a, b ∈ X,
there exist disjoint U, V ∈ T such that a ∈ U and b ∈ V.

Once we have topologies on sets, we can study “continuous” functions between them.

Definitions. Let TX and TY be topologies on X and Y respectively.

(1) f : X → Y is continuous at x iff for every neighborhood N of f(x), f−1(N ) is a neighborhood of x.
f : X → Y is continuous iff for every TY -open set U in Y, f−1(U ) is a TX -open set in X (equivalently, for
every TY -closed set V in Y, f−1(V ) is a TX-closed set in X).

(2) f : X → Y is a homeomorphism iff f is bijective and both f and f−1 are continuous. (In this case, U is
open in X iff f(U ) is open in Y. We say X and Y are homeomorphic.)

Exercises. Prove the following properties of topological spaces S, X, Y, Z (see [Be], pp. 15, 34-35).

(6) If f : X → Y and g : Y → Z are continuous, then g ◦ f : X → Z is continuous.

(7) If S is compact and X is a closed subset of S, then X is compact.

(8) If S is Hausdorff and Y is a compact subset of S, then Y is closed.

(9) Let f : X → Y be continuous. If X is compact, then f(X) is compact.

(10) Let X be compact and Y be Hausdorff. If f : X → Y is continuous and bijective, then f is a
homeomorphism.

§§2.3. Nets and Convergence. In metric space, we know that the closure of a set is consisted of all limits
of sequences in the set. However, this is false in general for topological spaces as shown by the following
example!

Example. On [0, 1], define open sets to be either empty or sets whose complements in [0, 1] are countable.
More precisely, let T = {∅} ∪ {S : S ⊆ [0, 1], [0, 1]\ S is countable}. We can check T is a topology on [0, 1].
It is called the co-countable topology on [0, 1]. Now {1} 6∈ T so that [0, 1) is not closed. Hence the T -closure
of [0, 1) is [0, 1]. However, every sequence {xn} in [0, 1) cannot converge to 1 in the closure of [0, 1) because
[0, 1] \ {x1, x2, x3, . . .} is a T -open neighborhood of 1 that does not contain any term of the sequence {xn}.
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To remedy the situation, we now introduce a generalization of sequence called net.

Definitions. (a) A directed set (or directed system) is a poset I such that for every x, y ∈ I, there is z ∈ I
satisfying x � z and y � z.

(b) A net {xα}α∈I in a set S is a function from a directed set I to S assigning every α ∈ I to a xα ∈ S.

(c) A net {xα}α∈I is eventually in a set W iff ∃ β ∈ I, ∀ α � β, we have xα ∈ W. A net {xα}α∈I converges
to x (and we write {xα}α∈I → x or xα → x) iff for every neighborhood N of x, {xα}α∈I is eventually in N.

(d) A net {xα}α∈I is frequently in a set W iff ∀ β ∈ I, ∃ α � β such that xα ∈ W. We say x is a cluster point
of {xα}α∈I iff for every neighborhood N of x, {xα}α∈I is frequently in N.

(e) A net {yβ}β∈J is a subnet of a net {xα}α∈I iff there is a function n : J → I such that for every β ∈ J,
yβ = xn(β) and for every α ∈ I, there exists γ ∈ J such that β � γ implies n(β) � α.

Examples. (1) In the case I = N is the set of positive integers with the usual order, a net is just a sequence.
In the case I is an open interval (a, b) of R with the usual order, a net in W converges to x is just a function
from (a, b) to W with the left-handed limit at b equals x. If we reverse the order on (a, b), this becomes the
right-handed limit at a equals x.

(2) Convergent nets need not be bounded! For example, let I = (−∞, 0) with the usual order and xα = α.
Then xα converges to 0, but {xα : α ∈ I} = (−∞, 0) is unbounded!

The following theorem on topological spaces generalize the familiar theorems on uniqueness of limit,
closure, continuity, cluster point and compactness for metric spaces.

Exercises. Prove the following statements. Let X and Y be topological spaces.

(11) X is Hausdorff iff every convergent net in X has a unique limit.

(12) For every S ⊆ X, S = {x ∈ X : ∃{xα}α∈I in S such that xα → x}.

(13) A function f : X → Y is continuous iff f is continuous at every x ∈ X iff for every x ∈ X and {xα}α∈I

in X with xα → x, we have f(xα) → f(x). If D is dense in X (i.e. D = X), Y is Hausdorff and
f, g : X → Y continuous with f |D = g|D, then f = g.

(14) x is a cluster point of {xα}α∈I iff {xα}α∈I has a subnet converging to x.

(15) (Bolzano-Weierstrass Theorem) X is compact iff every {xα}α∈I in X has a subnet converging to some
x ∈ X (equivalently, every net in X has a cluster point).

For proofs, see [Be], pp. 24-26 and 35-36.

Definition. A topological space X is sequentially compact iff every sequence in X has a subsequence con-
verging to some x ∈ X.

Remark. In metric spaces, compactness is the same as sequentially compactness (by the metric compactness
theorem). For topological spaces, there exists a compact space that is not sequentially compact. So in such
a space there is a sequence having a convergent subnet, but no convergent subsequence! Also, there is a
sequentially compact set that is not compact. (See [SS], pp. 69 and 126.)

In analysis, we try to solve problems by approximations. The solutions are often some kind of limits of
the approximations. So limits of convergent subsequences or convergent subnets are good candidates for the
solutions. Therefore, a large part of analysis studies compactness or sequential compactness conditions.

6



§§2.4. Product Topology. We begin by asking the following

Questions: If we take a collection Ω of arbitrary subsets of X, must there exist a topology on X that will
contain these arbitrary subsets of X. We know P (X) is one such topology. In fact, it is the largest such
topology. Is there a smallest such topology?

To answer this question, we can first check that the intersection of any collection of topologies on X is
also a topology on X.

Definition. For every collection Ω of subsets of X, the topology TΩ generated by Ω is the intersection of all
topologies on X containing Ω. Hence, TΩ is the smallest topology on X containing Ω.

Exercise. (16) Prove that TΩ is the collection of all sets that are ∅ or X or unions of sets of the form
S1 ∩ S2 ∩ · · · ∩ Sn, where S1, S2, . . . , Sn ∈ Ω (i.e. the set of all finite intersections of Si ∈ Ω is a base of TΩ).

If we take an open interval (a, b) in R and form (a, b)×R and R× (a, b), then we get “open” strips in R2.
More generally, if S is an open set in R, then S × R and R × S should be “open” in R2. For two topological
spaces X and Y, we would like to introduce a “product” topology on X × Y based on these ideas.

Definitions. For X with topology TX and Y with topology TY , we define the product topology on X × Y
to be the topology TX×Y generated by Ω = {S1 × Y : S1 ∈ TX} ∪ {X × S2 : S2 ∈ TY }. The functions
πX : X × Y → X and πY : X × Y → Y defined by πX(x, y) = x and πY (x, y) = y are called the
projection maps onto X and Y, respectively. Since Ω = {π−1

X (S1) : S1 ∈ TX}∪{π−1
Y (S2) : S2 ∈ TY } ⊆ TX×Y ,

πX and πY are continuous. By the exercise above and the identity ∩k
i=1f

−1(Ai) = f−1
(
∩k

i=1Ai

)
, we see

B = {π−1
X (S1) ∩ π−1

Y (S2) = S1 × S2 : S1 ∈ TX , S2 ∈ TY }

is a base of TX×Y .

More generally, if Xα is a topological space with topology Tα for every α ∈ A, then the product topology
on their Cartesian product X =

∏

α∈A

Xα is the topology generated by the collection Ω of all sets of the

form π−1
α (Sα), where Sα ∈ Tα and πα : X → Xα is the projection map πα(x) = xα with xα denoting the

α-coordinate of x ∈ X. So every πα is continuous. A typical element in the base of the product topology is

π−1
α1

(Sα1) ∩ · · · ∩ π−1
αn

(Sαn) =
n⋂

i=1

{x ∈ X : παi(x) ∈ Sαi},

where n ∈ N, α1, . . . , αn ∈ A and Sα1 ∈ Tα1 , . . . , Sαn ∈ Tαn .

In dealing with nets in product topology, we have

Theorem. A net {xγ}γ∈I in X =
∏

α∈A Xα converges to x iff for every α ∈ A, {πα(xγ )}γ∈I → πα(x).

Proof. Since sets π−1
α1

(Sα1 ) ∩ · · · ∩ π−1
αn

(Sαn ), where Sαi ∈ TXαi
, form a base of the product topology,

{xγ}γ∈I → x ⇐⇒ ∀ n ∈ N, ∀ α1, α2, . . . , αn ∈ A, ∀ neighborhood π−1
α1

(Sα1) ∩ · · · ∩ π−1
αn

(Sαn) of x,

∃ β ∈ I such that γ � β implies xγ ∈ π−1
α1

(Sα1) ∩ · · · ∩ π−1
αn

(Sαn)

⇐⇒ ∀ αi ∈ A, ∀ x ∈ π−1
αi

(Sαi) ∃ βi ∈ I such that γ � βi implies xγ ∈ π−1
αi

(Sαi)
⇐⇒ ∀ αi ∈ A, ∀ παi(x) ∈ Sαi ∃ βi ∈ I such that γ � βi implies παi(xγ) ∈ Sαi

⇐⇒ ∀ α ∈ A, {πα(xγ)}γ∈I → πα(x),

where in the second step, we take n = 1, βi = β in the ⇒ direction and take β � βi for i = 1, . . . , n in the
⇐ direction (such β exists by the definition of directed set).

7



Appendix: Proof of Zorn’s Lemma

Let us recall

Zorn’s Lemma. For a nonempty poset X, if every chain in X has an upper bound in X, then X has at
least one maximal element. (The statement is also true if ‘upper’ and ‘maximal’ are replaced by ‘lower’ and
‘minimal’ respectively.)

Proof. (Due to H. Lenz, H. Kneser and J. Lewin independently) Assume X has no maximal element. Since
every chain C in X has an upper bound u ∈ X and u is not maximal in X, the set SC = {x ∈ X : c ∈ C ⇒
c ≺ x} 6= ∅. (Here, S∅ = X.) By the axiom of choice, there is a function f such that f(C) ∈ SC .

We introduce two terminologies.

(a) For a chain C in X, a set of the form P (C, c) = {y ∈ C : y ≺ c} for some c ∈ C is called an initial segment
of C.

(b) A subset A of X is conforming in X iff (1) A is well-ordered by � and (2) for all a ∈ A, f(P (A, a)) = a.
For example, A = {f(∅)} is conforming because P (A, f(∅)) = ∅ and so f(P (A, f(∅))) = f(∅).

Claim 1: For conforming subsets A, B of X, if A 6= B, then one of them is an initial segment of the other.

Proof of claim 1. Since A 6= B, either A ⊆ B or B ⊆ A is false, say the former, then A \ B 6= ∅. Let x be
least in A \ B, then since a ∈ A and a ≺ x imply a ∈ B, we have P (A, x) ⊆ B.

We will finish by showing B = P (A, x). Assume P (A, x) 6= B. Then there is a least y ∈ B \ P (A, x).
Observe that for all u ∈ P (B, y), since u ∈ B, u ≺ y and y least in B \ P (A, x), we get u ∈ P (A, x).
Then u ∈ A and u ≺ x. (*) For all v ∈ A with v ≺ u, since v ≺ u ≺ x, we have v ∈ P (A, x) ⊆ B. Next,
since ∅ 6= A \ B ⊆ A \ P (B, y), so A \ P (B, y) has a least element z.

We will show P (A, z) = P (B, y). (First, P (A, z) ⊆ P (B, y) because w ∈ P (A, z) implies w ∈ A and
w ≺ z, the minimality of z implies w ∈ P (B, y). For the reverse inclusion, w ∈ P (B, y) implies w ∈ B and
w ≺ y. The minimality of y implies w ∈ P (A, x), particularly w ∈ A. If z ≺ w, then z ≺ y and setting
v = z, u = w in (*), we get z ∈ B. Then z ∈ P (B, y), a contradiction. Since w, z ∈ B, so w � z. Now w 6= z
as w ∈ P (B, y) and z 6∈ P (B, y). Hence w ≺ z, i.e. w ∈ P (A, z). This gives us P (B, y) ⊆ P (A, z).)

Next x ∈ A \ B ⊆ A \ P (B, y) and z is least in A \ P (B, y) imply z � x. However, z = f(P (A, z)) =
f(P (B, y)) = y ∈ B and x 6∈ B. So z 6= x, hence z ≺ x. Now y = z ∈ P (A, x), contradicting the definition of
y. Then B = P (A, x). So claim 1 is proved.

Claim 2: Let U =
⋃
{S : S conforming in X}, y ∈ U, A conforming in X, x ∈ A and y ≺ x. Then y ∈ A.

Proof of claim 2. Assume y 6∈ A. Now y ∈ U imply y ∈ B for some conforming B in X. Then A 6= B. By
claim 1, A = P (B, w) for some w. Then y ∈ B, x ∈ A = P (B, w) and y ≺ x ≺ w, so y ∈ P (B, w) = A, a
contradiction. So claim 2 is proved.

Claim 3: U is conforming.

Proof of claim 3. Let x, y ∈ U. There are conforming A, B such that x ∈ A, y ∈ B. As claim 1 implies A ⊆ B
or B ⊆ A and A, B are totally ordered, so U is also totally ordered.

To see U is well-ordered, let x ∈ G ⊆ U, then x is in some conforming A. If x is not least in G, then
y ∈ P (G, x) ⊂ U implies y ∈ A by claim 2. So P (G, x) ⊆ A and hence P (G, x) has a least element d. For all
g ∈ G, either g � x(� d) or x � g ⇒ g ∈ P (G, x) ⇒ g � d. So d is least in G.

Next to get x = f(P (U, x)), note every x ∈ U is in some conforming A. We will show P (U, x) = P (A, x).
First, A ⊆ U implies P (A, x) ⊆ P (U, x). Also y ∈ P (U, x) implies y ∈ A by claim 2. So P (U, x) ⊆ P (A, x).
Hence they are equal. Then f(P (U, x)) = f(P (A, x)) = x. So claim 3 is proved.

Finally, let x = f(U ) ∈ SU , then for all u ∈ U, u ≺ x. So x 6∈ U. Note P (U ∪ {x}, x) = U and for u ∈ U,
P (U ∪ {x}, u) = P (U, u). Hence U ∪ {x} is conforming. By definition of U, we get x ∈ U, a contradiction.
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Chapter 1. Topological Vector Spaces.

§1. Vector Topology. In functional analysis, we deal with (usually infinite dimensional) vector spaces X
over K = R or C and “continuous” linear transformations between them. So we consider vector spaces with
topologies and it is natural to require addition and scalar multiplication be continuous.

Notation. We call K the scalar field of X and K = R or C for all vector spaces to be considered.

Definitions. A vector space X with a topology is a topological vector space (or linear topological space) iff
the topology on X is a vector topology (i.e. addition f : X × X → X defined by f(x, y) = x + y and scalar
multiplication g : K × X → X defined by g(c, x) = cx are continuous with respect to the topology.) For
example, the indiscrete topology on X is a vector topology.

Remarks. Let X be a topological vector space. Note jb : X → {b}×X given by jb(x) = (b, x) is continuous
since open sets in {b} × X are of the form {b} × U, where U is open in X, then j−1

b ({b} × U ) = U is open.

(1) For all a ∈ X, Ta(x) = a + x = (f ◦ ja)(x) is a homeomorphism. U is open in X iff a + U = Ta(U ) is
open in X. A linear function h : X → Y is continuous iff it is continuous at 0 (i.e. for every neighborhood V
of 0 in Y, h−1(V ) is a neighborhood of 0 in X). A base at 0 (or local base) is a set S of neighborhoods of 0
such that every neighborhood of 0 contains a member of S. So B = {a + N : a ∈ X, N ∈ S} is a base for X.

(2) For c 6= 0, gc(x) = cx = (g ◦ jc)(x) is a homeomorphism. So V is a neighborhood of 0 implies cV is a
neighborhood of 0.

Definitions. Let X be a vector space over K, S ⊆ X and c, r ∈ K.

(1) S is convex iff x, y ∈ S, t ∈ [0, 1] implies tx + (1 − t)y ∈ S.

(2) S is absorbing iff for every x ∈ X, there is r > 0 such that |c| ≤ r implies cx ∈ S. (Note 0 ∈ S.)

(3) S is balanced (or circled) iff x ∈ S, |c| ≤ 1 =⇒ cx ∈ S. S is absolutely convex iff it is convex and balanced.

Theorem In a topological vector space X, every neighborhood S of 0 is absorbing and contains a balanced
neighborhood of 0.

Proof. Let x ∈ X. Since g : K × X → X is continuous and g(0, x) = 0 ∈ S, so g−1(S) is a neighborhood
of (0, x). Then there are r > 0 and neighborhood U of x such that (0, x) ∈ π−1

1 (B(0, 2r)) ∩ π−1
2 (U ) =

B(0, 2r) × U ⊆ g−1(S). For |c| ≤ r, since (c, x) ∈ B(0, 2r) × U, so cx = g(c, x) ∈ S. Hence, S is absorbing.

Next, since g(0, 0) = 0, so there are r0 > 0 and neighborhood V of 0 such that B(0, r0) × V ⊆ g−1(S).
So g(λ, V ) = λV ⊆ S for all |λ| < r0. Let W = ∪

|λ|<r0

λV, then W is a balanced neighborhood of 0 inside S.

Finite Dimension Theorem. Let Y be a vector subspace of a Hausdorff topological vector space X with
dimY = n < ∞. Then every bijective linear transformation h : Kn → Y is a homeomorphism and Y is
closed in X. So, two Hausdorff vector topologies on a finite dimensional vector space must be identical.

Proof. The projection pi(z1, . . . , zn) = zi on Kn is continuous. Let {ei} be the standard basis of Kn. Then
h(z) = p1(z)h(e1)+ · · ·+pn(z)h(en) is continuous as addition and scalar multiplication are continuous in X.

Conversely, for ε > 0, S = {x ∈ Kn : ‖x‖ = ε} is compact, so V = h(S) is compact. Since X is Hausdorff,
V is closed in X. Since h(0) = 0 and h is injective, 0 6∈ V. Hence, there is a balanced neighborhood W of 0
disjoint from V in X. Then E = h−1(W ) = h−1(W ∩ Y ) is a balanced neighborhood of 0 disjoint from S.
Now 0 ∈ E and being balanced, E is path connected. So E ⊆ B(0, ε). Then (h−1)−1(B(0, ε)) = h(B(0, ε))
contains h(E) = W ∩ Y, which is a neighborhood of 0 in Y. Hence h−1 is continuous.

Let p ∈ Y , say some net {pα} in Y converges to p. Since W is absorbing, there exists t > 0 such that
p ∈ tW. Then the net {pα} is eventually in tW. So p ∈ Y ∩ tW = h(tE) ⊆ h(tB(0, ε)) = h(tB(0, ε)) ⊆ Y,
where the last equality follows from h(tB(0, ε)) is compact, hence closed in X. So Y is closed in X.

Definitions. Let X, Y be vector spaces. For a linear function T : X → Y, the kernel (or null space) of T is
ker T = T−1({0}) = {x ∈ X : T (x) = 0} and the range of T is ran T = T (X) = {Tx : x ∈ X}. (Another
notation for kernel of T is N (T ) and for range of T is R(T ).)
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Closed Kernel Theorem. For a topological vector space X and a linear function T : X → K, ker T is
closed if and only if T is continuous. (K cannot be replaced by X or Y, see [W], p. 113, ex. 3.)

Proof. The if direction is clear. In the only-if direction, for a x ∈ X \ker T, there is a balanced neighborhood
V of 0 such that x ∈ x+V ⊆ X \ker T, i.e. (x+V )∩ker T = ∅. Then 0 6∈ T (x+V ). So T (V ) cannot contain
−T (x) ∈ K. Since V is balanced, T (V ) is balanced in K. So T (V ) is a subset of B(0, r) = {z ∈ K : |z| < r},
where r = |T (x)|. Then for all ε > 0, T ( ε

r V ) ⊆ B(0, ε). So T−1(B(0, ε)) ⊇ ε
r V. So T is continuous at 0.

§2. Normed Spaces. One common type of topological vector spaces that we will deal with frequently is
the family of normed linear spaces.

Definitions. (1) A semi-norm on a vector space X is a function that assigns every x ∈ X a number ‖x‖ ∈ R
satisfying (a) ‖x‖ ≥ 0 for all x ∈ X, (b) ‖cx‖ = |c|‖x‖ for all c ∈ K, x ∈ X and (c) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for
all x, y ∈ X. It is a norm iff in addition to (a), (b), (c), we also have ‖x‖ = 0 implies x = 0.

(2) A normed space (or normed linear space or normed vector space) is a vector space with a norm. A
Banach space is a complete normed space (where complete means all Cauchy sequences converge). For inner
product space V, define ‖x‖ =

√
〈x, x〉 for all x ∈ V. This makes V a normed space. A Hilbert space is a

complete inner product space.

(3) For topological vector spaces X and Y, a linear transformation from X to Y is also called a linear operator.
In case Y = K, it is also called a linear functional. Let L(X, Y ) denote the set of all continuous linear
operators from X to Y. In case X = Y, we write L(X) for L(X, X). (Instead of L(X, Y ), the notations
B(X, Y ), L(X, Y ) or B(X, Y ) are also common.)

(4) For a topological vector space X over K, we write X∗ for L(X, K) and call it the dual space (or
conjugate space) of X. The elements of X∗ are called the continuous linear functionals on X .

(5) For a topological vector space X over K, the twin of X is Xtwin, which has the same elements, same
addition and same topology as X, but scalar multiplication cx in Xtwin equals cx in X. If K = R, then
Xtwin = X.

Examples. (1) Let X be a normed space. For every x ∈ X and linear T : X → K, the function pT (x) = |T (x)|
is easily checked to be a semi-norm on X. It is a norm if and only if ker T = {0}.

(2) Let X, Y be normed spaces. For T ∈ L(X, Y ), define ‖T‖ = sup{‖T (x)‖ : ‖x‖ ≤ 1} and we say T is
bounded as ‖T‖ < ∞. It is easy to check that L(X, Y ) is a normed space. If Y is complete, later we will
show L(X, Y ) (hence X∗) is complete.

(3) Kn with inner product〈(w1, w2, . . . , wn), (z1, z2, . . . , zn)〉= w1z1+w2z2+· · · , wnzn and norm ‖(z1, . . . , zn)‖
=

√
|z1|2 + · · ·+ |zn|2 is a Hilbert space. (Kn)∗ = Kn

twin. For every Hilbert space H, H∗ = Htwin.

(4) The set P ([0, 1]) of all polynomials on [0, 1] with ‖f‖ = sup{|f(x)| : x ∈ [0, 1]} is a normed space that
is not complete. By the Weierstrass approximation theorem, P ([0, 1]) is dense in the set of all continuous
functions C([0, 1]) on [0, 1] with the same norm.

In general, for a compact set X, let C(X) be the set of all continuous functions from X to K with
sup-norm ‖f‖ = sup{|f(x)| : x ∈ X}. Then C(X) is a Banach space. For a description of the dual of C(X),
see Rudin’s Real and Complex Analysis, 3rd. ed, p. 130.

(5) For 1 ≤ p < ∞, `p = {(a1, a2, a3, . . .) : ai ∈ K, ‖(a1, a2, a3, . . .)‖p = (|a1|p + |a2|p + |a3|p + · · ·)1/p < ∞}

is a Banach space. The dual of `p is `q
twin, where

1
p

+
1
q

= 1 and such q is called the conjugate index of p.

(Instead of `p, the notation `p is also common.)

(6) `∞ = {(a1, a2, a3, . . .) : ai ∈ K, ‖(a1, a2, a3, . . .)‖∞= sup{|ai| : i ∈ N} = inf{M : |ai| ≤ M, ∀ i ∈ N} < ∞}
is a Banach space. For its dual, see Alberto Torchinsky’s book Real Variables, p. 292. The spaces

c = {(a1, a2, a3, . . .) : ai ∈ K, lim
i→∞

ai ∈ K} and c0 = {(a1, a2, a3, . . .) : ai ∈ K, lim
i→∞

ai = 0}
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are Banach subspaces of `∞ with the same norm as `∞. The duals of c and c0 are `1.

(7) For 1 ≤ p < ∞ and measurable X ⊆ R, the Lebesgue spaces

Lp(X) = {[f ] : f measurable on X, ‖f‖p =
(∫

X

|f |pdm
)1/p

< ∞},

where [f ] denotes the set of measurable functions equal to f almost everywhere, is a Banach space. We have

(Lp)∗ = Lq
twin, where

1
p

+
1
q

= 1, see Rudin’s book Real and Complex Analysis, 3rd. ed, p. 127.

Also, L∞(X) consisted of all [f ]’s with finite essential sup-norm ‖[f ]‖ = inf{M : |f(x)| ≤ M a.e.} is a
Banach space. For its dual, see Alberto Torchinsky’s book Real Variables, p. 292.

(8) Let X, Y be normed spaces. For 1 ≤ p < ∞, we may define X ⊕p Y = {(x, y) : x ∈ X, y ∈ Y } with
‖(x, y)‖p = (‖x‖p + ‖y‖p)1/p. It is easy to check that X ⊕p Y is a normed space with ‖ · ‖p as norm. For
p = ∞, define ‖(x, y)‖∞ = max{‖x‖, ‖y‖} as norm. All these norms are equivalent. We called X ⊕2 Y the
direct sum of X and Y. If X, Y are Banach spaces, then X ⊕2 Y is also a Banach space. For Hilbert spaces
X and Y, the direct sum X ⊕2 Y with the inner product given by 〈(x1, y1), (x2, y2)〉 = 〈x1, x2〉 + 〈y1, y2〉
inducing the norm ‖(x, y)‖2 = (‖x‖2+‖y‖2)1/2 is a Hilbert space. For 1 < p < ∞, p 6= 2 and q the conjugate
index of p, Lp ⊕2 Lq is not a Hilbert space, but the dual of Lp ⊕2 Lq is its twin, like Hilbert spaces.

The projection map PX : X ⊕p Y → X defined by PX(x, y) = x is continuous since ‖x‖ ≤ ‖(x, y)‖p and
similarly, the projection map PY : X ⊕p Y → Y defined by PY (x, y) = y is continuous.

(9) Let N be a closed vector subspace of a normed space X. For x ∈ X, we define [x] = x+N = {x+n : n ∈ N}
and X/N = {[x] : x ∈ X}. Note [x] = [x′] if and only if x − x′ ∈ N. For c ∈ K and x, y ∈ Y, defining
[x] + [y] = [x + y] and c[x] = [cx] shows X/N is a vector space with [0] = 0 + N = N.

Next define ‖[x]‖ = inf{‖x − n‖ : n ∈ N}. We have ‖[x]‖ = 0 implies there is a sequence {nk} in N
such that ‖x − nk‖ → 0 so that nk → x ∈ N = N and [x] = [0]. It is easy to see that this makes X/N
a normed space. We call X/N the quotient normed space of X by N and ‖[ · ]‖ the quotient norm. The
linear surjection πN : X → X/N defined by πN (x) = [x] is called the quotient map. It is continuous since
‖[x]‖ = inf{‖x − n‖ : n ∈ N} ≤ ‖x‖. Also, πN (B(0, 1)) = B([0], 1) implies πN maps open sets to open sets.

Theorem. If N is a closed vector subspace of a Banach space X, then X/N is also a Banach space.

Proof. Recall that a normed space is complete iff every absolutely convergent series converges in the space.

Suppose
∞∑

k=1

‖[xk]‖ < ∞. By infimum property, for every k, there exists nk ∈ N such that ‖xk − nk‖ ≤

2 inf{‖xk − n‖ : n ∈ N} = 2‖[xk]‖. Then
∞∑

k=1

‖xk − nk‖ < ∞. Since X is complete, this implies
∞∑

k=1

(xk − nk)

converges to some x ∈ X. Using ‖[w]‖ ≤ ‖w‖ for all w ∈ X, we have

∥∥∥∥∥
m∑

k=1

[xk] − [x]

∥∥∥∥∥ =

∥∥∥∥∥
[ m∑

k=1

xk − x
]∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥∥

[ m∑

k=1

xk − x −
m∑

k=1

nk

︸ ︷︷ ︸
inN

]

∥∥∥∥∥∥∥∥∥∥

≤

∥∥∥∥∥
m∑

k=1

(xk − nk) − x

∥∥∥∥∥ → 0 as m → ∞.

Remarks. The same reasoning also show that if E is a subspace of a Banach space X such that E + N is
closed (hence complete) in X, then (E + N )/N is complete, hence closed in X/N.

Definition. For a closed vector subspace N of a Banach space X, define the codimension of N in X to be
codimN = dimX/N.

Remark. In [RS], pp. 102-103, there is a nice functional analysis proof of the Tietze extension theorem on
compact spaces using quotient spaces.
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Chapter 2. Basic Principles.

§1. Consequences of Baire’s Category Theorem. In this and next sections, we will study important
principles about linear operators between topological vector spaces. The four pillars of functional analysis
are the open mapping theorem, the closed graph theorem, the uniform boundedness principle and the Hahn-
Banach theorem. They have many applications in different branches of mathematics. We will cover the first
three of these in this section and the last one in the next section.

Definition. For topological spaces X and Y, T : X → Y is open iff U open in X implies T (U ) open in Y.

Remarks. (1) In checking T : X → Y is open, it is enough to check T (U ) is open for U ’s in a base of TX .
Then T open follows from T (∪α Uα) = ∪α T (Uα). For example, every quotient map π : X → X/N of normed
spaces is open since π(B(a, r)) = B([a], r). Also, a projection πβ :

∏
α∈A Xα → Xβ is an open map since for

open sets Sαi in Xαi , πβ

(
π−1

α1
(Sα1 ) ∩ · · · ∩ π−1

αn
(Sαn )

)
= Sαi or Xβ depending if β = αi for some i or not.

(2) An open map may not take closed sets to closed sets. To see this, let X = P ([0, 1]) and Y = C([0, 1]) be
the sets of all polynomials and continuous function on [0, 1] with sup-norm, respectively. Then V = {(f, f) :
f ∈ P ([0, 1])} is closed in X × Y because (fn, fn) → (f, g) in X × Y implies fn → f in X(⊂ Y ) and fn → g
in Y, hence, by uniqueness of limit in Y, f = g and so (f, g) ∈ V. The projection map πY : X × Y → Y is
open, but πY (V ) = X is not closed in Y since X = Y 6= X by the Stone-Weierstrass theorem.

(3) If a vector subspace M contains some B(a, r) in a normed space Y, then M = span{B(a, r) − a} =
span{B(0, r)} = Y. So if linear T : X → Y is open (or just M = T (X) contains a ball of Y ), then T is
surjective. Is there any converse? See the open mapping theorem below.

Lemma 1. Let X and Y be normed spaces. A linear function T : X → Y is open if and only if there exist
r, r′ > 0 such that T (B(0, r)) ⊇ B(0, r′).

Proof. If T is open, then T (B(0, r)) is open and contains 0. So T (B(0, r)) ⊇ B(0, r′) for some r′ > 0.

If T (B(0, r)) ⊇ B(0, r′), then since every open U in X is a union of B(a, ra) = a + (ra/r)B(0, r), so

T (U )= T
( ⋃

a∈U

B(a, ra)
)

=
⋃

a∈U

(
T (a) +

ra

r
T (B(0, r))

)
⊇

⋃

a∈U

B
(
T (a),

rar′

r

)
⊇

⋃

a∈U

{T (a)}=T (U ). Therefore,

T (U ) is the union of B(T (a), rar′/r), hence is open.

Lemma 2. Let X be a Banach space, Y be a normed space and T ∈ L(X, Y ). If T (B(0, r)) ⊇ B(0, r′), then
T (B(0, r)) ⊇ B(0, r′).

Proof. Let y ∈ B(0, r′). Choose c such that ‖y‖/r′ < c < 1. Let ε ∈ (0, 1 − c). Then y ∈ cB(0, r′) ⊆
T (cB(0, r)). So y is limit of Tx’s with x ∈ cB(0, r). Then there is x1 ∈ cB(0, r) such that ‖y−Tx1‖ < εcr′. So
y−Tx1 ∈ εcB(0, r′) ⊆ T (εcB(0, r)). Iterating this, we get by induction a sequence {xn} in X such that xn ∈

εn−1cB(0, r) and y−Tx1−· · ·−Txn ∈ εncB(0, r′). Now
∞∑

n=1

‖xn‖ <
cr

1 − ε
< r. Since X is complete,

∞∑

n=1

xn =

x for some x ∈ B(0, r). Since T is continuous, ‖y − Tx‖ = lim
n→∞

‖y − Tx1 − · · · − Txn‖ ≤ lim
n→∞

εncr′ = 0.

Then y = Tx ∈ T (B(0, r)).

Open Mapping Theorem. For Banach spaces X, Y and T ∈ L(X, Y ), if T is surjective, then T is open.

Proof. Let Un = B(0, n) in X. Since T (X) = T
( ∞
∪

n=1
Un

)
=

∞
∪

n=1
T (Un) is of the second category in Y by the

Baire category theorem, there is n such that T (Un) contains an open ball, say B(Ta, r) = Ta + B(0, r),
where a ∈ Un. Then B(0, r) = −Ta + B(Ta, r) ⊆ −Ta + T (Un) ⊆ T (Un) + T (Un) ⊆ T (U2n). By the lemmas
above, B(0, r) ⊆ T (U2n) and T is open.

Remark. Let X be a Banach space, Y be a normed space and T ∈ L(X, Y ). The proof above actually
showed if T (X) is of second category in Y, then T is open (and surjective by remark (3) above).
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Definitions. Let X, Y be normed spaces. T ∈ L(X, Y ) is invertible iff T is bijective and T−1 ∈ L(Y, X). X
and Y are isomorphic iff there is an invertible T ∈ L(X, Y ). (Such an invertible T is called an isomorphism
between X and Y. In that case, there exist c1, c2 > 0 such that for all x ∈ X, c1‖x‖ ≤ ‖Tx‖ ≤ c2‖x‖.)

Inverse Mapping Theorem. For Banach spaces X and Y, if T ∈ L(X, Y ) is bijective, then T−1 ∈ L(Y, X).

Proof. For T ∈ L(X, Y ), T bijective is equivalent to T injective and open (by the open mapping theorem
and remark (3)). For all open U in X, (T−1)−1(U ) = T (U ) is open in Y. So T−1 is continuous.

Isomorphism Theorem. For normed spaces X, Y and T ∈ L(X, Y ), the linear function T̂ : X/ ker T → Y

defined by T̂ ([x]) = T (x) is bounded and ‖T̂‖ = ‖T‖. (In case X and Y are Banach spaces, if T ∈ L(X, Y ) is
surjective, then T̂ ∈ L(X/ ker T, Y ) is an isomorphism and X/ ker T is isomorphic to Y as Banach spaces.)

Proof. For all n ∈ ker T, ‖T̂ ([x])‖ = ‖Tx‖ = ‖T (x−n)‖ ≤ ‖T‖‖x−n‖. Taking infimum over all n ∈ ker T, we
get ‖T̂ ([x])‖ ≤ ‖T‖‖[x]‖. So T̂ is bounded and ‖T̂‖ ≤ ‖T‖. Next, ‖T (x)‖ = ‖T̂ ([x])‖ ≤ ‖T̂‖‖[x]‖ ≤ ‖T̂‖‖x‖
implies ‖T‖ ≤ ‖T̂‖. Therefore, ‖T̂‖ = ‖T‖.

In case X and Y are Banach spaces, if T ∈ L(X, Y ) is surjective, then T̂ ∈ L(X/ ker T, Y ) is bijective.
By the inverse mapping theorem, T̂ is an isomorphism.

Remarks. Using the inverse mapping theorem, it can be showed that there exists a complex sequence
with limit zero such that it is not the Fourier coefficient sequence of a L1 function on the unit circle. See
applications at the end of the chapter.

Definition. Let X, Y be normed spaces. T ∈ L(X, Y ) is bounded below iff there exists c′ > 0 such that for
all x ∈ X, ‖Tx‖ ≥ c′‖x‖.

Remarks. (1) Taking u = x/‖x‖, the inequality is the same as inf{‖T (u)‖ : ‖u‖ = 1} > 0. So T is not
bounded below iff there is a sequence un ∈ X such that ‖un‖ = 1 and T (un) → 0.

(2) If T ∈ L(X, Y ) is bounded below and W is a complete subset of X, then T (W ) is also a complete subset
in Y (since for xn ∈ W, {Txn} Cauchy implies {xn} Cauchy, hence by completeness of W, xn → x for some
x ∈ W and by continuity of T, Txn → Tx ∈ T (W )). In case X is a Banach space, T bounded below and W
closed subset in X imply T (W ) closed in Y.

Lower Bound Theorem. Let X be a Banach space and Y be a normed space. For T ∈ L(X, Y ), the
following are equivalent:

(a) T is bounded below,
(b) T is injective and T (X) is complete (hence closed in Y ),
(c) T has a continuous inverse T−1 : T (X) → X.

Proof. (a) ⇒ (b) If T is bounded below, then T (x) = 0 implies x = 0, so T is injective. By remark (2),
T (X) is complete (hence closed in Y ).

(b) ⇒ (c) This follows immediately from the inverse mapping theorem.

(c) ⇒ (a) If T−1 ∈ L(T (X), X), then ‖x‖ = ‖T−1(Tx)‖ ≤ ‖T−1‖‖Tx‖ for all x ∈ X and we can take
c′ = 1/‖T−1‖ (unless T−1 = 0, i.e. X = {0}, then take c′ = 1).

Remarks. Let X and Y be Banach spaces. T ∈ L(X, Y ) is invertible if and only if T is injective and T (X)
is closed and dense in Y if and only if T is bounded below and T (X) is dense in Y. For injective T ∈ L(X, Y ),
T (X) is closed iff T is bounded below.

For the next theorem, we introduce the

Definition. For topological spaces X and Y, T : X → Y is closed iff its graph Γ(T ) = {(x, Tx) : x ∈ X} is
closed in X × Y (i.e. if (xα, Txα) → (x, y) ∈ Γ(T ), then y = Tx so that (x, y) ∈ Γ(T )).
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Remark. For Hausdorff space Y, if T : X → Y is continuous, then T is closed (since (xα, Txα) → (x, y)
and Txα → Tx by continuity imply y = Tx by uniqueness of limit). Are there any converse? See the next
theorem.

Recall that the projection maps π1 : X × Y → X defined by π1(x, y) = x and π2 : X × Y → Y defined
by π2(x, y) = y are continuous.

Closed Graph Theorem. Let X, Y be Banach spaces and T : X → Y be linear. If T is closed, then T is
continuous.

Proof. Since X and Y are complete, so X×Y is complete. Since Γ(T ) = {(x, Tx) : x ∈ X} is closed in X×Y,
Γ(T ) is complete. Note π1

∣∣
Γ(T )

: Γ(T ) → X is bijective. Also, π1 continuous implies π1

∣∣
Γ(T )

∈ L(Γ(T ), X).

By the inverse mapping theorem, π1

∣∣−1

Γ(T )
∈ L(X, Γ(T )). Therefore, T = π2 ◦ π1

∣∣−1

Γ(T )
∈ L(X, Y ).

Exercises. (1) Let X be a vector space equipped with two complete norms ‖ · ‖1 and ‖ · ‖2. If there exists
c > 0 such that for all x ∈ X, ‖x‖1 ≤ c‖x‖2, prove that there exists c′ > 0 such that for all x ∈ X,
‖x‖2 ≤ c′‖x‖1. This means the norms are equivalent.

(2) (Hellinger-Toeplitz Theorem) Let H be a Hilbert space and T : H → H be a linear transformation such
that for all x, y ∈ H, 〈x, Ty〉 = 〈Tx, y〉. Prove that T is bounded. (This theorem has important consequence
in mathematical physics. See [RS], p. 84)

Application. See [Fr], pp. 145-149 or [Y], pp. 80-81 for applications of the closed graph theorem to PDE.

Uniform Boundedness Principle (or Resonance Theorem). Let X, Y be normed spaces, A ⊆ L(X, Y )
and S be of the second category in X. If A is pointwise bounded on S (i.e. {‖Tx‖ : T ∈ A} is bounded for
every x ∈ S), then A is uniformly bounded (i.e. {‖T‖ : T ∈ A} is bounded). Thus, if X is a Banach space
and A is pointwise bounded on X, then A is uniformly bounded.

Proof. Note Sn = {x ∈ X : ∀ T ∈ A, ‖Tx‖ ≤ n} =
⋂

T∈A

{x ∈ X : ‖Tx‖ ≤ n} is closed. Since S ⊆
∞⋃

n=1

Sn,

∞⋃

n=1

Sn is also of the second category in X. Then there is a Sn containing some ball B(x, r). Hence Sn ⊇

B(x, r) = x + B(0, r). For every ‖y‖ ≤ 1, since x ∈ Sn and x + ry ∈ B(x, r) ⊆ Sn, so for all T ∈ A,

‖Ty‖ =
‖T (ry)‖

r
≤ ‖T (x + ry)‖ + ‖Tx‖

r
≤ 2n

r
.

Therefore, for every T ∈ A, ‖T‖ ≤ 2n/r.

Theorem (Banach-Steinhaus). Let X be a Banach space, Y be a normed space and Tn ∈ L(X, Y ).

(a) If for all x ∈ X, {Tnx} converges in Y, then Tx = lim
n→∞

Tnx ∈ L(X, Y ) with ‖T‖ ≤ liminf
n→∞

‖Tn‖ < ∞.

(b) Suppose there is C > 0 such that ‖Tn‖ ≤ C for n = 1, 2, 3, . . .. For T0 ∈ L(X, Y ), the vector subspace
M = {x ∈ X : lim

n→∞
Tnx = T0x} is closed in X. If M is dense or of the second category in X, then M = X

(i.e. Tn converges pointwise on X to T0).

Proof. (a) For all x ∈ X, {Tn(x)} converges implies it is bounded. By the uniform boundedness principle,
sup{‖Tn‖ : n = 1, 2, 3, . . .} < ∞. Now there is a subsequence {‖Tni‖} converging to c = liminf

n→∞
‖Tn‖. Then

‖Tx‖ = lim
i→∞

‖Tnix‖ ≤ lim
i→∞

‖Tni‖‖x‖ = c‖x‖, which implies ‖T‖ ≤ c.

(b) For every x ∈ M and ε > 0, there is y ∈ M such that ‖x − y‖ < ε/(2C + 2‖T0‖). Since y ∈ M, so Tny
converges to T0y. Hence, there is N such that n ≥ N implies ‖Tny − T0y‖ < ε/2. Then

‖Tnx − T0x|| ≤ ‖Tnx − Tny‖ + ‖Tny − T0y‖ + ‖T0y − T0x‖ ≤ (‖Tn‖ + ‖T0‖)‖x − y‖ + ε/2 < ε.
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So lim
n→∞

Tnx = T0x and x ∈ M. Then M = M.

If M is dense in X, then M = M = X. If M is of the second category (hence not nowhere dense) in X,
then M contains some B(a, r) in X. So M = span(B(a, r) − a) = X.

Remarks. If Y is also a Banach space, then we can replace (b) by

(b’) If there is C > 0 such that ‖Tn‖ ≤ C for n = 1, 2, 3, . . . , then the vector subspace

M = {x ∈ X : lim
n→∞

Tnx exists} = {x ∈ X : Tnx is Cauchy}

is closed in X. If M is dense or of second category in X, then M = X (i.e. Tn converges pointwise on X).

For the proof of (b’), it suffices to show M is closed. For every x ∈ M and ε > 0, there is y ∈ M such
that ‖x − y‖ < ε/(4C). Since y ∈ M, there is N such that n, m ≥ N implies ‖Tny − Tmy‖ < ε/2. Then

‖Tnx − Tmx|| ≤ ‖Tnx − Tny‖ + ‖Tny − Tmy‖ + ‖Tmy − Tmx‖ ≤ (‖Tn‖ + ‖Tm‖)‖x− y‖ + ε/2 < ε.

So lim
n→∞

Tnx exists and x ∈ M. Then M = M. The rest is the same.

Remarks. Using the uniform boundedness principle, it can be proved that there exists a 2π-periodic con-
tinuous function whose Fourier series does not converge to it everywhere. In fact, it can be used to show
that there exists a 2π-periodic continuous function on R whose Fourier series diverges on an uncountable
dense set in R. See applications at the end of the next section.

§2. Applications of Theorems. Every function f defined on (−π, π] corresponds to a 2π-periodic function
on R defined by f(x + 2nπ) = f(x) for all integers n. Let eiθ = cos θ + i sin θ and T = {eiθ : −π < θ ≤ π}.
Every function f defined on (−π, π] also corresponds to a function fo on T defined by fo(eiθ) = f(θ).
In the following we will use these correspondences to identify these three sets of functions.

Definitions. (1) A function P : R → C is a trigonometric polynomial iff it is of the form P (x) =
n∑

k=−n

ckeikx,

where ck ∈ C and n is a nonnegative integer.

(2) For all f ∈ L1(−π, π] and n ∈ Z, define the n-th Fourier coefficient of f to be f̂ (n) =
∫

(−π,π]

f(θ)e−inθ dm

2π
.

The Fourier series of f is
∞∑

k=−∞

f̂ (k)eikx and its n-th partial sum is sn(f ; x) =
n∑

k=−n

f̂ (k)eikx.

Remarks. (1) Under the identification above, since the trigononmetric polynomials are 2π-periodic on R,
they can be considered as functions on T. Below 2π-periodic continuous functions on R will be considered
as functions in C(T). Functions in L1(−π, π] can be considered as functions in L1(T).

(2) The set of all trigonometric polynomials is dense in C(T) with sup-norm by the Stone-Weierstrass theorem
since it is a self-adjoint subalgebra of C(T) that separates points of T and vanishes at no point of T.

(3) The Dirichlet kernel is Dn(x) =
n∑

k=−n

eikx, which is
sin(n + 1

2 )x
sin 1

2x
if x 6= 0 and is 2n + 1 if x = 0. We have

sn(f ; x) =
n∑

k=−n

f̂ (k)eikx =
n∑

k=−n

∫

(−π,π]

f(θ)eik(x−θ) dm

2π
=

∫

(−π,π]

f(θ)Dn(x − θ)
dm

2π
= (f ∗ Dn)(x).

Riemann-Lebesgue Lemma. For every f ∈ L1(T), lim
n→±∞

f̂ (n) = 0. In fact, the function F : L1(T) → c0

defined by F(f) = (f̂(0), f̂ (1), f̂(−1), f̂ (2), f̂(−2), . . .) is continuous and linear.
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Proof. For every ε > 0, from measure theory (see Rudin, Real and Complex Analysis, Theorem 3.14), there
exists g ∈ C(T) such that ‖f − g‖1 < ε/2. Next by remark (2) above, there is a trigonometric polynomial

P (x) =
N∑

k=−N

ckeikx such that ‖g − P‖∞ < ε/2. For |n| > N, we have P̂ (n) = 0 and

|f̂(n)| =

∣∣∣∣∣

∫

(−π,π]

(f(t) − P (t))e−int dm

2π

∣∣∣∣∣ ≤ ‖f − P‖1 ≤ ‖f − g‖1 + ‖g − P‖1 ≤ ‖f − g‖1 + ‖g − P‖∞ < ε.

So f̂(n) → 0 as |n| → ∞.

Next, linearity of F is clear and continuity follows from ‖F(f)‖ = sup |f̂ (n)| ≤
∫

(−π,π]

|f |dm

2π
= ‖f‖1.

Questions Is F injective? Is it surjective?

Theorem. F : L1(T) → c0 is injective.

Proof. Suppose f ∈ kerF , i.e. f̂(n) = 0 for all n ∈ Z. Then
∫

(−π,π]

fP dm = 0 for all trigononmetric

polynomials P. There are two ways to finish.

(1) By remark (2) above, we have
∫

(−π,π]

fg dm = 0 for all g ∈ C(T). For those who know the Riesz

representation theorem on C(T)∗, it follows f = 0 almost everywhere.

(2) For every x ∈ (−π, π], there are continuous gn : [−π, π] → [0, 1] such that gn(−π) = gn(π) = 0 and
lim

n→∞
gn(t) = χ(−π,x)(t) for all t ∈ (−π, π]. By remark (2) above, there is a trigonometric polynomial Pn such

that ‖gn −Pn‖∞ < 1
n . For t ∈ (−π, π], |f(t)Pn(t)| ≤ |f(t)|‖Pn‖∞ ≤ |f(t)|(‖gn‖∞ + 1

n) ≤ 2|f(t)| ∈ L1(−π, π]
and f(t)Pn(t) → f(t)χ(−π,x)(t) for all t ∈ (−π, π]. By the Lebesgue dominated convergence theorem,

∫ x

−π

f(t)dt =
∫

(−π,π]

fχ(−π,x)dm = lim
n→∞

∫

(−π,π]

fPndm = 0.

Differentiate with respect to x, we get f = 0 almost everywhere (see Rudin, Real and Complex Analysis,
Theorem 7.11).

Theorem. F : L1(T) → c0 is not surjective. In fact, the range of F is not closed.

Proof. Assume F is surjective. There are two ways to get a contradiction.

(1) By the inverse mapping theorem, F would be an isomorphism between L1(T) and c0. Then c∗0 = `1 would
be isomorphic to (L1(T))∗ = L∞(T), which is impossible because `1 is separable, but L∞(T) (like `∞) is
not separable as there are uncountably many balls {B(χ(−π,x),

1
2) : x ∈ (−π, π]} that are pairwise disjoint

in L∞(T). Therefore, we have a contradiction.

(2) Since F is injective, if F(L1(T)) is c0 or closed, then by the lower bound theorem, F would be bounded
below, i.e. there exists c > 0 such that ‖F(f)‖∞ ≥ c‖f‖1 for all f ∈ L1(T). Now Dn ∈ C(T) ⊆ L1(T) and
‖F(Dn)‖∞ = ‖(1, 1, . . . , 1, 0, 0, . . .)‖∞ = 1. However, since | sin x| ≤ |x| for all x ∈ R, we have

‖Dn‖1 >
2
π

∫ π

0

∣∣∣∣sin
(
n +

1
2
)
θ

∣∣∣∣
dθ

θ
=

2
π

∫ (n+1/2)π

0

| sinφ|
dφ

φ
>

2
π

n∑

k=1

1
kπ

∫ kπ

(k−1)π

| sinφ|dφ =
4
π2

n∑

k=1

1
k
→ ∞,

which contradicts F is bounded below.

Questions Does the Fourier series of f ∈ L1(T) converge to f almost everywhere or in L1-norm?

Theorem (du Bois-Reymond, 1873). For every w ∈ (−π, π], there exists f ∈ C(T) such that its Fourier
series diverges at x = w. More precisely, the partial sums of the Fourier series at x = w is unbounded.
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Proof. (Due to Henri Lebesgue) First we deal with the case w = 0. Define Tn : C(T) → C by Tn(f) = sn(f ; 0)

=
n∑

k=−n

f̂ (k). Clearly, Tn is linear. Also, Tn is bounded since

|Tnf | =
∣∣∣
∫

(−π,π]

f(θ)Dn(−θ)
dm

2π

∣∣∣ ≤ ‖f‖∞
∫ π

−π

|Dn(θ)|dθ = ‖Dn‖1‖f‖∞.

So ‖Tn‖ ≤ ‖Dn‖1.

In fact, ‖Tn‖ = ‖Dn‖1. To see this, let g(t) = sgn Dn(−t), which is defined by g(t) = 1 if Dn(−t) ≥ 0
and g(t) = −1 if Dn(−t) < 0. Then g(t)Dn(−t) = |Dn(−t)|. Also, there exists fj ∈ C(T) such that
‖fj‖∞ = 1 and lim

j→∞
fj(t) = g(t) for every t ∈ (−π, π]. Since fj(θ)Dn(−θ) → g(θ)Dn(−θ) = |Dn(−θ)| and

|fj(θ)Dn(−θ)| ≤ |Dn(−θ)| ∈ C(T) ⊂ L1(T), by the Lebesgue dominated convergence theorem,

lim
j→∞

Tnfj = lim
j→∞

1
2π

∫ π

−π

fj(θ)Dn(−θ)dθ =
1
2π

∫ π

−π

g(θ)Dn(−θ)dθ =
1
2π

∫ π

−π

|Dn(θ)|dθ = ‖Dn‖1.

Now sup{‖Tn‖ : n = 0, 1, 2, . . .} = lim
n→∞

‖Dn‖1 = ∞. By the uniform boundedness principle, there exists

f ∈ C(T) such that sup{|Tnf | : n = 0, 1, 2, . . .} = ∞. Therefore, the Fourier series of f diverges when x = 0.

For w 6= 0, fw(x) = f(x − w) ∈ C(T) has Fourier coefficients f̂w(k) = f̂ (k)e−ikw. Hence, its Fourier series is
∞∑

k=−∞

(f̂ (k)e−ikw)eikx, which diverges at x = w.

Appendix: Divergence of Fourier Series

Principle of Condensation of Singularities. Let X be a Banach space and Y be a normed space. Let
Tnj ∈ L(X, Y ) for n, j = 0, 1, 2, . . . be such that for all j, limsup

n→∞
‖Tnj‖ = ∞. Then there is a set U of second

category in X such that for all f ∈ U and all j, limsup
n→∞

‖Tnjf‖ = ∞.

Proof. For a fixed j, let Vj = {f ∈ X : limsup
n→∞

‖Tnjf‖ < ∞}. Then f ∈ Vj implies sup{‖Tnjf‖ : n =

0, 1, 2, . . .} < ∞. If Vj is of the second category in X, then the uniform boundedness principle would imply
sup{‖Tnj‖ : n = 0, 1, 2, . . .} < ∞, hence limsup

n→∞
‖Tnj‖ < ∞, a contradiction. So Vj is of first category in X.

Then V = V0 ∪ V1 ∪ V2 ∪ · · · is of first category in X. Since X is complete, U = X \ V is of second category
in X. For all f ∈ U and all j, we have f 6∈ Vj, i.e. limsup

n→∞
‖Tnjf‖ = ∞.

Application Now take a countable dense subset {wj} of T and define Tnj : C(T) → C by Tnjf = sn(f ; wj).
As in the proof of the last theorem, ‖Tnj‖ = ‖Dn‖1 and so limsup

n→∞
‖Tnj‖ = ∞ for all j. By the principle of

condensation of singularites, there is a set of second category in C(T) such that all these functions f have
Fourier series diverging at the dense subset {wj} (with (*) sup{|sn(f, wj)| : n = 1, 2, 3, . . .} = ∞ for all wj.)

Let f be one such function. We claim that the set of points on T where the Fourier series of f diverges
is actually a set of second category in T, hence uncountable and much more than {wj}!

To see this, let Mn,k = {w ∈ T : |sn(f ; w)| ≤ k}, Mk =
∞⋂

n=1

Mn,k and M =
∞⋃

k=1

Mk.

(1) Mk = {w ∈ T : sup{|sn(f, w)| : n = 1, 2, 3, . . .} ≤ k}, so by (*), for all j, k, wj 6∈ Mk.

(2) If the Fourier series of f converges at w, then {sn(f, w) : n = 1, 2, 3, . . .} is bounded, hence w is in some
Mk, leading to w ∈ M. In particular, the Fourier series of f diverges at all elements of T \M.
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(3) hn,f (w) = sn(f ; w) =
n∑

j=−n

f̂ (j)eijw is continuous in w. So Mn,k = h−1
n,f (B(0, k)) and Mk are closed.

Assume some Mk is of second category in T. Then in particular, it would not be nowhere dense. Since
Mk is closed by (3), there is a nonempty open set in Mk. By the density of {wj}, one of the wj would be in
Mk, contradicting (1). So all Mk must be of first category in T. Then M will also be of first category in T.
By (2), the Fourier series of f diverges on T \ M, which is of second category in T, hence uncountable!

Remarks. In 1915, Lusin conjectured that for every f ∈ L2(−π, π], the Fourier series of f converges almost
everywhere.

In 1926, Kolmogorov (as an undergraduate student in Moscow State University) proved that there
exists a f ∈ L1(−π, π] such that the Fourier series of f diverges everywhere! See Antoni Zygmund,
Trigonometric Series, second edition, vol. 1, pp. 310-314 for such a function.

In 1927, M. Riesz proved that for every function f in Lp(−π, π] (1 < p < ∞), the Fourier series of f
converges in the Lp-norm to f. From measure theory (see Rudin, Real and Complex Analysis, Theorem 3.12),
it is known that this implies there is a subsequence of the partial sums of the Fourier series of f ∈ Lp(−π, π]
converging almost everywhere to f.

In 1966, Lennart Carleson proved the Lusin conjecture. In particular, this implies the Fourier series of
a 2π-periodic continuous function converges almost everywhere (to the function itself by Riesz’ result). In
the same year, Kahane and Katznelson proved that for every set of Lebesgue measure 0 on (−π, π], there is
a 2π-periodic continuous function whose Fourier series diverges there.

In 1968, Richard Hunt proved that for every f ∈ Lp(−π, π] with 1 < p ≤ ∞, the Fourier series of f
converges almost everywhere to f itself.

§3. Hahn-Banach Theorems. In the literature, there are a few theorems that are commonly called the
Hahn-Banach theorem. We will discuss these one at a time.

Definitions. (1) A Minkowski functional on a vector space X is a function p : X → R such that for all c ≥ 0
and x, y ∈ X, p(cx) = cp(x) and p(x+y) ≤ p(x)+p(y). (So semi-norms are Minkowski functionals such that
for all x ∈ X and |c| = 1, p(x) ≥ 0 and p(cx) = p(x).)

(2) A function F : A → B is an extension of another function f : C → B iff A ⊇ C and F (x) = f(x) for all
x ∈ C, equivalently graph of F contains graph of f (in short f = F |C). We say F is a linear extension of f
when A, B, C are vector spaces and F, f are linear.

Real Hahn-Banach Theorem. Let Y be a vector subspace of a vector space X over R, p be a Minkowski
functional on X and f : Y → R be a linear function such that for all x ∈ Y, f(x) ≤ p(x). Then f has a
linear extension F : X → R such that for all x ∈ X, F (x) ≤ p(x).

Proof. Consider the collection S of all (Z, fZ), where Z is a vector subspace of X containing Y and there
exists a linear extension fZ of f and fZ(x) ≤ p(x) for all x ∈ Z. Since (Y, f) ∈ S, S 6= ∅. Partial order the
elements of S by inclusion (i.e. (Z0, fZ0) � (Z1, fZ1) iff Z0 ⊆ Z1 and fZ1 |Z0 = fZ0 .) If C is a chain in S, then
L =

⋃

(Z,fZ)∈C

Z is a vector subspace of X containing Y. Define fL by taking Γ(fL) =
⋃

(Z,fZ)∈C

Γ(fZ ). We see

that C has (L, fL) as an upper bound in S. Hence, by Zorn’s lemma, S has a maximal element (M, fM ).

Assume M 6= X. Let x ∈ X \ M. Consider Z = span(M ∪ {x}) = M + Rx. For every a, b ∈ M,

fM (a) + fM (b) = fM (a + b) ≤ p(a + b) ≤ p(a − x) + p(x + b).

Then fM (a) − p(a − x) ≤ p(x + b) − fM (b). Taking supremum over a ∈ M, then infimum over b ∈ M, we
get α = sup{fM (a) − p(a − x) : a ∈ M} ≤ β = inf{p(x + b) − fM (b) : b ∈ M}. Let c ∈ [α, β] and define
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fZ(m + rx) = fM (m) + rc for all m ∈ M, r ∈ R. It is easy to check fZ is linear and fZ extends fM so that
fZ(m) = fM (m) ≤ p(m) for all m ∈ M. If r > 0, then taking b = m/r and using c ≤ β, we have

fZ(m + rx) = r
(
fM

(m

r

)
+ c

)
≤ r

(
fM

(m

r

)
+ p

(
x +

m

r

)
− fM

(m

r

))
= p(m + rx).

If r < 0, then −r > 0. Taking a = −m/r and using c ≥ α, we have

fZ(m + rx) = −r
(
fM

(
−m

r

)
− c

)
≤ −r

(
fM

(
−m

r

)
−

(
fM

(
−m

r

)
− p(−m

r
− x)

))
= p(m + rx).

Then (Z, fZ) ∈ S, which contradicts (M, fM ) maximal in S. So M = X.

Complexification Lemma. Let X be a vector space over C. If U : X → R is linear (considering X as a
vector space over R), then F : X → C defined by F (x) = U (x)− iU (ix) is linear (considering X as a vector
space over C).

Proof. For c ∈ R, x, y ∈ X, we have (1) U (x + y) = U (x) + U (y), (2) iU (i(x + y)) = iU (ix) + iU (iy),
(3) U (cx) = cU (x) and (4) iU (icx) = ciU (ix). Subtracting (2) from (1), we get F (x + y) = F (x) + F (y).
Subtracting (4) from (3), we get F (cx) = cF (x). Also, F (ix) = U (ix)− iU (−x) = i(U (x)− iU (ix)) = iF (x).
Therefore, F is linear (considering X as a vector space over C).

Complex Hahn-Banach Theorem. Let Y be a vector subspace of a vector space X over C, p be a
seminorm on X and f : Y → C be a linear function such that for all x ∈ Y, |f(x)| ≤ p(x). Then f
has a linear extension F : X → C such that for all x ∈ X, |F (x)| ≤ p(x).

Proof. Let u = Ref and v = Imf. Since f(ix) = if(x), we have u(ix) + iv(ix) = iu(x) − v(x) so that
Im f(x) = v(x) = −u(ix). Since for all x ∈ Y, u(x) ≤ |f(x)| ≤ p(x), by the real Hahn-Banach theorem, there
exists a linear extension U : X → R of u (with X as a vector space over R) and U (x) ≤ p(x) for all x ∈ X.

By the complexification lemma, F : X → C defined by F (x) = U (x) − iU (ix) is linear (considering X
as a vector space over C). F extends f because for every x ∈ Y,

F (x) = U (x) − iU (ix) = u(x) − iu(ix) = Re f(x) + i Im f(x) = f(x).

If F (x) = 0, then |F (x)| = 0 ≤ p(x). If F (x) 6= 0, then let c = |F (x)|/F (x). Since p is a seminorm and
F (cx) = cF (x) = |F (x)| ∈ R, |F (x)| = F (cx) = (Re F )(cx) = U (cx) ≤ p(cx) = |c|p(x) = p(x).

Remark. The complexification lemma is useful in reducing problems to the case of vector spaces over R.

Theorem (Hahn-Banach). Let X be a normed space and Y be a vector subspace of X.

(a) For every f ∈ Y ∗, there exists an extension F ∈ X∗ of f such that ‖F‖ = ‖f‖.

(b) Let x ∈ X. We have x 6∈ Y if and only if there exists F ∈ X∗ such that ‖F‖ = 1, F ≡ 0 on Y and
F (x) = d(x, Y ) = inf{‖x− y‖ : y ∈ Y } 6= 0. In particular, Y = X if and only if F ∈ X∗ with F ≡ 0 on
Y implies F ≡ 0 on X.

(c) If X 6= {0}, then for every x ∈ X, there exists F ∈ X∗ with ‖F‖ = 1 and F (x) = ‖x‖. Such F is called
a support functional at x. Note x 6= y in X ⇒ F (x− y) = ‖x− y‖ 6= 0, F (x) 6= F (y) for some F ∈ X∗.

Proof. (a) For all x ∈ X, p(x) = ‖f‖‖x‖ defines a seminorm. For case K = C, since |f(x)| ≤ ‖f‖‖x‖ = p(x),
by the complex Hahn-Banach theorem, we get a linear F : X → C extending f such that |F (x)| ≤ p(x) =
‖f‖‖x‖. For case K = R, similarly we get a linear F : X → R extending f such that F (x) ≤ p(x). Also
−F (x) = F (−x) ≤ p(−x) = p(x). Hence |F (x)| ≤ p(x) = ‖f‖‖x‖. These two cases imply F is continuous
and ‖F‖ ≤ ‖f‖. Now for all x ∈ Y, |f(x)| = |F (x)| ≤ ‖F‖‖x‖, which implies ‖f‖ ≤ ‖F‖. So ‖F‖ = ‖f‖.

(b) For the if-direction, by continuity, F ≡ 0 on Y and so x 6∈ Y . For the only-if-direction, let δ = d(x, Y ) > 0.
Define f : Kx + Y → K by f(cx + y) = cδ for all c ∈ K, y ∈ Y. Then f ≡ 0 on Y and f(x) = δ. For c 6= 0,
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|f(cx+y)| = |c|δ ≤ |c|‖x+ 1
c y‖ = ‖cx+y‖. Then ‖f‖ ≤ 1. Taking a sequence yn ∈ Y such that ‖x−yn‖ → δ,

we may let vn = (x − yn)/‖x − yn‖. Then ‖vn‖ = 1 and |f(vn)| = δ/‖x − yn‖ → 1. So ‖f‖ = 1. Applying
(a), we get the required F.

(c) For x ∈ X \ {0}, let Y = {0} and apply part (b) to get a F ∈ X∗, ‖F‖ = 1 and F (x) = ‖x‖. Also using
this F, we have F (0) = 0.

§4. Locally Convex Spaces. We extend the Hahn-Banach theorems to some topological vector spaces.

Definition. X is a locally convex space iff X is a topological vector space such that every neighborhood of
0 contains a convex neighborhood of 0.

Remark. In a locally convex space, it is even true that every neighborhood of 0 contains an open convex
neighborhood of 0. This follows from the fact that if A is convex, then A◦ is also convex because for 0 < t < 1,

tA◦ + (1 − t)A◦ =
⋃

a∈A◦

(ta + (1 − t)A◦) is open in A, hence tA◦ + (1 − t)A◦ ⊆ A◦.

Theorem. In a vector space X, for every convex absorbing set U, let pU (x) = inf{t > 0 : x ∈ tU}. Then

(a) pU (x) is a Minkowski functional. (It is called the Minkowski functional of U .)

(b) {x : pU (x) < 1} ⊆ U ⊆ {x : pU (x) ≤ 1}.

(c) If X is a topological vector space and U is also open, then U = {x : pU (x) < 1}.

Proof. (a) Since U is absorbing, 0 ∈ U and so pU(0) = 0. For c > 0, since x ∈ tU iff cx ∈ ctU, so pU (cx) =
cpU (x). Next observe that for s, t > 0, if x ∈ sU and y ∈ tU, then since U is convex, x + y ∈ sU + tU =

(s + t)
( s

s + t
U +

t

s + t
U

)
= (s + t)U. Taking infima of such s and t, we get pU(x + y) ≤ pU (x) + pU(y).

(b) If pU(x) < 1, then there is t ∈ [pU(x), 1) such that x ∈ tU. If t = 0, then x = 0 ∈ U. If t > 0, (1/t)x ∈ U
and x = t(1/t)x + (1 − t)0 ∈ U by convexity. Next, if x ∈ U, then 1 ∈ {t > 0 : x ∈ tU} and so pU (x) ≤ 1.

(c) Let x ∈ U. Since the scalar multiplication map g is continuous, U is open and g(1, x) = x ∈ U, there is a
neighborhood B(1, r)×V of (1, x) such that B(1, r)×V ⊆ g−1(U ). Let t = 1+(r/2). Then tx = g(t, x) ∈ U.
So x ∈ (1/t)U, which implies pU (x) ≤ 1/t < 1. Combining with (b), we get U = {x : pU (x) < 1}.

Remarks. For convex absorbing U, if U is balanced, then pU(x) is a semi-norm. (The reason is as follow.
Clearly pU (x) ≥ 0. For c ∈ K\{0}, let c = |c|a. Since pU (cx) = |c|pU(ax), it suffices to show pU(ax) = pU(x).
Since |a| = 1 and U is balanced, we have aU ⊆ U and (1/a)U ⊆ U. They imply (1/a)U = U. So ax ∈ tU iff
x ∈ (t/a)U = tU. So pU (ax) = pU (x).)

The converse is false. For example, U = B(0, 1) ∪ {1} is not balanced in C. Yet, for x ∈ (0, +∞),
x ∈ tU, t > 0 iff t ∈ [x, +∞). For z ∈ C \ [0, +∞), we have z ∈ tU, t > 0 iff t ∈ (|z|, +∞). So pU (z) = |z|.

Lemma. Let X be a topological vector space over R and A be a nonempty open convex subset of X. If f ∈ X∗

and f 6≡ 0,, then f(A) is an open interval.

Proof. Now A convex implies it is path connected. Since f is continuous, f(A) is path connected in R.
Hence f(A) is an interval. For every a ∈ A, U = −a + A is an open neighborhood of 0. Since f 6≡ 0,
there is x0 ∈ X such that f(x0) = 1. Let g be the scalar multiplication map g(t, x) = tx. Since g(0, x0) =
0 ∈ U, g−1(U ) contains a neighborhood (−ε, ε) × Nx0 of (0, x0). This implies tx0 ∈ U for t ∈ (−ε, ε). Now
(f(a) − ε, f(a) + ε) = {f(a) + t = f(a + tx0) : t ∈ (−ε, ε)} ⊆ f(a + U ) = f(A). So f(A) is open.

Separation Theorem. Let A, B be disjoint, nonempty convex subsets of a topological vector space X.

(a) If A is open, then there is f ∈ X∗ such that for all x ∈ A, Re f(x) < inf Re f(B).

(b) (Strong Separation Theorem) If A is compact, B is closed and X is locally convex, then there is f ∈ X∗

such that maxRe f(A) < inf Re f(B). This was proved by V. L. Klee in 1951.
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Proof. It suffices to prove the case K = R. (Then for the case K = C, we may regard X as a vector space over
R and keep the same topology so that it is a topological vector space over R. Then apply the case K = R and
use the complexification lemma to get the desired complex linear functional. This complex linear functional
is continuous because its real and imaginary parts are continuous.)

(a) Fix a0 ∈ A and b0 ∈ B. Let x0 = b0 − a0, then C = A − B + x0︸ ︷︷ ︸
convex

=
⋃

b∈B

(A − b + x0)︸ ︷︷ ︸
open

is an open convex

neighborhood of a0−b0+x0 = 0. Let p(x) be the Minkowski funcional of C, then by (c) of the above theorem,
C = {x : p(x) < 1}. Next A ∩ B = ∅ implies x0 6∈ C. So p(x0) ≥ 1.

We claim there exists f ∈ X∗ such that f(x0) = 1 and for all x ∈ C, f(x) < 1. To see this, let M be
the linear span of {x0}. Define f : M → R by f(tx0) = t. Then f(x0) = 1 ≤ p(x0) implies f(x) ≤ p(x) on
M. So f can be extended linearly to X with f(x) ≤ p(x) on X. Since f(x) ≤ p(x) < 1 for all x ∈ C, so
f(−x) = −f(x) > −1 for all −x ∈ −C. Then |f | < 1 on U = C ∩ (−C), a neighborhood of 0. Thus, for all
ε > 0, εU is a neighborhood of 0 and x ∈ εU implies |f(x)| < ε. So f is continuous at 0, hence continuous
on X.

For all a ∈ A and b ∈ B, a − b + x0 ∈ C implies f(a) − f(b) + 1 = f(a − b + x0) < 1. So f(a) < f(b).
Taking supremum over a ∈ A, then infimum over b ∈ B, we get sup f(A) ≤ inf f(B). Since A is nonempty
open convex, f ∈ X∗ and f(x0) = 1, by the lemma, f(A) = (α, β) say. Then for all x ∈ A, we have
f(x) < β = sup f(A) ≤ inf f(B).

(b) Since A ∩B = ∅, B is closed and X is locally convex, X \ B is a neighborhood of every a ∈ A. So there
is an open convex neighborhood Va of 0 such that a + Va ⊆ X \ B. Now {a + 1

2Va : a ∈ A} covers A. From
a subcover {ai + 1

2Vai : i = 1, 2, . . ., n}, we intersect the 1
2Vai ’s to get an open convex neighborhood V of 0.

Note

A + V ⊆
n⋃

i=1

(ai +
1
2
Vai + V ) ⊆

n⋃

i=1

(ai +
1
2
Vai +

1
2
Vai ) ⊆

n⋃

i=1

(ai + Vai) ⊆ X \B.

Then A + V =
⋃

a∈A

(a + V ) ⊆ X \ B is an open convex set disjoint from B. By (a), there is a continuous

linear functional f : X → R such that sup f(A + V ) ≤ inf{f(y) : y ∈ B}. Since f(A) is compact in
f(A + V ) = (α, β) by lemma, we have max f(A) < β = sup f(A + V ) ≤ inf f(B).

Corollary (Consequences of Separation Theorem). Let X be a locally convex space.

(a) If X is Hausdorff, then X∗ separates points of X in the sense that if x 6= y in X, then there exists
f ∈ X∗ such that f(x) 6= f(y). In particular, if f(x) = 0 for all f ∈ X∗, then x = 0.

(b) Let Y be a vector subspace of X and x ∈ X. We have x 6∈ Y if and only if there exists f ∈ X∗ such that
f(x) 6= 0 and f ≡ 0 on Y. Also, Y = X if and only if f ∈ X∗ with f ≡ 0 on Y implies f ≡ 0 on X.

Proof. (a) For distinct x, y ∈ X, let A = {x} and B = {y} and apply (b) of the separation theorem.

(b) For the if direction, by continuity, f ≡ 0 on Y and so x 6∈ Y . For the only-if direction, let A = {x} and
B = Y and apply (b) of the separation theorem to get f ∈ X∗ to separate A and B. Since f(Y ) is a vector
subspace of K, we must have f(Y ) = {0} and f(x) 6= 0.

Using the separation theorem, we can obtain an important theorem of M. Krein and D. Milman.

Definitions. Let V be a vector space over K and V ⊇ S ⊇ M 6= ∅.

(a) M is an extreme set in S iff M has the property that “if there exist s1, s2 ∈ S and there exists t ∈ (0, 1)
such that ts1 + (1 − t)s2 is in M, then both s1 and s2 are in M.” An extremal set consisted of a single
point is called an extreme point.
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(b) The convex hull of S is the smallest (or intersection of every) convex set in V containing S. (It is easy

to see that the convex hull of S is
{ n∑

i=1

tisi : n = 1, 2, 3, . . ., si ∈ S, ti ∈ [0, 1],
n∑

i=1

ti = 1
}

.) For S in a

topological vector space, the closed convex hull of S is the closure of the convex hull of S.

Examples. Every side of a triangular region on a plane is an extreme set of the region and every vertex is an
extreme point. Every point of a circle is an extreme point of the closed disk having the circle as boundary.

Remarks. (1) If for every α ∈ A, Eα is an extreme set in S and E =
⋂

α∈A

Eα 6= ∅, then E is an extreme set

in S. This is because s1, s2 ∈ S, t ∈ (0, 1) and ts1 + (1− t)s2 ∈ E imply ts1 + (1− t)s2 ∈ Eα for every α ∈ A,
which implies s1, s2 ∈ Eα for every α, hence s1, s2 ∈ E.

(2)If P is an extreme set in M and M is an extreme set in S, then P is an extreme set in S. This is because
ts1 + (1 − t)s2 ∈ P for some s1, s2 ∈ S, 0 < t < 1 implies ts1 + (1 − t)s2 ∈ M so that s1, s2 ∈ M (by the
extremity of M in S), then s1, s2 ∈ P (by the extremity of P in M ).

Theorem (Krein-Milman). Let X be a Hausdorff locally convex space and ∅ 6= S ⊆ X. If S is compact
and convex, then S has at least one extreme point and S is the closed convex hull of its extreme points.

Proof. We first show S has an extreme point. Note S is an extreme subset of itself. Let C = {W :
W is a nonempty compact extreme subsets of S}. Order C by reverse inclusion, i.e. for E1, E2 ∈ C, define
E1 � E2 iff E1 ⊇ E2. Since X is Hausdorff, every W ∈ C is closed. For every nonempty chain E in C,

let L =
⋂

W∈E
W, then L is closed and compact. Assume L = ∅. Then

⋃

W∈E
(S \ W ) = S. Since S is compact

and S \ W is open in S, there are W1, W2, . . . , Wn ∈ E such that ∅ 6= W1 ⊆ W2 ⊆ · · · ⊆ Wn ⊆ S and

S =
n⋃

i=1

(S \ Wi) = S \ W1. Then W1 = ∅, contradiction. Hence L 6= ∅. By remark (1), L is an extreme

subset of S. So L is an upper bound of the chain E in C. By Zorn’s lemma, C has a maximal element E.

Assume E has distinct elements x, y. By (b) of the separation theorem, there exists f ∈ X∗ such that
Re f(x) < Re f(y). This implies y 6∈ E0 = {s ∈ E : Re f(s) = inf Re f(E)} ⊂ E. Now E0 is nonempty due to
continuity of Re f on the compact set E. Since E0 = (Re f)−1({inf Re f(E)}), it is closed (hence compact).
Finally, E0 is an extreme subset of S because s = ts1 + (1 − t)s2 ∈ E0 ⊂ E implies s1, s2 ∈ E (as E ∈ C is
extreme) and

inf Re f(E) ≤ min{Ref(s1), Re f(s2)} ≤ t Re f(s1) + (1 − t) Re f(s2) = Re f(s) = inf Re f(E)

implies Re f(s1) = inf Re f(E) = Re f(s2), i.e. s1, s2 ∈ E0. So E0 ∈ C. Since E0 � E, this contradicts the
maximality of E in C. Therefore, E can only contain an extreme point of S.

Now we show S equals the closed convex hull H of all of its extreme points. Since S is closed and
convex, H ⊆ S. Assume there is s ∈ S \ H. By (b) of the separation theorem, there is f ∈ X∗ such that
Re f(s) < inf Re f(H). Then H1 = {x ∈ S : Re f(x) = inf Re f(S)} is convex and disjoint from H. Similar to
E0 above, H1 is a nonempty closed (hence compact) extreme subset of S. By the first part, H1 has at least
one extreme point p. By remark (2), p is an extreme point of S, which contradicts H1 ∩ H = ∅. So S = H.

Remarks. (1) Compactness is needed in the Krein-Milman theorem as the set {(x, y) ∈ R2 : x ≥ 0} is closed
and convex in R2, but it has no extreme point.

(2) The Krein-Milman theorem can be used to prove the Stone-Weierstrass theorem. Combining with the
Banach-Alaoglu theorem in the next chapter, it can be used to show that there exist Banach spaces that are
not the dual spaces of Banach spaces. For details of these two applications, see [Be], p. 110.
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Chapter 3. Weak Topologies and Reflexivity.

§1. Canonical Embedding. For a normed space X over K, x ∈ X and y ∈ X∗, let 〈x, y〉 = y(x). This
notation is to illustrate that many similar properties exist between X and X∗. For example, 〈x, y〉 is linear
in x and y. For y ∈ X∗, ‖y‖ = sup{|y(x)| : x ∈ X, ‖x‖ ≤ 1} = sup{|〈x, y〉| : x ∈ X, ‖x‖ ≤ 1}. In remark (1)
below, we will show that ‖x‖ = sup{|y(x)| : y ∈ X∗, ‖y‖ ≤ 1} = sup{|〈x, y〉| : y ∈ X∗, ‖y‖ ≤ 1}.

Theorem. Let X, Y be normed spaces. If Y is complete, then L(X, Y ) is a Banach space. (In particular,
X∗ = L(X, K) is a Banach space.)

Proof. Clearly L(X, Y ) is a normed vector space. For completeness, suppose {Tn} is a Cauchy sequence
in L(X, Y ). Then {Tn} is bounded so that there is K ≥ 0 such that for all n ≥ 1, ‖Tn‖ ≤ K. Then for all
x ∈ X, n ≥ 1, we have ‖Tn(x)‖ ≤ K‖x‖. Since ‖Tn(x)− Tm(x)‖ ≤ ‖Tn − Tm‖‖x‖, the sequence {Tn(x)} is a
Cauchy sequence in Y. Since Y is complete, lim

n→∞
Tn(x) exists and we may define T (x) = lim

n→∞
Tn(x). Clearly,

T is linear. Also, T is bounded as ‖T (x)‖ = lim
n→∞

‖Tn(x)‖ ≤ K‖x‖. So T ∈ L(X, Y ). For every ε > 0, since

{Tn} is Cauchy, there is N such that m, n ≥ N implies ‖Tn −Tm‖ < ε. Then ‖Tn(x)−Tm(x)‖ ≤ ε‖x‖ for all
x ∈ X. So ‖Tn(x) − T (x)‖ = lim

m→∞
‖Tn(x) − Tm(x)‖ ≤ ε‖x‖. Hence, if n ≥ N, then ‖Tn−T‖ ≤ ε. Therefore,

{Tn} converges to T in L(X, Y ).

Exercise. For X 6= {0}, if L(X, Y ) is a Banach space, then prove that Y is complete.

Canonical Embedding Theorem. For a normed space X, the “canonical embedding” i : X → X∗∗ =
(X∗)∗ defined by i(x) = ix, where ix(y) = y(x), is a linear isometry. If X 6= {0}, then for all x ∈ X,
‖x‖ = sup{|y(x)| : y ∈ X∗, ‖y‖ = 1}. In fact, sup can be replaced by max.

Proof. It is easy to see that ix is linear from X∗ to K and i is linear from X to X∗∗. To show i is an
isometry, it is enough to deal with the case X 6= {0}. Note |ix(y)| = |y(x)| ≤ ‖y‖‖x‖ for all y ∈ X∗ so that
‖ix‖ ≤ ‖x‖. By part (c) of the Hahn-Banach theorem, for every x ∈ X, there is y ∈ X∗ such that ‖y‖ = 1
and y(x) = ‖x‖. Then ‖x‖ = y(x) = ix(y) ≤ ‖ix‖‖y‖ = ‖ix‖. Therefore, ‖x‖ = ‖ix‖.

Remarks. (1) In the case X = {0}, we have X∗ = {0}. So to cover all normed spaces, the second statement
should be changed to ‖x‖ = sup{|y(x)| : y ∈ X∗, ‖y‖ ≤ 1} = sup{|〈x, y〉| : y ∈ X∗, ‖y‖ ≤ 1}.
(2) To simplify notations, we will often identify x ∈ X with ix ∈ X∗∗ and X with i(X) below.

Definitions. The closure X̂ of X in X∗∗ is a Banach space containing X as a dense subset and it is called a
completion of X. Banach spaces X satisfying i(X) = X∗∗ are called reflexive. (For example, Hilbert spaces,
Lp([0, 1]) and `p with 1 < p < ∞ are reflexive.)

§2. Locally Convex Spaces Generated by Seminorms. Occasionally, we will come across vector spaces
X that have many important semi-norms like those of the form |T (x)|, where T : X → K is linear. Then
we may want vector topologies on the vector spaces so that all these semi-norms are continuous. Below is a
theorem for that purpose. First, let p be a semi-norm and let V (p) = {x : p(x) < 1}. Observe that if r > 0,
then rV (p) = {x : p(x) < r} because x ∈ rV (p) iff x/r ∈ V (p) iff p(x) = rp(x/r) < r.

Theorem. (a) Let p1(x), p2(x), . . . , pn(x) be semi-norms on a vector space X and r1, r2, . . . , rn > 0. Then
S = r1V (p1) ∩ · · · ∩ rnV (pn) is convex, balanced (i.e. absolutely convex) and absorbing.

(b) On a topological vector space X, a semi-norm p(x) is continuous iff p(x) is continuous at 0 iff for all
r > 0, rV (p) is open.

(c) Let P be a family of semi-norms on a vector space X. The collection

U = {r1V (p1) ∩ · · · ∩ rnV (pn) : n ∈ N, r1, · · · , rn > 0, p1, · · · , pn ∈ P}

is a base at 0 of a topology that makes X into a locally convex space. Furthermore, it is the weakest vector
topology on X for which all semi-norms in P are continuous.
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Proof. (a) For i = 1, 2, . . . , n, let Si = riV (pi). If x, y ∈ S and t ∈ [0, 1], then x, y ∈ Si and pi(tx+(1−t)y) ≤
tpi(x) + (1 − t)pi(y) < ri, i.e. tx + (1 − t)y ∈ Si for all i. Hence, tx + (1 − t)y ∈ S, i.e. S is convex. Next, if
|c| ≤ 1, then pi(cx) = |c|pi(x) < r, i.e. cx ∈ Si for all i. Hence cx ∈ S, i.e. S is balanced. Finally, if z ∈ X,
then pi(z) = 0 implies cz ∈ Si for 0 < |c| ≤ ri = 1 and pi(z) > 0 implies cz ∈ Si for 0 < |c| ≤ ri = 1/pi(z).
So for r = min{r1, r2, . . . , rn}, we have cz ∈ S for 0 < |c| ≤ r. Hence S is absorbing.

(b) This follows from |p(x) − p(x0)| ≤ p(x − x0) and p−1(−ε, ε) = {x ∈ X : p(x) < ε} = εV (p).

(c) By (b), all p ∈ P are continuous iff all elements of U are open. The weakest vector topology on X for
which all semi-norms in P are continuous is the one generated by Ω = {x + U : x ∈ X, U ∈ U}. Let T be
consisted of all subsets S of X satisfying the condition that for every x ∈ S, there exists U ∈ U such that
x + U ⊆ S. We can check T is a topology on X. Let U = r1V (p1)∩ · · ·∩ rnV (pn) be an arbitrary element in
U . Every x + U is in T because a ∈ x + U implies a + Ua ∈ x + U, where Ua = c1V (p1)∩ · · · ∩ cnV (pn) ∈ U
and ci = ri − pi(a − x). The definition of T makes Ω a base for T and U a base at 0.

Next we check the addition map f and scalar multiplication map g are continuous. Let a, b ∈ X. To
see f is continuous at (a, b), for U ∈ U , let V = 1

2U and observe that f((a + V ) × (b + V )) = a + b + U. So
f−1(a + b + U ) contains (a + V ) × (b + V ), which is a neighborhood of (a, b). Hence f is continuous.

Suppose c ∈ K and x ∈ X. Since V is absorbing, there is s > 0 such that x ∈ sV. Let t = s/(1+ |c|s) > 0.
For every (c′, x′) in the neighborhood B(c, 1/s)×(x+tV ) of (c, x), we have |c′−c| < 1/s, |c′|t ≤ (|c|+ 1

s )t = 1
and c′x′ − cx = c′(x′ − x) + (c′ − c)x ∈ |c′|tV + |c′ − c|sV ⊆ V + V = U. This implies g−1(cx + U ) contains
the neighborhood B(c, 1/s) × (x + tV ) of (c, x). So g is continuous. Therefore, T is the desired topology.

Remarks. (1) The topology given in (c) is called the topology generated by the family P of semi-norms.

(2) The converse of (c) is true, i.e. a topological vector space X is a locally convex space iff there exists a
family of semi-norms that generates the topology on X (see [TL], p. 113).

(3) In the case P is consisted of exactly one norm, then we get the usual normed topology. So all theorems
on locally convex spaces apply to normed spaces!

Theorem. Let X be a locally convex space whose topology is generated by a family P of semi-norms. X is
Hausdorff iff P is separating (i.e. for each nonzero x ∈ X, there is p ∈ P such that p(x) 6= 0).

Proof. For P separating, let a, b ∈ X with x = b − a 6= 0. So there is p ∈ P such that p(x) > 0. Then
A = (−∞, p(x)/2) and B = (p(x)/2, +∞) are disjoint open in R. So p−1(A) and p−1(B) are disjoint
neighborhoods of 0 and x respectively. So a + p−1(A) and a + p−1(B) are disjoint neighborhoods of a and b
respectively.

For P not separating, there is x 6= 0 such that for all p ∈ P, p(x) = 0. Then for all r > 0 and p ∈ P,
x ∈ rV (p). Hence every neighborhood of 0 contains x. So X is not Hausdorff.

Definition. A set S in a topological vector space X is bounded iff for every neighborhood N of 0, there is
r > 0 such that S ⊆ rN.

Theorem. Let X be a locally convex space whose topology is generated by a family P of seminorms.

(a) A set W is bounded in X iff for every p ∈ P, p(W ) is bounded in K.

(b) A net {xα}α∈I → x in X iff for every p ∈ P, {p(xα−x)}α∈I → 0. (Then |p(xα)−p(x)| ≤ p(xα−x) → 0.)

Proof. (a)

W is bounded ⇐⇒ ∀ p1, . . . , pn ∈ P, r1, . . . , rn > 0, ∃ r > 0 such that W ⊆ r

n⋂

i=1

{x : pi(x) < ri}︸ ︷︷ ︸
=riV (pi)

⇐⇒ ∀ pi ∈ P, ∃ Ri > 0 such that ∀x ∈ W, pi(x) < Ri

⇐⇒ ∀ p ∈ P, p(W ) is bounded in K,
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where in the second step, take n = 1, R1 = rr1 in the ⇒ direction and take r > Ri/ri for i = 1, . . . , n in the
⇐ direction.

(b) {xα}α∈I → x ⇐⇒ {xα − x}α∈I → 0
⇐⇒ ∀ p1, . . . , pn ∈ P, r1, . . . , rn > 0, ∃ β ∈ I such that

α � β implies xα − x ∈
n⋂

i=1

{y : pi(y) < ri}

⇐⇒ ∀ pi ∈ P, ri > 0, ∃ βi ∈ I such that α � βi implies xα − x ∈ {y : pi(y) < ri}
⇐⇒ ∀ p ∈ P, {p(xα − x)}α∈I → 0,

where in the third step, take n = 1 in the ⇒ direction and take β � βi for i = 1, . . . , n in the ⇐ direction.

§3. Weak and Weak-star Topologies. We now ask the

Questions: Why are we interested in locally convex spaces? Why are normed spaces not good enough?

(1) Some important classes of functions in analysis, such as the collection of distributions or generalized
functions is not a normed space. They can be topologized by semi-norms.

(2) In analysis, we solve many problems by taking limit. Very often we consider bounded sequences and try
to extract convergent subsequences or subnets to get a limit point. For an infinite dimensional normed space
X, an application of the Riesz lemma showed the closed unit ball is not compact. So bounded sequences on
normed spaces may not have convergent subsequences or subnets in the norm topology!

However, Banach and Alaoglu proved that the closed unit ball of X∗ is compact in another topology T
generated by some semi-norms. So bounded sequences on dual spaces have T -cluster points. This is very
useful for solving many analysis problems.

For a normed space X, there is a weakest vector topology w on X that makes all elements of X∗

continuous. We simply take P = {|f | : f ∈ X∗} and apply the theorems on locally convex spaces. This
topology w on X is called the weak topology on X. Then X with this topology is a locally convex space. Using

the description of a base of 0 in a locally convex space, we see sets of the form U =
n⋂

i=1

{x ∈ X : |fi(x)| < ri},

where ri > 0 and fi ∈ X∗, form a base at 0 for the weak topology.

So on a normed space X, there are two topologies, namely the original norm-topology and the w-topology.
When we mean X with the w-topology, we shall write (X, w).

Properties of Weak Topologies.

(1) By definition of weak topology, we have the w-topology is a subset of the norm-topology. So w-open sets
are open in X, w-closed sets are closed in X, but compact sets in X are w-compact.

(2) By part (c) of the Hahn-Banach theorem, P = {|f | : f ∈ X∗} is separating, which implies the weak
topology is Hausdorff. So w-compact sets are w-closed. In case dimX < ∞, by the finite dimension theorem,
the norm and weak topologies are equal.

(3) For every net {xα}α∈I in X, by a theorem in the section on locally convex spaces, we have {xα}α∈I

w-converges to x in X (write as xα−→w x) iff for every f ∈ X∗, |f(xα − x)| → 0, i.e. f(xα) → f(x).

(4) For a normed space X, a sequence xn−→w x in X iff there is C > 0 such that ‖xn‖ < C for n = 1, 2, 3, . . .
and M = {f ∈ X∗ : lim

n→∞
f(xn) = f(x)} is dense in X∗. This follows from the uniform boundedness principle,

part (b) of the Banach-Steinhaus theorem and the canonical embedding theorem that ‖ixn‖ = ‖xn‖.

(5) For a convex subset C of a normed space X, we have C = C
w
. Hence C is closed iff it is w-closed. Also,

C is dense iff it is w-dense.
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Proof. For the first statement, since the weak topology is a subset of the norm topology, C ⊆ C
w
.

Conversely, assume there is x0 ∈ C
w \ C. By the separation theorem, there is f ∈ X∗ such that

Re f(x0) < s = inf{Re f(x) : x ∈ C}. Since f is w-continuous, U = {x ∈ X : Re f(x) < s} = f−1({z ∈
K : Re z < s}) is a w-open neighborhood of x0 and disjoint from C, hence also from C

w
. So x0 6∈ C

w
, a

contradiction. Therefore C = C
w
. The second and third statements follow easily from the first statement.

Similarly, on a dual space X∗ = L(X, K) (which is a normed space), for each x ∈ X, consider ix as in
the canonical embedding. We can take P = {|ix| : x ∈ X} to generate a topology w∗ on X∗ so that all ix are
continuous. This topology w∗ on X∗ is called the weak-star topology on X∗. Then X∗ with this topology is
a locally convex space. Using the description of a base of 0 in a locally convex space, we see sets of the form

U∗ =
n⋂

i=1

{f ∈ X∗ : |f(xi)| < ri}, where ri > 0 and xi ∈ X, form a base at 0 for the weak-star topology.

Thus, on a dual space X∗, there are more than one topologies we will be using, namely the original
norm-topology and the w∗-topology. When we mean X∗ with w∗-topology, we shall write (X∗, w∗).

Properties of Weak-star Topologies.

(1) By definition of weak-star topology, we have the w∗-topology is a subset of the norm-topology. So
w∗-open sets are open in X∗, w∗-closed sets are closed in X∗, but compact sets in X are w∗-compact.

(2) For nonzero f ∈ X∗, there is x ∈ X such that f(x) 6= 0. Then |ix(f)| 6= 0. So P = {|ix| : x ∈ X}
is separating. This implies the w∗ topology is Hausdorff and w∗-compact sets are w∗-closed. In case
dimX∗ < ∞, by the finite dimension theorem, the norm, weak and weak-star topologies are equal.

(3) For a net {fβ}β∈J in X∗, we have {fβ}β∈J w∗-converges to f in X∗ (write as fβ−−→w∗ f) iff for every
x ∈ X, fβ(x) → f(x).

(4) Let X be a Banach space. A sequence fn−−→w∗ f in X∗ iff there is C > 0 such that ‖fn‖ < C for n =
1, 2, 3, . . . and M = {x ∈ X : lim

n→∞
fn(x) = f(x)} is dense in X. This follows from the uniform boundedness

principle and part (b) of the Banach-Steinhaus theorem.

Next, we will show that for a convex subset C of a dual space X∗, C = C
w∗

may not hold.

Lemma. Let g, g1, . . . , gn be linear functionals on a vector space X. The following are equivalent.

(a) There are c1, . . . , cn ∈ K such that g = c1g1 + · · ·+ cngn.

(b) There exists c > 0 such that for all z ∈ X, |g(z)| ≤ c max{|gj(z)| : j = 1, 2, . . ., n}.

(c)
n
∩

j=1
ker gj ⊆ ker g.

Proof. For (a) ⇒ (b), take c = |c1| + |c2| + · · · + |cn|. Next, (b) ⇒ (c) is obvious. For (c) ⇒ (a), define
T : X → Kn by T (x) =

(
g1(x), . . . , gn(x)

)
. Then ker T = ker g1 ∩ · · · ∩ ker gn. If T (x) = T (x′), then

x − x′ ∈ ker T ⊆ ker g and so g(x) = g(x′). Choose a basis for ran T and extend it to a basis for Kn. Define
a linear transformation G : Kn → K such that G(T (x)) = g(x) for x ∈ X and G(v) = 0 for v in the
extended part of the basis. Then g = G ◦ T. For the standard basis {e1, . . . , en} of Kn, let ci = G(ei), then
G(x1, . . . , xn) = G(x1e1 + · · ·+ xnen) = c1x1 + · · ·+ cnxn. Therefore, g = G ◦ T = c1g1 + · · ·+ cngn.

Weak-star Functional Theorem. Let X be a normed space. If g : X∗ → K is linear and continuous with
the weak-star topology on X∗, then g = ix for some x ∈ X.

Proof 1. As g−1(B(0, 1)) is a w∗-open neighborhood of 0, we get 0 ∈
n⋂

j=1

{z ∈ X∗ : |z(xj)|< rj}⊆g−1(B(0, 1))

for some x1, . . . , xn ∈ X and r1, . . . , rn > 0. Let 0 < s < min{r1, r2, . . . , rn} and c = 1/s. For every z ∈ X, we
claim |g(z)| ≤ cr, where r = max{|ixj (z)| : j = 1, 2, . . . , n}. If r = 0, then for all t > 0, |tz(xj)| = 0 < rj , hence
tz ∈ g−1(B(0, 1)), which implies |g(z)| < 1/t → 0 as t → ∞. If r > 0, then |ixj (sz/r)| = |sz(xj)/r| ≤ s < rj

for j = 1, 2, . . . , n. So, |g(sz/r)| < 1, i.e. |g(z)| < cr. By lemma, this implies g = c1ix1 + · · · + cnixn = ix,
where x = c1x1 + · · ·+ cnxn.
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Proof 2. For a fixed r > 0 and a linear transformation φ : X∗ → K, we have

w ∈ ker φ ⇔ φ(w) = 0 ⇔ ∀ t > 0, |φ(w)| < tr ⇔ ∀ t > 0, w = tz, where |φ(z)| < r,

i.e. ker φ =
⋂

t>0

t{z ∈ X∗ : |φ(z)| < r}. For g−1(B(0, 1)), we have 0 ∈
n⋂

j=1

{z ∈ X∗ : |z(xj)| < rj}⊆g−1(B(0, 1))

for some x1, . . . , xn ∈ X and r1, . . . , rn > 0. Then
n⋂

j=1

ker ixj =
n⋂

j=1

⋂

t>0

t{z ∈ X∗ : |ixj (z)| = |z(xj)| < rj} =
⋂

t>0

t

n⋂

j=1

{z ∈ X∗ : |z(xj)| < rj}

⊆
⋂

t>0

tg−1(B(0, 1)) =
⋂

t>0

t{z ∈ X∗ : |g(z)| < 1} = ker g.

By the last lemma, this implies g = c1ix1 + · · ·+ cnixn = ix, where x = c1x1 + · · ·+ cnxn.

Remark. Now we show for a convex subset C of a dual space X∗, C = C
w∗

may not hold. Let X be a
nonreflexive normed space. Take a g ∈ X∗∗ \ i(X). Then C = ker g is convex and norm-closed in X∗. If
C = ker g is w∗-closed, then by the closed kernel theorem, g would be a w∗-continuous linear functional,
hence in i(X) by the weak-star functional theorem, a contradiction.

Theorem (Tychonoff). The Cartesian product S of a family of compact spaces {Sα : α ∈ A} is compact.

Proof. (Due to Paul Chernoff) Below an element of S will be viewed as a function s : A → ∪{Sα : α ∈ A}
with s(α) = sα ∈ Sα for all α ∈ A. Let {xi}i∈I be a net in S.

For B ⊆ A, let SB be the Cartesian product of {Sα : α ∈ B}. We say p ∈ SB is a partial cluster point
of {xi}i∈I iff B ⊆ A and {xi|B}i∈I in SB has p as a cluster point, i.e. for every neighborhood U of p in SB

and every i ∈ I, there exists j � i such that xj|B ∈ U . (Suffice to check U in the base of product topology.)

Order the set X of all partial cluster points of {xi}i∈I by inclusion (i.e. p0 � p1 iff domp0 ⊆ domp1 ⊆ A
and p1|domp0 = p0). For a chain C, define p by Γ(p) = ∪{Γ(q) : q ∈ C}. Let E = domp. Let p ∈ U =
∩n

i=1 π−1
αi

(Nαi) in SE , where αi ∈ E, p(αi) ∈ Nαi ⊂ Sαi . C totally ordered implies dom q ⊇ {α1, . . . , αn} for
a q ∈ C. Now q ∈ X implies p ∈ X due to p(α) ∈ Sα for α ∈ E \ {α1, . . . , αn}. So p is an upper bound of C.

By Zorn’s lemma, X has a maximal element P ∈ SD . We claim D = A (which will lead to P as a cluster
point of {xi}i∈I and so S is compact). Assume there is δ ∈ A\D. Since P is a cluster point of {xi|D}i∈I , by
exercise 14 on page 6, some subnet {yj}j∈J of {xi}i∈I satisfies {yj |D}j∈J → P. Since Sδ is compact, some
subnet {zk}k∈K of {yj}j∈J satisfies {zk(δ)}k∈K converging to some p ∈ Sδ. Define Q ∈ SD ∪{δ} by Q|D = P
and Q(δ) = p. Then Q ∈ X and Q � P, contradicting the maximality of P.

Remark. In 1950, John Kelley proved that Tychonoff’s theorem was equivalent to the axiom of choice.

Theorem (Banach-Alaoglu). Let X be a normed space. The closed unit ball B∗ of X∗ is w∗-compact,
i.e. B∗ is compact in the weak-star topology.

Proof. For each x ∈ X, let Dx be the closed disk with center 0 and radius ‖x‖ in K. By Tychonoff’s theorem,
D =

∏

x∈X

Dx is compact. For x ∈ X and d ∈ D, let dx denote the x-coordinate of d, i.e. dx = πx(d). For

every y ∈ B∗ and x ∈ X, since ‖y‖ ≤ 1, |y(x)| ≤ ‖y‖‖x‖ ≤ ‖x‖. So we may define f : B∗ → D by letting
f(y) ∈ D to satisfy f(y)x = πx(f(y)) = y(x) for all x ∈ X. Now f is injective because f(y1) = f(y2) implies
for all x ∈ X, y1(x) = f(y1)x = f(y2)x = y2(x), i.e. y1 = y2. Also, f is a homeomorphism from B∗ (with the
relative w∗-topology) onto f(B∗) (with the relative product topology) because

{zα}α∈I−−→w∗ z in B∗ ⇐⇒ ∀ x ∈ X, {zα(x)}α∈I → z(x) in K (by property 3 of w∗-topology)
⇐⇒ ∀ x ∈ X, {πx(f(zα))}α∈I → πx(f(z)) in K (by definition of f(zα))
⇐⇒ {f(zα)}α∈I → f(z) in f(B∗) (by theorem on net convergence on page 7).
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To see B∗ is w∗-compact, we show f(B∗) is closed (hence compact) in D. Suppose {f(yβ)}β∈J →
w ∈ D. Then for all x ∈ X, f(yβ)x → wx ∈ Dx. Since yβ ∈ B∗ ⊆ X∗, for every a, b, x ∈ X and c ∈ K,
f(yβ )a+b = yβ(a + b) = yβ(a) + yβ(b) = f(yβ )a + f(yβ )b. Taking limit, we get wa+b = wa + wb. Similarly,
wcx = cwx. Define W : X → K by W (x) = wx. Then W is linear and wx ∈ Dx implies |W (x)| = |wx| ≤ ‖x||.
So W ∈ B∗. Therefore, w = f(W ) ∈ f(B∗).

Remarks. Using the Krein-Milman theorem and the Banach-Alaoglu theorem, it follows that the Banach
spaces C([0, 1], R), L1([0, 1]), c0 are not dual spaces of Banach spaces since their closed unit balls have too
few extreme points and hence, the closed unit balls cannot be the closed convex hulls of the extreme points,
see [Be], p. 110.

Theorem (Helly). Let X be a Banach space. If X is separable, then the closed unit ball B∗ of X∗ is
w∗-sequentially compact (and hence all bounded sequences in X∗ have w∗-convergent subsequences.)

Proof. Let S be a countable dense subset of X. Let gn ∈ B∗. By a diagonalization argument (as in the proof
of the Arzela-Ascoli theorem), there is a subsequence gnk such that lim

k→∞
gnk(s) exists for all s ∈ S. Next,

for every x ∈ X, we will show {gnk(x)} is a Cauchy sequence, hence it converges. This is because for every
ε > 0, there are s ∈ S such that ‖x− s‖ < ε/3 and N ∈ N such that j, k ≥ N implies |gnk(s)−gnj (s)| < ε/3.
So j, k ≥ N implies

|gnk(x) − gnj (x)| ≤ |gnk(x) − gnk(s)| + |gnk(s) − gnj (s)| + |gnj(s) − gnj (x)|
≤ ‖gnk‖‖x− s‖ + |gnk(s) − gnj (s)| + ‖gnj‖‖s − x‖
< 1(ε/3) + (ε/3) + 1(ε/3) = ε.

By part (a) of the Banach-Steinhaus theorem, g(x) = lim
k→∞

gnk(x) ∈ X∗ and ‖g‖ ≤ liminf
k→∞

‖gnk‖ ≤ 1. By

property (3) of weak-star topologies, we have gnk
−−→w∗ g ∈ B∗ in X∗.

Remarks. The converse of the theorem is false. If X is a nonseparable reflexive space, then by the Eberlein-
Smulian theorem in the next section, the closed unit ball of X∗ is still w∗-sequentially compact.

§4. Reflexivity. Next we may inquire when the closed unit ball B of a normed space X is w-compact. To
answer this, let B∗∗ be the closed unit balls of X∗∗. We have the following theorem.

Theorem (Goldstine). Let X be a normed space. Then B∗∗ = i(B)
w∗

, where i is the canonical embedding.

(Hence, i(X) is w∗-dense in X∗∗ because X∗∗ =
∞
∪

n=1
nB∗∗ =

∞
∪

n=1
i(nB)

w∗

⊆ i(X)
w∗

⊆ X∗∗.)

Proof. By the Banach-Alaoglu theorem, B∗∗ is w∗-compact, hence w∗-closed. Also, since i an isometry,

B∗∗ ⊇ i(B). Hence B∗∗ ⊇ i(B)
w∗

. Assume there is y ∈ B∗∗ \ i(B)
w∗

. Since i(B)
w∗

is convex and w∗-
closed, by the separation theorem, there is a w∗-continuous linear functional g on X∗∗ such that Re g(y) <

inf{Reg(u) : u ∈ i(B)
w∗

}. By the weak-star functional theorem, −g = iz for some z ∈ X∗. For all u ∈ X∗∗, let
f(u) = −g(u) = iz(u) = u(z). Observe that there is c ∈ K with |c| = 1 such that |z(x)| = z(cx) = Re z(cx).
Using cB = B in the second equality below, we have

‖f‖‖y‖ ≥ |f(y)| ≥ Re f(y) > sup{Ref(u) : u ∈ i(B)
w∗

}
≥ sup{Reu(z) : u = ix ∈ i(B)} = sup{Re z(x) : x ∈ B}
= sup{|z(x)| : x ∈ B} = ‖z‖ = ‖iz‖ = ‖f‖.

Then ‖y‖ > 1, i.e. y 6∈ B∗∗, a contradiction. Therefore, B∗∗ = i(B)
w∗

.

Remarks. (1) We have i(B) = B∗∗ if and only if i(X) = X∗∗. This is because i(B) = B∗∗ implies
i(X) = span i(B) = span B∗∗ = X∗∗ and conversely, if i(X) = X∗∗, then for all f ∈ B∗∗ ⊆ X∗∗ = i(X), we
have f = ix for some x ∈ X (with ‖x‖ = ‖f‖ ≤ 1 due to i is an isometry) so that f ∈ i(B).
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(2) The canonical embedding i : X → i(X) is a homeomorphism when we take the w-topology on X and
the w∗ topology on X∗∗. This is because it is bijective and

xα−→w x ⇐⇒ ∀f ∈ X∗, f(xα) → f(x) ⇐⇒ ∀f ∈ X∗, ixα(f) → ix(f) ⇐⇒ ixα
−−→w∗ ix.

Theorem (Banach-Smulian). A normed space is reflexive iff its closed unit ball B is w-compact.

Proof. By the remarks and Goldstine’s theorem, B is w-compact in X iff i(B) is w∗-compact (hence w∗-
closed) in X∗∗ and B∗∗ iff i(B) = i(B)

w∗
= B∗∗ iff i(X) = X∗∗.

Question. For a reflexive space X, is the closed unit ball of X∗ w-sequentially compact? Yes.

First we need to know more facts. Now reflexive spaces are dual spaces, hence they are complete. Which
Banach spaces are reflexive? Also, observe that in addition to the w∗-topology on X∗, there is also the weak
topology on X∗. Since {|f | : f ∈ X∗∗} ⊇ {|ix| : x ∈ X}, so the weak-star topology on X∗ is a subset of
the weak topology (which is a subset of the norm topology) on X∗. Hence, on X∗, w∗-open sets are w-open,
w∗-closed sets are w-closed, but w-compact sets are w∗-compact. When are the w-topology and w∗-topology
equal in X∗? The following theorem will answer both questions.

Theorem. Let X be a Banach space. The following are equivalent.

(a) X is reflexive (i.e. X = X∗∗.

(b) On X∗, the weak topology is the same as the weak-star topology.

(c) X∗ is reflexive (i.e. X∗ = X∗∗∗).

Proof. (a) ⇒ (b) By (a), {|f | : f ∈ X∗∗} = {|ix| : x ∈ X}. So both topologies are generated by the same
seminorms.

(b) ⇒ (c) By the Banach-Alaoglu theorem, the closed unit ball B∗ of X∗ is w∗-compact, hence w-compact
by (b). By the Banach-Smulian theorem, X∗ is reflexive.

(c) ⇒ (a) Since the canonical embedding is an isometry and the closed unit ball B of X is closed, hence
complete, in X, so i(B) is complete, hence closed, in X∗∗. As i(B) is convex, by property (5) of weak
topology, it is w-closed in X∗∗. Since X∗ is reflexive, applying (a) ⇒ (b) to X∗, we see i(B) is also w∗-closed

in X∗∗. By Goldstine’s theorem, i(B) = i(B)
w∗

= B∗∗. By remark (1) above, i(X) = X∗∗.

Theorem (Pettis). If X is reflexive and M is a closed vector subspace of X, then M is reflexive.

Proof. Let z ∈ M∗∗. We have to show z = iw for some w ∈ M. Define T : X∗ → M∗ by Tf = f |M . Since
‖f |M‖ ≤ ‖f‖, we get T ∈ L(X∗, M∗). Then z ◦ T ∈ X∗∗ = i(X). So there is w ∈ X such that z ◦ T = iw,
i.e. z(Tf) = f(w) for all f ∈ X∗.

Assume w ∈ X \ M. By the Hahn-Banach theorem, there is g ∈ X∗ such that g|M = 0 and g(w) 6= 0.
Then Tg = g|M = 0. Then 0 = z(Tg) = g(w) 6= 0, a contradiction. Hence w ∈ M. Now for every
h ∈ M∗, by the Hahn-Banach theorem, there exists H ∈ X∗ extending h (i.e. TH = H|M = h). Then
z(h) = z(TH) = H(w) = h(w) = iw(h) for all h ∈ M∗. Therefore, z = iw.

Exercise. Prove that X is reflexive iff for any closed vector subspace M of X, M and X/M are reflexive.
See [KR], pp. 8-9.

Theorem (Banach). For a normed space X, if X∗ is separable, then X is separable.

Proof. X = {0} is a trivial case. For X 6= {0}, let D be a countable dense subset of X∗. For every f ∈ D, by
the definition of ‖f‖ and the supremum property, there is xf ∈ X such that ‖xf‖ = 1 and |f(xf )| ≥ ‖f‖/2.
Let S be the set of all finite linear combinations of the xf ’s with K ∩ (Q + iQ) coefficients. Then S is
countable.
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Next we will show S is dense in X. By part (b) of the Hahn-Banach theorem, it suffices to show F ∈ X∗

satisfying F ≡ 0 on S must be the zero functional. Since D is dense in X∗, there exists a sequence {fn} in
D converging to F. We have ‖fn − F‖ ≥ |(fn − F )(xfn)| = |fn(xfn)| ≥ ‖fn‖/2, which implies ‖fn‖ → 0.
Then F = 0.

Remarks. The converse is false in general. For example, `1 is separable, but (`1)∗ = `∞ is not separable.
However, if X is a reflexive and separable Banach space, then since i is an isometry, X∗∗ = i(X) is separable
and hence X∗ is separable by Banach’s theorem.

Theorem (Eberlein-Smulian). If X is reflexive, then the closed unit ball B of X is w-sequentially compact
(and hence all bounded sequences in X have w-convergent subsequences).

Proof. Let {xn} be a sequence in B. Let M be the closed linear span of {xn}. By Pettis’ theorem, M is
reflexive. Also M is separable as the set of all finite linear combinations of {xn} with K∩(Q+iQ) coefficients
is dense. By the remark above, M∗ is separable. By Helly’s theorem, {ixn} in the closed unit ball B∗∗ of
M∗∗ has a w∗-convergent subsequence {ixnk

}. By remark (2) before the Banach-Smulian theorem, {xnk} is a
w-convergent subsequence of {xn} in M, say xnk

−→w x ∈ M. For all f ∈ X∗, we have f |M ∈ M∗. By property
3 of weak topology, f(xnk ) = f |M (xnk) → f |M (x) = f(x), i.e. {xnk} w-converges to x in X.

Remarks. In fact, Eberlein-Smulian proved a much deeper theorem, namely on any normed space (not
necessarily reflexive), a subset is w-compact iff it is w-sequentially compact. See [M], pp. 248-250.

Clearly every finite dimensional normed space is reflexive. If X is an infinite dimensional normed space,
must X have some reflexive closed linear subspaces, other than the finite dimensional subspaces? The answer
turns out to be negative. Below, we will show the only reflexive subspaces of `1 are the finite dimensional
subspaces. Let M be a reflexive closed linear subspace of X = `1. By the Eberlein-Smulian theorem, the
closed unit ball of M is w-sequentially compact. Schur’s lemma below asserts that every w-convergent
sequence in `1 is convergent in the norm topology of `1. Hence, the closed unit ball of M would be compact.
By Riesz’ lemma, M would be finite dimensional. This implies `1 is not reflexive and its only reflexive closed
linear subspaces are the finite dimensional subspaces.

Theorem (Schur’s Lemma). If {x(n)} is w-convergent in `1, where x(n) = (x(n)
1 , x

(n)
2 , x

(n)
3 , . . .) for n =

1, 2, 3, . . ., then {x(n)} is convergent in the norm topology of `1.

Proof. (Sliding Hump Argument) Assume x(n)−→w x in `1, but x(n) → x is false. Replacing x(n) by x(n) − x
if necessary, we may assume x = 0. Since ‖x(n)‖1 → 0 is false, passing to a subsequence, we may assume

there is an ε > 0 such that (i) ‖x(n)‖1 =
∞∑

j=1

|x(n)
j | > ε for n = 1, 2, 3, . . ..

Since x(n)−→w 0 in `1, by property 3 of weak topology, 〈x(n), z〉 =
∞∑

j=1

zjx
(n)
j → 0 as n → ∞ for every

z = (z1, z2, z3, . . .) ∈ `∞ = (`1)∗. Our goal is to construct a special z with all |zj| = 1 to get a contradiction
of the last sentence.

First, by taking z = (0, . . . , 0, 1, 0, . . .), where 1 is in the j-th coordinate, we have for all j = 1, 2, 3, . . .,

x
(n)
j → 0 as n → ∞.

Next, define sequences {mk}, {nk} as follows. Set m0 = 1, n0 = 0. Inductively, for k ≥ 1, suppose mk−1

and nk−1 are determined. By the last paragraph, lim
n→∞

mk−1∑

j=1

|x(n)
j | =

mk−1∑

j=1

lim
n→∞

|x(n)
j | = 0. Then there exists an

integer n = nk > nk−1 such that (ii)
mk−1∑

j=1

|x(n)
j | <

ε

5
. Since

∞∑

j=1

|x(nk)
j | = ‖x(nk)‖1 < ∞, there exists an integer

m = mk > mk−1 such that (iii)
∞∑

j=m+1

|x(nk)
j | <

ε

5
. By (i), (ii), (iii), we have (iv)

mk∑

j=mk−1+1

|x(nk)
j | >

3ε

5
.
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Now observe that 1 = m0 < m1 < m2 < · · · . Recall that sgn α is the signum function defined to
be |α|/α if α 6= 0 and 1 if α = 0. Let z = (z1, z2, . . .) ∈ `∞ be defined by z1 = 1 and for k = 1, 2, 3, . . .

and mk−1 < j ≤ mk, zj = sgn x
(nk)
j . By the conditions on nk and mk, we have (v) zjx

(nk)
j = |x(nk)

j | for
mk−1 < j ≤ mk. For k = 1, 2, 3, . . ., by (ii), (iii), (iv) and (v),

∣∣∣
∞∑

j=1

zjx
(nk)
j

∣∣∣ ≥
∣∣∣

mk∑

j=mk−1+1

zjx
(nk)
j

∣∣∣ −
∣∣∣
mk−1∑

j=1

zjx
(nk)
j

∣∣∣ −
∣∣∣

∞∑

j=mk+1

zjx
(nk)
j

∣∣∣

≥
mk∑

j=mk−1+1

|x(nk)
j |

︸ ︷︷ ︸
hump

−
mk−1∑

j=1

|x(nk)
j |

︸ ︷︷ ︸
front

−
∞∑

j=mk+1

|x(nk)
j |

︸ ︷︷ ︸
tail

>
3ε

5
− ε

5
− ε

5
=

ε

5
,

which is a contradiction to
∞∑

j=1

zjx
(n)
j → 0 as n → ∞.

Here is the reason why the proof is called a sliding hump argument. For each x(nk) ∈ `1, if we plot the

graph of fnk(x) =
∞∑

j=1

|x(nk)
j |X(j−1,j](x) on the coordinate plane, then the area under the curve is greater

than ε and the areas under the curve on (0, mk−1] and (mk,∞) are both less than ε/5 so that the area under
the curve on (mk−1, mk] is greater than 3ε/5. Thus, we can say there is a hump in the middle portion over
(mk−1, mk]. As k takes on the values 1, 2, 3, . . ., since 1 = m0 < m1 < m2 < . . . , the humps of fnk(x) start
to slide along the intervals (m0, m1], (m1, m2], (m2, m3], . . . . Since the union of these intervals is (0,∞), we
can patch up the sgn x

(nk)
j on the intervals to get a z ∈ `∞ to get a contradiction.

Appendix : Examples of Sliding Hump Technique

Below are some historical examples of the sliding hump arguments.

Uniform Boundedness Principle. Let X be a Banach space, Y a normed space and A ⊆ L(X, Y ). If
cx = sup{‖Tx‖ : T ∈ A} < ∞ for every x ∈ X, then sup{‖T‖ : T ∈ A} < ∞.

Proof. If {‖T‖ : T ∈ A} is unbounded, then there are T1 ∈ A (with ‖T1‖ ≥ 12) and ‖x‖ ≤ 1 such that ‖T1‖ ≥
‖T1x‖ ≥ 3

4
‖T1‖. Let x1 = 1

3
x, then ‖x1‖ ≤ 1

3
and ‖T1x1‖ ≥ 1

4
‖T1‖. Inductively we can find T2, T3, . . . ∈ A and

x2, x3, . . . ∈ X such that for all n ≥ 2, ‖Tn‖ ≥ 4 · 3n
(n−1∑

k=1

cxk + n
)
, ‖xn‖ ≤ 1

3n
and ‖Tnxn‖ ≥ 3

4 · 3n
‖Tn‖.

Since
∞∑

k=1

‖xk‖ < ∞ and X is a Banach space, so
∞∑

k=1

xk converges to some x ∈ X. Observe that

Tnx =

small︷ ︸︸ ︷
Tnx1 + · · ·+ Tnxn−1︸ ︷︷ ︸

call this I

+

hump︷ ︸︸ ︷
Tnxn +

small︷ ︸︸ ︷
Tnxn+1 + Tnxn+2 + · · ·︸ ︷︷ ︸

call this J

.

We have

‖I‖ =
∥∥∥

n−1∑

k=1

Tnxk

∥∥∥ ≤
n−1∑

k=1

‖Tnxk‖ ≤
n−1∑

k=1

cxk ≤
1

4 · 3n
‖Tn‖ ≤

1
3
‖Tnxn‖,

31



‖J‖ =
∥∥∥

∞∑

k=n+1

Tnxk

∥∥∥ ≤
∞∑

k=n+1

‖Tnxk‖ ≤
∞∑

k=n+1

1
3k

‖Tn‖ ≤
1

2 · 3n
‖Tn‖ ≤

2
3
‖Tnxn‖.

These lead to the contradiction that for every n ∈ N,

cx ≥ ‖Tnx‖ ≥ ‖Tnxn‖︸ ︷︷ ︸
hump

− ‖I‖︸︷︷︸
front

− ‖J‖︸︷︷︸
tail

≥ 3
4 · 3n

‖Tn‖ −
n−1∑

k=1

cxk − 1
2 · 3n

‖Tn‖ ≥ n.

Remark. As n increases, the hump slides to the right!

For all f ∈ L1(−π, π] and n ∈ Z, define the n-th Fourier coefficient of f to be f̂(n)=
∫

(−π,π]

f(θ)e−inθ dm

2π
.

The Fourier series of f is
∞∑

k=−∞

f̂(k)eikx and its n-th partial sum is sn(f ; x) =
n∑

k=−n

f̂ (k)eikx. The function

Dn(x) =
n∑

k=−n

eikx =
sin(n + 1

2)x
sin(x/2)

is called the Dirichlet kernel. Using it, we have

sn(f ; x) =
n∑

k=−n

f̂(k)eikx =
n∑

k=−n

∫

(−π,π]

f(θ)eik(x−θ) dm

2π
=

∫

(−π,π]

f(θ)Dn(x − θ)
dm

2π
.

Observe that

‖Dn‖1 >
2
π

∫ π

0

∣∣∣∣sin
(
n +

1
2
)
θ

∣∣∣∣
dθ

θ
=

2
π

∫ (n+1/2)π

0

| sinφ|dφ

φ
>

2
π

n∑

k=1

1
kπ

∫ kπ

(k−1)π

| sinφ|dφ =
4
π2

n∑

k=1

1
k
→ ∞.

Using these facts, Lebesgue constructed a 2π-periodic continuous function on R with the Fourier series
diverging at x = 0. Here is the version of his sliding hump argument as appeared in Hardy and Rogosinski’s
book Fourier Series, pp. 51-52.

Let g(θ) = sgn Dn(−θ). Then gDn = |Dn| and sn(g; 0) =
∫

(−π,π]

|Dn(−θ)|dm

2π
= ‖Dn‖1. Since g is piece-

wise constant, we can get a 2π-periodic continuous function fn on R such that for every θ ∈ R, |fn(θ)| ≤ 1,

lim
n→∞

fn(θ) = g(θ) and
∫

(−π,π]

∣∣(g(θ) − fn(θ)
)
Dn(−θ)

∣∣ dm

2π
≤ 1

2
‖Dn‖1. Then sn(fn; 0) ≥ sn(g; 0)− 1

2‖Dn‖1 =

1
2‖Dn‖1. If the Fourier series of any of the fn diverges at x = 0, then we have a desired function. Otherwise,
let the Fourier series of fn at x = 0 converge to γn.

Observe that the sequence αk = 7−k has the properties that
∞∑

k=1

αk < ∞ and
∞∑

j=k+1

αj ≤
1
6
αk. For any

strictly increasing sequence {nk}, by the Weierstrass M -test,
∞∑

k=1

αkfnk(t) converge uniformly on R to a

2π-periodic continuous function f(t). By the definition of γn, we have lim
n→∞

sn

(k−1∑

j=1

αjfnj ; 0
)

=
k−1∑

j=1

αjγnj .

Now we choose the sequence {nk} so that αk‖Dnk‖1 → ∞,

k−1∑

j=1

αj|γnj | ≤
1
12

αk‖Dnk‖1 and

∣∣∣snk

(k−1∑

j=1

αjfnj ; 0
)∣∣∣ ≤ 2

k−1∑

j=1

αj|γnj | ≤
1
6
αk‖Dnk‖1.
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Also,
∣∣∣snk

( ∞∑

j=k+1

αjfnj ; 0
)∣∣∣ ≤

∞∑

j=k+1

αj

∫

(−π,π]

|fnj (θ)Dnk (−θ)|
dm

2π
≤

∞∑

j=k+1

αj‖Dnk‖1 ≤
1
6
αk‖Dnk‖1. Also,

snk(αkfnk ; 0) = αksnk(fnk ; 0) ≥ 1
2
αk‖Dn‖1. By the last three inequalities,

snk (f ; 0) =
∞∑

j=1

snk(αjfnj ; 0) = snk(αkfnk ; 0)︸ ︷︷ ︸
hump

+ snk

(k−1∑

j=1

αjfnj ; 0
)

︸ ︷︷ ︸
front

+ snk

( ∞∑

j=k+1

αjfnj ; 0
)

︸ ︷︷ ︸
tail

≥ 1
2
αk‖Dnk‖1 −

1
6
αk‖Dnk‖1 −

1
6
αk‖Dnk‖1

=
1
6
αk‖Dnk‖1 → ∞.

Therefore, the Fourier series of f diverges at x = 0.

Remark. In hindsight, we can see

snk(f ; 0) =

small︷ ︸︸ ︷
snk(α1fn1 ; 0) + · · ·+ snk (αk−1fnk−1 ; 0)+

hump︷ ︸︸ ︷
snk (αkfnk ; 0)+

small︷ ︸︸ ︷
snk (αk+1fnk+1 ; 0) + · · ·,

where |small| ≤ 1
6αk‖Dnk‖1 ≤ 1

2αk‖Dnk‖1 ≤ hump. As k increases, the hump moves to the right!

This argument led to the birth of the uniform boundedness principle (see Dieudonne’s book, History of
Functional Analysis, Chapter VI, §4).
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Chapter 4. Duality and Adjoints.

§1. Duality. For a closed vector subspace M of a normed space X, we would like to identify M∗ and
(X/M )∗. For this, we first introduce the concept of annihilator of a set.

Definitions. For a nonempty subset M of a normed space X, the annihilator of M is

M⊥ = {y ∈ X∗ : 〈x, y〉︸ ︷︷ ︸
=ix(y)

= 0 for all x ∈ M} =
⋂

x∈M

ker ix,

which is w∗-closed and norm-closed. For a nonempty subset N of X∗, the (pre)annihilator of N is

⊥N = {x ∈ X : 〈x, y〉︸ ︷︷ ︸
=y(x)

= 0 for all y ∈ N} =
⋂

y∈N

ker y,

which is w-closed and norm-closed.

Remarks. (1) M⊥ = M
⊥

since for all y ∈ X∗, y|M = 0 iff y|M = 0. Similarly, ⊥N = ⊥N.

(2) By the definitions above, {0}⊥ = X∗, ⊥{0} = X, X⊥ = {0}. Also, ⊥(X∗) = {0}, where the left-to-right
inclusion is due to part (c) of the Hahn-Banach theorem.

Notations. For a subset M of X, we write M⊥⊥ to mean ⊥(M⊥). For a subset N of X∗, we write N⊥⊥ to
mean (⊥N )⊥. From these, we have M ⊆ M⊥⊥ ⊆ X and N ⊆ N⊥⊥ ⊆ X∗.

Although in the definitions of annihilator and preannihilator, M and N may be any nonempty subset
of the normed space, in the following, we will only consider the cases M and N are vector subspaces.

Double-Perp Theorem. Let X be a normed space.

(a) If M is a vector subspace of X, then M⊥⊥ = M
w

= M, the weak-closure or norm-closure of M.

(b) If N is a vector subspace of X∗, then N⊥⊥ = N
w∗

, the weak-star closure of N.

Proof. (a) Since M ⊆ M⊥⊥, so M ⊆ M⊥⊥. Assume there is x ∈ M⊥⊥ \M. By part (b) of the Hahn-Banach
theorem, there is y ∈ X∗ such that y|M = 0 and y(x) 6= 0. Then y ∈ M⊥ and x 6∈ M⊥⊥, a contradiction.
Therefore, M = M⊥⊥.

(b) Since N ⊆ N⊥⊥, so N
w∗

⊆ N⊥⊥. Assume there is y ∈ N⊥⊥ \ N
w∗

. Applying part (b) of the corollary
to the separation theorem to X∗ with the w∗-topology and the weak-star functional theorem, there is w∗-
continuous linear functional g = ix on X∗ such that g = ix ≡ 0 on N and y(x) = g(y) 6= 0. Then x ∈ ⊥N

and y 6∈ N⊥⊥, a contradiction. Therefore, N
w∗

= N⊥⊥.

Remarks. We have M⊥ = {0} iff M = X, which can be checked by taking (pre)annihilators of both sides.
Similarly, M⊥ = X∗ iff M = {0}; ⊥N = {0} iff N

w∗

= X∗; ⊥N = X iff N = {0}.

Duality Theorem. Let M be a closed vector subspace of a normed space X. We have the following isometric
isomorphisms and equations.

(a) M∗ ∼= X∗/M⊥. For every F ∈ X∗, sup{|〈x, F 〉| : x ∈ M, ‖x‖ ≤ 1} = min{‖F − G‖ : G ∈ M⊥}.

(b) (X/M )∗ ∼= M⊥. For every x ∈ X, inf{‖x − m‖ : m ∈ M} = max{|〈x, G〉| : G ∈ M⊥, ‖G‖ ≤ 1}.

Proof. (a) Define φ : M∗ → X∗/M⊥ by φ(f) = F + M⊥, where F ∈ X∗ is any linear extension of f ∈ M∗.
(If F and F ′ are linear extensions of f, then F − F ′ ≡ 0 on M. So F − F ′ ∈ M⊥ and F + M⊥ = F ′ + M⊥.
Hence φ is well defined.) Clearly φ is linear.
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By the Hahn-Banach theorem, we have M∗ = {F |M : F ∈ X∗}. For every F ∈ X∗, we have φ(F |M) =
F +M⊥. So φ is surjective. Next we show φ is isometric. (This will show φ is an isometric isomorphism.) For
every F ∈ X∗, let f = F |M. By part (a) of the Hahn-Banach theorem, there is a linear extension Ff ∈ X∗

of f ∈ M∗ such that ‖Ff‖ = ‖f‖. Note ‖F |M‖ = ‖f‖ = ‖Ff‖ and g = F −Ff ∈ M⊥. For every G ∈ M⊥, we
have ‖F |M‖ = ‖(F−G)|M‖ ≤ ‖F−G‖. Since Ff ∈ F+M⊥, ‖F |M‖ ≤ inf{‖F−G‖ : G ∈ M⊥} = ‖F+M⊥‖ ≤
‖F −g‖ = ‖Ff‖ = ‖F |M‖. Thus, we have equality throughout. So ‖φ(F |M)‖ = ‖F +M⊥‖ = ‖F |M‖ showing
φ is an isometry and the infimum is attained by g = F − Ff ∈ M⊥.

(b) Recall the quotient map π : X → X/M is defined by π(x) = x + M. Define τ : (X/M )∗ → M⊥ by
τ (F ) = F ◦ π. (Check F ◦ π ∈ M⊥: π ∈ L(X, X/M ) and F ∈ (X/M )∗ imply F ◦ π ∈ X∗. If x ∈ M, then
(F ◦ π)(x) = F (x + M ) = F (M ) = F ([0]) = 0 and so F ◦ π ∈ M⊥.) Clearly, τ is linear.

Next we will show τ is surjective and isometric. For every f ∈ M⊥, since M ⊆ ker f, the function
F : X/M → K given by F (x + M ) = f(x) is well-defined, linear and F ◦ π = f. We claim ‖F‖ = ‖f‖ (then
F ∈ (X/M )∗, τ (F ) = f and τ is an isometric isomorphism).

For all m ∈ M, |F (x + M )| = |f(x)| = |f(x − m)| ≤ ‖f‖‖x − m‖. Taking infimum over all m ∈ M,
|F (x + M )| ≤ ‖f‖‖x + M‖. Then ‖F‖ ≤ ‖f‖ (and so F is continuous). Also, |f(x)| = |F (x + M )| ≤
‖F‖‖x + M‖ ≤ ‖F‖‖x‖. So ‖F‖ = ‖f‖ = ‖τ (F )‖.

For the equation in the second part of (b), let x ∈ X. By part (c) of the Hahn-Banach theorem,
there is Fx ∈ (X/M )∗ such that ‖Fx‖ = 1 and Fx(x + M ) = ‖x + M‖. Let fx = τ (Fx) ∈ M⊥, then
fx(x) = τ (Fx)(x) = Fx(x + M ) = ‖x + M‖. Also, τ isometric implies ‖fx‖ = ‖Fx‖ = 1.

For all G ∈ M⊥, ‖G‖ ≤ 1 and m ∈ M, we have |〈x, G〉| = |G(x)| = |G(x − m)| ≤ ‖x − m‖. Since fx is
such a G, we have

fx(x) ≤ sup{|〈x, G〉| : G ∈ M⊥, ‖G‖ ≤ 1} ≤ inf{‖x − m‖ : m ∈ M} = ‖x + M‖ = Fx(x + M ) = fx(x).

(Thus, there is equality throughout and the supremum is attained by G = fx.)

Remarks. If M is a finite dimensional subspace of X, then dimM = dimM∗ = dim(X∗/M⊥) = codimM⊥

by (a). If M is a closed subspace of finite codimension in X, then codimM = dim(X/M ) = dim(X/M )∗ =
dimM⊥.

Example. Let W =
{
g ∈ L2([0, 1]) :

∫

[0,1]

g dm = 0
}
, where dm is Lebesgue measure. Let f : [0, 1] → R be

defined by f(t) = t2. Find d(f, W ) = inf{‖f − g‖2 : g ∈ W} in L2([0, 1]).

Solution. Recall L2([0, 1])∗ = L2([0, 1]). For h ∈ L2([0, 1]) and g ∈ L2([0, 1])∗, we have 〈h, g〉=
∫

[0,1]

hg dm.

Observe that W is a vector subspace of L2([0, 1])∗ and for all g ∈ W, we have 〈1, g〉 = 0 (and also 〈c, g〉 = 0
for all c ∈ span 1 = K). So W = (span 1)⊥ = K⊥. By part (a) of the duality theorem,

d(f, W ) = min{‖f − g‖2 : g ∈ W = K⊥} = sup{|〈c, f〉| : c ∈ K, |c| ≤ 1}.

Now |〈c, f〉| =
∣∣∣
∫

[0,1]

ct2 dm
∣∣∣ =

|c|
3

. Therefore, d(f, W ) =
1
3
.

§2. Adjoints. Next we introduce adjoint operators. Also, we study how certain properties, such as
surjectivity, density of ranges or closure of ranges of operators can be expressed equivalently in terms of
adjoint operators.

Definition. Let X, Y be normed spaces over K. For T ∈ L(X, Y ) and y ∈ Y ∗, define T ∗ : Y ∗ → X∗ by
T ∗(y) = y ◦ T ∈ X∗. Thus, for all x ∈ X, 〈x, T ∗(y)〉 = y(T (x)) = 〈T (x), y〉. T ∗ is called the adjoint of T.

Notations. For convenience, we will write T (x) as Tx and S ◦ T as ST when no confusion arises.
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Theorem (Properties of Adjoint Operators). If X, Y, Z are normed spaces over K, c1, c2 ∈ K, S ∈
L(Y, Z) and T, T1, T2 ∈ L(X, Y ), then

(a) ‖T ∗‖ = ‖T‖ and hence T ∗ ∈ L(Y ∗, X∗)

(b) (c1T1 + c2T2)∗ = c1T
∗
1 + c2T

∗
2

(c) (ST )∗ = T ∗S∗ and for the identity operator I ∈ L(X), I∗ = I

(d) T ∗∗ ∈ L(X∗∗, Y ∗∗) and identifying X with i(X) ⊆ X∗∗, we have T ∗∗|X = T

(e) if T is invertible, then T ∗ is also invertible and (T ∗)−1 = (T−1)∗ ∈ L(X∗, Y ∗)

(f) if T ∗ is invertible, then T is bounded below, hence injective. In case X is a Banach space, T ∗ invertible
implies T invertible and Y complete.

Proof. (a) ‖T‖ = sup{‖T (x)‖ : ‖x‖ ≤ 1} = sup{|〈T (x), y〉| : ‖x‖ ≤ 1, ‖y‖ ≤ 1}
= sup{|〈x, T ∗(y)〉| : ‖x‖ ≤ 1, ‖y‖ ≤ 1} = sup{‖T ∗(y)‖ : ‖y‖ ≤ 1} = ‖T ∗‖,

where the second equality is due to |〈T (x), y〉| ≤ ‖T (x)‖ = lim
n→∞

|〈T (x), yn〉| and similarly for the fourth.

(b) (c1T1 + c2T2)∗(y) = y ◦ (c1T1 + c2T2) = c1y ◦ T1 + c2y ◦ T2 = (c1T
∗
1 + c2T

∗
2 )(y).

(c) (S ◦T )∗(y) = y ◦ (S ◦T ) = T ∗(y ◦S) = T ∗ ◦S∗(y). I∗(y)(x) = y(I(x)) = y(x) for all x ∈ X. So I∗(y) = y.

(d) For x ∈ X, T ∗∗(x) = T ∗∗(ix) = ix ◦ T ∗ = iT (x) = T (x).

(e) Applying (c) to T ◦ T−1 = I and T−1 ◦ T = I, we get (T−1)∗ ◦ T ∗ = I∗ = I and T ∗ ◦ (T−1)∗ = I∗ = I.
So (T ∗)−1 = (T−1)∗ and it is in L(X∗, Y ∗) by the inverse mapping theorem.

(f) By (e), T ∗ invertible implies T ∗∗ invertible. Hence T ∗∗ is bounded below. By (d), T ∗∗|X = T is bounded
below, so T is injective.

In case X is a Banach space, by the lower bound theorem, T (X) is complete and hence closed. Suppose
F ∈ Y ∗ and F ≡ 0 on T (X). Then for all x ∈ X, 0 = F (T (x)) = T ∗(F (x)), i.e. T ∗(F ) = 0. Since T ∗

is invertible (in particular, injective), we get F = 0. By part (b) of the Hahn-Banach theorem, we have
Y = T (X) = T (X). Then Y is complete and T is bijective. By the inverse mapping theorem, T−1 ∈ L(Y, X)
and T is invertible.

Theorem (Kernel-Range Relations). Let X, Y be normed spaces and T ∈ L(X, Y ). Then

ker T = ⊥(ran T ∗), ker T ∗ = (ran T )⊥, (ker T )⊥ = ran T ∗w∗

and ⊥(ker T ∗) = ran T .

Proof. By the remarks after the double-perp theorem, we have M = {0} ⊆ Y iff M⊥ = Y ∗ and N = {0} ⊆
X∗ iff ⊥N = X. For the first and second equations, using part (a) of the corollary to the separation theorem
and the definition of adjoint,

x ∈ ker T ⇔ 0 = Tx ⇔ ∀y ∈ Y ∗, 0 = y(Tx) = (T ∗y)x ⇔ x ∈ ⊥T ∗(Y ∗) = ⊥(ran T ∗);

y ∈ ker T ∗ ⇔ 0 = T ∗y ⇔ ∀x ∈ X, 0 = (T ∗y)x = y(Tx) ⇔ y ∈ T (X)⊥ = (ran T )⊥.

For the third equation, by the first equation, ker T = ⊥(ran T ∗). By the double-perp theorem, (ker T )⊥ =
(ran T ∗)⊥⊥ = ran T ∗w∗

.
For the fourth equation, by the second equation, ker T ∗ = (ran T )⊥. By the double-perp theorem,

⊥(ker T ∗) = (ran T )⊥⊥ = ran T .

Corollary 1. Let X, Y be normed spaces and T ∈ L(X, Y ). Then

(a) ker T = (ker T )⊥⊥ and ker T ∗ = (ker T ∗)⊥⊥,

(b) ran T is w-dense (or dense) in Y iff T ∗ is injective,

(c) ran T ∗ is w∗-dense in X∗ iff T is injective.
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Proof. (a) ker T is norm-closed in X. So ker T = ker T = (ker T )⊥⊥. Also, ker T ∗ = (ran T )⊥ is w∗-closed in
Y ∗. So ker T ∗ = ker T ∗w∗

= (ker T ∗)⊥⊥.

(b) If T ∗ is injective, then by the last theorem, ran T = ⊥(ker T ∗) = ⊥{0} = Y. Conversely, if ran T is dense
(equivalently, w-dense) in Y, then by (a), ker T ∗ = (ker T ∗)⊥⊥ = (ran T )⊥ = Y ⊥ = {0}.

(c) If T is injective, then by the last theorem, ran T ∗w∗

= (ker T )⊥ = {0}⊥ = X∗. Conversely, if ran T ∗ is
w∗-dense in X∗, then by (a), ker T = (ker T )⊥⊥ = ⊥(ran T ∗w∗

) = ⊥(X∗) = {0}.

Corollary 2. Let X be a Banach space, Y a normed space and T ∈ L(X, Y ). The following are equivalent:

(a) T is invertible,

(b) T ∗ is invertible,

(c) ran T is dense in Y (or T ∗ is injective) and T is bounded below,

(d) T and T ∗ are both bounded below.

Proof. (a) ⇐⇒ (b) is due to properties (e) and (f) of the adjoint operators. (a) ⇐⇒ (c) and also (a), (b)
=⇒ (d) are due to the lower bound theorem and its remarks. (d) =⇒ (c) is due to (b) of corollary 1.

Closed Range Theorem. Let X, Y be Banach spaces and T ∈ L(X, Y ). The following are equivalent.

(a) ran T is norm-closed (or w-closed),

(b) ran T ∗ is w∗-closed,

(c) ran T ∗ is norm-closed.

Proof. Let X0 = X/ ker T and Y0 = ran T ⊆ Y. By the kernel-range relations, Y ⊥
0 = ker T ∗. By Hahn-Banach

theorem, Y ∗
0 = {F |Y0 : F ∈ Y ∗}. The map T0 : X0 → Y0 given by T0(x + ker T ) = T (x) is well-defined and

linear. Also, T0 is injective and ran T0 = ran T. Then, T ∗
0 : Y ∗

0 → X∗
0 is given by T ∗

0 (F |Y0) = F |Y0 ◦T0 for all
F ∈ Y ∗. By the duality theorem, we have Y ∗

0 ↔ Y ∗/Y ⊥
0 = Y ∗/ ker T ∗ (with F |Y0 ↔ F + ker T ∗) and X∗

0 ↔
(ker T )⊥ (with G ↔ G ◦π, where π : X → X/ ker T is the quotient map). Under duality correspondence, we
can view T ∗

0 : Y ∗
0 = Y ∗/ ker T ∗ → X∗

0 = (ker T )⊥ as given by T ∗
0 (F + ker T ∗) = F |Y0 ◦ T0 ◦ π = F |Y0 ◦ T =

F ◦ T = T ∗(F ), which is well-defined and linear. More importantly, T ∗
0 is injective and ranT ∗

0 = ran T ∗.

(a) ⇒ (b) Since ran T is norm-closed, ran T0 = ran T = ran T = Y0. Then T0 is surjective (hence bijective).
By the inverse mapping theorem, T0 is invertible. So T ∗

0 is invertible, hence surjective. So ran T ∗ = ran T ∗
0 =

(ker T )⊥ is w∗-closed in X∗.

(b) ⇒ (c) The weak-star topology is a subset of the norm topology in X∗.

(c) ⇒ (a) Since T ∗
0 is injective and ran T ∗

0 = ran T ∗ is norm-closed in X∗, by the lower bound theorem, T ∗
0

is bounded below. Hence there is δ > 0 such that ‖T ∗
0 (u)‖ ≥ δ‖u‖ for all u ∈ Y ∗

0 .

To show ran T is norm-closed, it suffices to show T0 is open (as it would implies T0 is surjective and
hence ran T = ran T0 = Y0 = ran T ). Now to show T0 is open, let U be the open unit ball in X0. It is enough
to show T0(U ) is a neighborhood of 0 in Y0. Using the lemmas prior to the open mapping theorem, it is
further enough to show T0(U ) contains B(0, δ).

Let v ∈ Y0 \ T0(U ). By the separation theorem, there is a g ∈ Y ∗
0 such that Re g(v) < inf{Reg(T0(u)) :

u ∈ U}. Let f = −g/‖T ∗
0 g‖, then ‖T ∗

0 f‖ = 1 and |T ∗
0 f(u)| = eiθT ∗

0 f(u) = T ∗
0 f(eiθu) = Re T ∗

0 f(eiθu). So
Re f(v) > sup{Ref(T0(u)) : u ∈ U} = sup{Re(T ∗

0 f)(u) : u ∈ U} = sup{|(T ∗
0 f)(u)| : u ∈ U} = ‖T ∗

0 f‖ = 1.
As T ∗

0 is bounded below, we get 1 = ‖T ∗
0 f‖ ≥ δ‖f‖. So 1

δ ≥ ‖f‖. Then 1
δ‖v‖ ≥ ‖f‖‖v‖ ≥ |f(v)| ≥ Re f(v)>1.

We get ‖v‖ > δ. Hence, v ∈ Y0 \ B(0, δ). Therefore, T0(U ) ⊇ B(0, δ), which gives ran T is norm-closed.

Corollary. Let X, Y be Banach spaces and T ∈ L(X, Y ). Then T is surjective iff T ∗ is bounded below.
Similarly, T ∗ is surjective iff T is bounded below.

Proof. T is surjective iff ran T is dense and norm-closed in Y. By corollary 1 and the closed range theorem,
this is iff T ∗ is injective and ran T ∗ is norm-closed. By the lower bound theorem, this is iff T ∗ is bounded
below. The second statement can be proved similarly.
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Chapter 5. Basic Operator Facts on Banach Spaces.

§1. Spectrum. We will study operators in Banach spaces over C in this chapter. So all vector spaces
refered to below when not specified will mean Banach spaces over C. We begin with the observation that for
a Banach space X, L(X) = L(X, X) is not only a Banach space, but it also has a continuous multiplication
structure.

Definition. A Banach algebra is a Banach space with a multiplication such that ‖xy‖ ≤ ‖x‖ · ‖y‖ for all x
and y in the space. (Note xn → x and yn → y implies ‖xn‖, ‖yn‖ bounded and

‖xnyn − xy‖ = ‖xn(yn − y) + (xn − x)y‖ ≤ ‖xn‖‖yn − y‖ + ‖xn − x‖‖y‖ → 0.

So multiplication is continuous.) By math induction, we also have ‖xn‖ ≤ ‖x‖n.

Example. Let X, Y, Z be normed spaces, T ∈ L(X, Y ) and S ∈ L(Y, Z), then S ◦ T ∈ L(X, Z). For every
x ∈ X, ‖(S ◦ T )(x)‖ = ‖S

(
T (x)

)
‖ ≤ ‖S‖‖T (x)‖ ≤ ‖S‖‖T‖‖x‖ Thus, ‖S ◦ T‖ ≤ ‖S‖‖T‖. In particular, if X

is a Banach space, then L(X) is a Banach algebra with composition as multiplication.

As in linear algebra, for an operator T ∈ L(X), the related operator T − cI is important.

Definitions. Let X be a Banach space over C and T ∈ L(X).

(1) The resolvent set of T is ρ(T ) = {c ∈ C : T − cI is invertible}. For c ∈ ρ(T ), the operator Rc(T ) =
(cI − T )−1 is called the resolvent of T.

(2) The spectrum of T is σ(T ) = {c ∈ C : T −cI is non-invertible}. A common alternative notation is sp(T ).

(3) The point spectrum of T is the set σp(T ) = {c ∈ C : ker(T − cI) 6= {0}} of eigenvalues of T.

(4) The approximate point spectrum of T is σap(T ) = {c ∈ C : T − cI is not bounded below} = {c ∈ C :
∃ x1, x2, x3, . . . ∈ X, ‖xi‖ = 1, (T − cI)(xi) → 0} of all approximate eigenvalues of T.

(5) The compression spectrum of T is σcom(T ) = {c ∈ C : ran(T − cI) 6= X}.

(6) The residual spectrum of T is σr(T ) = σcom(T ) \ σp(T ) = {c ∈ C : ker(T − cI)= {0}, ran(T − cI) 6= X}.

(7) The continuous spectrum of T is σc(T ) = σ(T )\(σp(T )∪σcom(T )) = {c ∈ C : ker(T −cI) = {0}, ran(T −
cI) ⊂ ran(T − cI) = X}.

Remarks. Since an operator is invertible iff it is injective and surjective (i.e. its range is closed and dense) iff
it is bounded below and its range is dense, so σ(T ) = σap(T )∪σcom(T ). Clearly, σp(T ) ⊆ σap(T ), but σp(T )∩
σcom(T ) may not be empty (eg. T has rank 1) so that σap(T ), σcom(T ) may not be disjoint. To get disjoint
decomposition of σ(T ), we can write σ(T ) as the union of the pairwise disjoint sets σp(T ), σr(T ), σc(T ).

Theorem. For every operator T ∈ L(X), σ(T ) = σ(T ∗).

Proof. This follows easily from the properties (e) and (f) of adjoint operators that T − cI is invertible if
and only if T ∗ − cI = (T − cI)∗ is invertible on a Banach space X.

Concerning the spectrum of an operator, we have the following important facts.

Gelfand’s Theorem. For every T ∈ L(X), σ(T ) is a nonempty compact set in C.

Gelfand-Mazur Theorem. Let r(T ) = max{|z| : z ∈ σ(T )}. Then

r(T ) = inf{‖T m‖1/m : m = 1, 2, 3, . . .} = lim
m→∞

‖T m‖1/m ≤ ‖T‖.

(r(T ) is the furthest distance of any point in σ(T ) from the origin and is called the spectral radius of T.)
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Using these theorems, we will look at some examples first. In each example, to find the spectrum, we
try to find the norm of the operator first. We use the norm and spectral radius to bound the spectrum.
Then we try to find eigenvalues of the operator.

Examples. (1) Define the backward shift operator T : `1 → `1 by T (x1, x2, x3, . . .) = (x2, x3, x4, . . .). It is
easy to see T is linear. Also,

‖T (x1, x2, x3, . . .)‖1 = ‖(x2, x3, x4, . . .)‖1 =
∞∑

i=2

|xi| ≤
∞∑

i=1

|xi| = ‖(x1, x2, x3, . . .)‖1.

So ‖T‖ ≤ 1, hence T is continuous. If x1 = 0, then the above inequality becomes an equality. So ‖T‖ = 1.
Since r(T ) = lim

n→∞
‖T n‖1/n ≤ ‖T‖ = 1, so σ(T ) is a nonempty compact subset of B(0, 1) = {z ∈ C : |z| ≤ 1}.

If |z| < 1, then T (1, z, z2, . . .) = (z, z2, z3, . . .) = z(1, z, z2, . . .). So T − zI is not invertible as (1, z, z2, . . .) ∈
ker(T − zI). Then B(0, 1) = {z ∈ C : |z| < 1} is a subset of σ(T ). As σ(T ) is closed, σ(T ) = B(0, 1).

Define forward (or unilateral) shift operator S : `∞ → `∞ by S(y1, y2, y3, . . .) = (0, y1, y2, . . .). S = T ∗

because from (`1)∗ = `∞ under the pairing 〈(a1, a2, a3, . . .), (b1, b2, b3, . . .)〉 = a1b1 + a2b2 + a3b3 + · · · , we
have for all (x1, x2, x3, . . .) ∈ `1,

〈(x1, x2, x3, . . .), T ∗(y1, y2, y3, . . .)〉 = 〈T (x1, x2, x3, . . .), (y1, y2, y3, . . .)〉
= x2y1 + x3y2 + x4y3 + · · ·
= 〈(x1, x2, x3, . . .), (0, y1, y2, · · ·)〉
= 〈(x1, x2, x3, . . .), S(y1, y2, y3, · · ·)〉.

Now ‖S‖ = ‖T ∗‖ = ‖T‖ = 1 and σ(S) = σ(T ∗) = σ(T ) = B(0, 1).

(2) Define the Volterra operator V : C[0, 1] → C[0, 1] by (V f)(x) =
∫ x

0

f(t) dt. V is linear and

‖V f‖∞ = sup
x∈[0,1]

∣∣
∫ x

0

f(t) dt
∣∣ ≤

∫ 1

0

|f(t)| dt ≤ ‖f‖∞.

So ‖V ‖ ≤ 1. For f ≡ 1, (V f)(x) = x, ‖V f‖∞ = 1 = ‖f‖∞ and so ‖V ‖ = 1. We claim |(V nf)(x)| ≤ ‖f‖∞
xn

n!
for all x ∈ [0, 1]. For n = 1, |(V f)(x)| =

∣∣
∫ x

0

f(t) dt
∣∣ ≤ ‖f‖∞x. Assuming case n, we have

|(V n+1f)(x)| =
∣∣
∫ x

0

(V nf)(t) dt
∣∣ ≤

∫ x

0

|(V nf)(t)| dt ≤
∫ x

0

‖f‖∞
tn

n!
dt = ‖f‖∞

xn+1

(n + 1)!
.

This implies ‖V nf‖∞ ≤ ‖f‖∞
1
n!

. For f ≡ 1, we get equality. Hence ‖V n‖ =
1
n!

. Since lim
n→∞

1/(n + 1)!
1/n!

=

lim
n→∞

1
n + 1

= 0, we get lim
n→∞

( 1
n!

)1/n = 0. So r(V ) = 0 and σ(V ) = {0}, but ker V = {0} implies σp(V ) = ∅.

Remarks. If σ(T ) = {0}, then T is called a quasinilpotent operators. We can also define V : L2[0, 1] →

L2[0, 1] by (V f)(x) =
∫

[0,x]

f dm. Then ‖V ‖ =
2
π

and σ(V ) = {0}. See [H], problems 186 to 188.

(3) For f ∈ L∞[0, 1], define the multiplication operator Mf : L1[0, 1] → L1[0, 1] by Mf (g) = fg. We will
show ‖Mf‖ = ‖f‖∞. The case f = 0 is clear. So we consider f 6= 0 in L∞[0, 1].
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Clearly, ‖Mf (g)‖1 =
∫

[0,1]

|fg| dm ≤ ‖f‖∞‖g‖1. So ‖Mf‖ ≤ ‖f‖∞. Conversely, we may think of f as a

bounded measurable function on [0, 1] (by taking a representative in the equivalence class of f ∈ L∞[0, 1]).
Let An = {x ∈ [0, 1] : |f(x)| > ‖f‖∞ − 1

n
} and gn =

χAn

m(An)
. Then ‖gn‖1 = 1 and

‖f‖∞ − 1
n
≤ 1

m(An)

∫

An

|f | dm =
∫

[0,1]

|fgn| dm ≤ ‖f‖∞‖gn‖1 = ‖f‖∞.

So ‖Mf (gn)‖1 =
∫

[0,1]

|fgn| dm → ‖f‖∞ as n → ∞. Therefore, ‖Mf‖ = ‖f‖∞.

For σ(Mf ), consider the essential range of f, which is S = {z ∈ C : m
(
f−1(B(z, r)

)
> 0 for all r > 0}.

If z ∈ S, then let Dn = f−1(B(z, 1
n)) and hn =

χDn

m(Dn)
. Then ‖hn‖1 = 1 and

‖(Mf − zI)hn‖1 =
∫

[0,1]

|f − z||hn| dm =
1

m(Dn)

∫

Dn

|f − z| dm ≤ 1
n

.

Assume Mf − zI has an inverse L, then 1 = ‖hn‖1 = ‖L(M − zI)hn‖1 ≤ ‖L‖‖(M − zI)hn‖1 ≤ ‖L‖ 1
n , which

implies n ≤ ‖L‖ for all n, a contradiction. So S ⊆ σ(Mf ).

Conversely, if z 6∈ S, then there is r > 0 such that m(f−1(B(z, r)) = 0. On [0, 1] \ f−1(B(z, r)), define

g(x) =
1

f(x) − z
and on f−1(B(z, r)), define g(x) = 0. Then g is measurable on [0, 1] and ‖g‖∞ ≤ 1

r . So

Mg(Mf − zI)(h) = h = (Mf − zI)Mg(h) almost everywhere. Then Mf − zI is invertible. Hence σ(Mf ) = S.

Mf may also be defined on Lp[0, 1], 1 ≤ p < ∞, by Mf (g) = fg. The norm and spectrum are the same
as in the L1[0, 1] case. Finally, M∗

f : Lq [0, 1] → Lq[0, 1] is the same as Mf because

〈g, M∗
f (h)〉 = 〈Mf (g), h〉 =

∫

[0,1]

(fg)h dm =
∫

[0,1]

g(fh) dm = 〈g, fh〉 = 〈g, Mf (h)〉.

Now we present the proofs of the Gelfand and Gelfand-Mazur theorems. First we need some facts.

Lemma on Inverses. (1) If T ∈ L(X) is invertible and S ∈ L(X) such that ‖S‖ < ‖T−1‖−1, then T − S
is invertible. So the set of invertible operators in L(X) is an open set.

(2) The map T 7→ T−1 on the set of invertible operators is continuous.

Proof. (1) Let R = T−1S, then ‖R‖ ≤ ‖T−1‖‖S‖ < 1 and
∞∑

i=0

Ri converges absolutely in L(X). The sum is

easily checked to be (I − R)−1. Then T − S = T (I − R) is invertible.

(2) For T invertible and ‖S‖ < ‖T−1‖−1, let R = T−1S. As ‖S‖ → 0, ‖R‖ ≤ ‖T−1‖‖S‖ → 0, which implies

‖(T − S)−1 − T−1‖ =
∥∥∥
(
(I − R)−1 − I

)
T−1

∥∥∥ ≤
∥∥∥

∞∑

i=1

Ri
∥∥∥‖T−1‖ ≤ ‖R‖

1 − ‖R‖
‖T−1‖ → 0.

Resolvent Identity. Ra(T ) − Rb(T ) = (b − a)Ra(T )Rb(T ). As a → b, Ra(T ) → Rb(T ) in norm topology.

Proof. Let A = aI − T = Ra(T )−1 and B = bI − T = Rb(T )−1, then B − A = (b − a)I and A−1 − B−1 =
A−1BB−1 −A−1AB−1 = A−1(B −A)B−1 = (b− a)A−1B−1, which is the identity. As a → b, A → B (since
‖A − B‖ = |a − b|), hence A−1 = Ra(T ) → B−1 = Rb(T ) by part (2) of the lemma on inverses.

Remarks. Two operators T0 and T1 are said to commute iff T0T1 = T1T0. The resolvent identity implies

Ra(T ) and Rb(T ) commute since Ra(T )Rb(T ) =
Ra(T ) − Rb(T )

b − a
= Rb(T )Ra(T ). Also, lim

a→b

Ra(T ) − Rb(T )
a − b

= −Rb(T )2, the limit being taken in the norm of L(X).
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Lemma 1. For every T ∈ L(X), σ(T ) ⊆ {z : |z| ≤ r}, where r = limsup
n→∞

‖T n‖1/n < ∞, i.e. r(T ) ≤ r. Also,

for |z| > r, (T − zI)−1 = −
∞∑

n=0

z−n−1T n. For r = 0, we interpret B(0, r) as {0}.

Proof. Note ‖T n‖ ≤ ‖T‖n implies that r = limsup
n→∞

‖T n‖1/n ≤ ‖T‖ < ∞. For |z| > r, there is ε > 0 such

that |z| > r + ε. By properties of limsup, we see that ‖T n‖1/n ≤ r + ε for all except finitely many n. Since

‖z−n−1T n‖ =
‖T n‖

(r + ε)n+1

︸ ︷︷ ︸
bounded

·
(r + ε

|z|
)n+1

︸ ︷︷ ︸
geometric

and
r + ε

|z|
< 1, so S = −

∞∑

n=0

z−n−1T n converges absolutely in L(X).

For |z| > r, both S(T − zI) and (T − zI)S equal −
∞∑

n=0

z−n−1T n+1 +
∞∑

n=0

z−nT n = I. So T − zI is invertible,

i.e. z ∈ ρ(T ) = C \ σ(T ). Hence, σ(T ) ⊆ {z : |z| ≤ r}.

Lemma 2. Let Ω be a nonempty open subset of C contained in ρ(T ). For f ∈ L(X)∗, the function g : Ω → C
defined by g(z) = f((T − zI)−1) = −f(Rz(T )) is holomorphic with derivative g′(z) = f(Rz(T )2).

Proof. This follows from the continuity of f and the remark below the resolvent identity.

Proof of Gelfand’s Theorem. By lemma 1, σ(T ) is bounded in C.

Next we show σ(T ) is closed by showing ρ(T ) = C\σ(T ) is open. Let z ∈ ρ(T ). Then T −zI is invertible.
By the lemma on inverses, we get T −wI = (T − zI)− (w− z)I is also invertible if |w− z| < ‖(T − zI)−1‖−1.
Then B(z, ‖(T − zI)−1‖−1) ⊆ ρ(T ). So ρ(T ) is open and σ(T ) = C \ ρ(T ) is closed.

Finally, we show σ(T ) 6= ∅. Assume σ(T ) = ∅. Let Ω = ρ(T ) = C. Then the g function in lemma 2 is
entire. By lemmas 1 and 2, for |z| > ‖T‖ ≥ r,

|g(z)| ≤ ‖f‖‖(T − zI)−1‖ ≤ ‖f‖
∞∑

n=0

|z|−n−1‖T‖n =
‖f‖

|z| − ‖T‖
→ 0 as z → ∞.

Hence, g(z) is bounded. By Liouville’s theorem, f((T −zI)−1) = g(z) = 0. Then ‖(T −zI)−1‖ = sup{|f((T −
zI)−1)| : f ∈ L(X)∗, ‖f‖ ≤ 1} = 0, which is absurd. So σ(T ) 6= ∅.

Proof of the Gelfand-Mazur Theorem. By lemma 1, r(T ) ≤ r = limsup
n→∞

‖T n‖1/n. Now, to reverse this

inequality, it suffices to show there is a z ∈ σ(T ) with |z| = r, which implies r ≤ r(T ). If r = 0, then
∅ 6= σ(T ) ⊆ {z : |z| ≤ r} implies σ(T ) = {0}.

Next we consider r > 0. Assume σ(T )∩{z : |z| = r} = ∅. Then there exists R such that r(T ) = max{|z| :
z ∈ σ(T )} < R < r. So σ(T ) ⊆ {z : |z| ≤ r(T )}. For all f ∈ L(X)∗ , by lemma 2, g(z) = f((T − zI)−1)

is holomorphic on ρ(T ) ⊇ {z : |z| > r(T )}. By lemma 1, g(z) = f((T − zI)−1) = −
∞∑

n=0

f(T n)z−n−1 on

{z : |z| > r}, hence also on {z : |z| > r(T )} by the uniqueness of Laurent series on annulus. Then it converges
absolutely on |z| = R. So sup{|f(T n)/Rn+1| : n = 0, 1, 2, . . .} < ∞. By the uniform boundedness principle,
we get c = sup{‖T n/Rn+1‖ : n = 0, 1, 2, . . .} < ∞. Hence, ‖T n‖ ≤ cRn+1. Then ‖T n‖1/n ≤ c1/nR1+1/n.
Taking limsup, we get r ≤ R, a contradiction.

Next we show r = inf{‖T m‖1/m : m = 1, 2, 3, . . .}. For positive integers m, n, we have n = qm + k with
k = 0, 1, . . ., m − 1. Then ‖T n‖ ≤ ‖T m‖q‖T‖k. So ‖T n‖1/n ≤ ‖T m‖q/n‖T‖k/n. Fix m and let n → ∞, since
1 = m(q/n) + (k/n), we get k/n → 0 and q/n → 1/m. So r = limsup

n→∞
‖T n‖1/n ≤ ‖T m‖1/m. Taking infimum

over m, we get the result r ≤ inf{‖T m‖1/m : m = 1, 2, 3, . . .} ≤ liminf
m→∞

‖T m‖1/m ≤ limsup
m→∞

||T m‖1/m = r.
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§2. Projections and Complemented Subspaces. In the literature, vector subspaces are sometimes
called linear manifolds. For convenience, below the term “subspaces” will mean closed vector subspaces of
Banach spaces.

Definition. A subspace E of a Banach space X is complemented iff there is a subspace F of X such that
E ∩ F = {0} and E + F = X. Such F is called a complementary subspace for E. (In algebra, we write
X = E ⊕ F and call it an internal direct sum.)

Remarks. (1) In the definition, if x = y + z = y′ + z′ for y, y′ ∈ E and z, z′ ∈ F, then y − y′ = z′ − z ∈
E ∩ F = {0} implies y = y′ and z = z′. So every x has a unique representation as y + z with y ∈ E, z ∈ F.

(2) We have dimF = codim E (i.e. dimX/E) since if B is a basis of F, then π(B) is a basis of X/E, where
π : X → X/E is the quotient map.

Examples. (1) If dimE = n < ∞, then E is complemented. (To see this, let {x1, . . . , xn} be a basis of
E. By the Hahn-Banach theorem, for i = 1, . . . , n, there is fi ∈ X∗ such that fi(xi) = 1 and fi(xj) = 0

for i 6= j. Let F =
n
∩

i=1
ker fi. If e = c1x1 + · · · + cnxn ∈ E is in F, then ci = fi(e) = 0 for i = 1, . . . , n,

i.e. E ∩ F = {0}. For x ∈ X, we have y = f1(x)x1 + · · · + fn(x)xn ∈ E and z = x − y ∈ F because
fi(z) = fi(x) − fi(y) = fi(x) − fi(x) = 0 for i = 1, . . . , n, i.e. x = y + z ∈ E + F. So F is a complementary
subspace of E.)

(2) If codimE < ∞, then E is complemented. (To see this, suppose dim(X/E) = n < ∞. Let {x1 +
E, . . . , xn+E} be a basis of X/E. Then b1x1+ · · ·+bnxn = 0 implies b1(x1+E)+ · · ·+bn(xn +E) = 0+E. It
follows {x1, . . . , xn} is linearly independent. Let F be the linear span of {x1, . . . , xn}. Then dimF = n < ∞.
So F is complete, hence closed. If c1x1 + · · · + cnxn ∈ F is in E, then c1(x1 + E) + · · · + cn(xn + E) =
(c1x1 + · · · + cnxn) + E = E, which implies ci = 0 for i = 1, . . . , n. So E ∩ F = {0}. For x ∈ X, x + E
can be written as a1(x1 + E) + · · ·+ an(xn + E) = z + E in X/E, where z = a1x1 + · · ·+ anxn ∈ F. Then
x + E = z + E implies y = x − z ∈ E. So x = y + z ∈ E + F. Hence F is a complementary subspace of E.)

(3) Every subspace M in a Hilbert space H is complemented by its orthogonal complement M⊥, i.e. we
have H = M ⊕ M⊥. (In 1971, Lindenstrauss and Tzafriri proved the converse, namely if every subspace of
a Banach space is complemented, then the Banach space is isomorphic to a Hilbert space.)

(4) c0 is uncomplemented in `∞. See [M], pp. 301-302.

(5) In Lp = Lp(−π, π], let Hp be the closed linear span of einθ (n ≥ 0). M. Riesz proved that for 1 < p < ∞,
Hp is complemented in Lp by the closed linear span of einθ (n < 0). D. J. Newman proved that H1 is
uncomplemented in L1. R. Arens and P. C. Curtis proved that H∞ is uncomplemented in L∞.

Definition. An operator P ∈ L(X) is a projection iff P 2 = P, i.e. P |ranP = I|ran P .

Remarks. If P is a projection, then Q = I −P is a projection since (I − P )2 = I − 2P + P 2 = I −P. Also,
ker P = ran(I−P ) since Px = 0 imples x = x−Px = (I−P )x and conversely, P ((I−P )x) = Px−P 2x = 0.
Similarly, ran P = ran(I − Q) = ker Q = ker(I − P ). So ran P is always closed.

Theorem. If P is a projection, then ran P and ker P complement each other, i.e. X = ran P ⊕ ker P.

Proof. Since ker P = ran(I − P ), x = Px + (I − P )x and x ∈ (ran P ) ∩ (ker P ) implies x = Px = 0, we get
X = ran P ⊕ ker P.

Theorem. A subspace E of X is complemented iff E = ran P for some projection P ∈ L(X).

Proof. The if direction follows from the last theorem. For the only-if direction, let F be a complementary
subspace of E. Then each x ∈ X can be written as x = y + z for some unique y ∈ E and z ∈ F. Define
Px = y. Then P is linear by uniqueness of representation. Now ran P = E since for every y ∈ E, y = y + 0
in X implies Py = y. Also, P 2x = Py = y = Px, i.e. P 2 = P.
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For continuity, consider the graph of P. If (xn, Pxn) → (x, y), then write xn = yn + zn, where yn ∈ E
and zn ∈ F. As E is closed, yn ∈ E, yn = Pxn → y, so y ∈ E. As F is closed, zn ∈ F, zn = xn − yn → x− y,
so x − y ∈ F As x = y + (x − y), we get y = Px. By the closed graph theorem, P is continuous.

Corollary. If E is complemented in X, then E⊥ is complemented in X∗.

Proof. Let P ∈ L(X) be a projection with ran P = E, then (P ∗)2 = P ∗P ∗ = (PP )∗ = P ∗, i.e. P ∗ ∈ L(X∗)
is a projection and E⊥ = (ran P )⊥ = ker P ∗ is closed and complemented by ran P ∗ in X∗.

Left Inverse Theorem. T ∈ L(X, Y ) is left invertible (i.e. there is S ∈ L(Y, X) such that ST = I) iff T
is injective and ran T is closed and complemented in Y (iff T is bounded below and ran T is complemented
in Y by the lower bound theorem).

Proof. For the if direction, T is injective. Let P ∈ L(Y ) be the projection onto ran T, then T0 = P ◦ T :
X → ran T is bijective (since ran T = ran P makes T0(x) = T (x)). Let S = T−1

0 ◦ P, then ST = I.

For the only-if direction, if S ∈ L(Y, X) is such that ST = I, then T is injective and (TS)2 = TSTS =
TS is the projection with ran TS = ran T (since ran TS ⊆ ran T = ran TST ⊆ ran TS) so that ran T (being
the range of a projection) is closed and complemented.

Exercise. Prove that T ∈ L(X, Y ) is right-invertible (i.e. there is S ∈ L(Y, X) such that TS = I) iff T is
surjective and ker T is complemented. (Hint: (if) let ran Q be complement to ker T, then S = Q̂◦ T̂−1, where
X/ ker T is considered; (only-if) check ST is a projection and ran ST = ran S is complement to ker T.)

§3. Compact Operators. Finite rank operators (i.e. operators whose ranges are finite dimensional) are
easy to understand by using linear algebra. In this section, we will study a class of operators related to the
finite rank operators. First we recall the following facts:

(1) For any normed vector space V, if the closed unit ball of V is compact, then dimV < ∞.

(2) (Metric Compactness Theorem) In a metric space M, a set S in M is compact iff S is sequentially
compact (i.e. every sequence in S has a convergent subsequence with limit in S) iff S is complete and
totally bounded (i.e. for every ε > 0, there are x1, . . . , xn ∈ S such that B(x1, ε) ∪ · · · ∪ B(xn, ε) ⊇ S
and we say S has an ε-dense set {x1, x2, . . . , xn}). S is totally bounded implies S is separable (by taking
ε = 1/k and union of all centers over all k ∈ N gives a countable dense set). It is easy to check that if
either S or S has an ε/2-dense set, then the other has an ε-dense set. Hence, S is totally bounded if
and only if S is totally bounded.

(3) (Arzela-Ascoli Theorem) For a compact set M, a set S in C(M, K) is (sequentially) compact iff S is
closed, bounded and equicontinuous in C(M, K), where equicontinuity means for every ε > 0, there is a
δ > 0 such that for all f ∈ S and for all x, y ∈ M, d(x, y) < δ implies |f(x) − f(y)| < ε.

Definition. Let X, Y be Banach spaces and B be the open unit ball of X. A linear function K : X → Y is
compact iff K(B) is precompact, i.e. K(B) is compact, in Y (hence K(B) bounded, K bounded). (By the
metric compactness theorem, this is equivalent to the condition that for every bounded sequence {xn} in X,
the sequence {K(xn)} has a convergent subsequence in Y or to K(B) is totally bounded).

Remark. Since K(B) is compact, it cannot contain any closed ball (which is never compact) in infinite
dimensional spaces. So compact operators are considered “small” operators.

Theorem (Properties of Compact Operators). Let X, Y, Z be Banach spaces.

(a) Finite rank operators F ∈ L(X, Y ) (i.e. dimran F < ∞) are compact. If K ∈ L(X, Y ) is compact, then
ran K contains no infinite dimensional closed subspaces of Y. In particular, if ran K is closed in Y, then
K has finite rank.

(b) If K1, K2 are compact and c ∈ C, then K1 + cK2 is compact.
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(c) If K ∈ L(X, Y ) is compact and T ∈ L(Y, Z), then TK is compact.

(d) If K ∈ L(Y, Z) is compact and T ∈ L(X, Y ), then KT is compact.

(e) If K ∈ L(X, Y ) is compact and invertible, then dimX = dim Y < ∞.

(f) The restriction K|V of a compact operator K ∈ L(X, Y ) to a closed subspace V of X is compact.

(g) If K ∈ L(X, Y ) is compact, then ran K is separable.

(h) If for n = 1, 2, 3, . . ., Kn ∈ L(X, Y ) is compact and Kn converges to K, then K is compact.

(i) K ∈ L(X, Y ) is compact iff K∗ ∈ L(Y ∗, X∗) is compact.

Remarks. (1) In the case X = Y = Z, parts (b), (c), (d), (h) imply the set of all compact operators is a
closed two-sided ideal of L(X).

(2) Part (i) of the theorem is called Schauder’s theorem in some literatures.

Examples. (1) Let X = Y = `p (1 ≤ p ≤ ∞). For a = (a1, a2, a3, . . .) ∈ c0, define K(x1, x2, x3, . . .)=
(a1x1, a2x2, a3x3, . . .) and Kn(x1, x2, x3, . . .)=(a1x1, a2x2, . . . , anxn, 0, 0, . . .). Then ‖K‖, ‖Kn‖ ≤ ‖a‖∞. Now
Kn is finite rank, hence compact. Then ‖K − Kn‖ ≤ sup{|aj| : j > n} → 0 as limsup

n→∞
|an| = lim

n→∞
|an| = 0.

By property (h), K is compact.

(2) Let X = Y = C([0, 1]) and G ∈ C([0, 1]2). Define (Kf)(x) =
∫ 1

0

G(x, y)f(y) dy. This is called the

Fredholm integral operator. Note that K ∈ L(X) and ‖K‖ ≤ ‖G‖∞. If G(x, y) = F (x)H(y) for some

F, H ∈ C([0, 1]), then K has at most rank 1. Similarly, if G(x, y) =
n∑

j=1

Fj(x)Hj(y), then K has finite rank.

By the Stone-Weierstrass theorem, we can approximate G ∈ C([0, 1]2) uniformly by functions of the form
n∑

j=1

Fj(x)Hj(y). So we can approximate K by finite rank operators. Therefore, by (a) and (h), K is compact.

(3) Let X = Y = L2([0, 1]) and G ∈ L2([0, 1]2). Define K as in (2). Then K ∈ L(X) and ‖K‖ ≤ ‖G‖2 since
√∫

[0,1]

∣∣∣
∫

[0,1]

G(x, y)f(y) dy
∣∣∣
2

dx ≤
√∫

[0,1]

(∫

[0,1]

|G(x, y)|2 dy
)(∫

[0,1]

|f(y)|2 dy
)

dx = ‖G‖2‖f‖2.

By the reasoning above, K is compact (as continuous functions are dense in L2) by (h).

(4) Let X = C1([0, 1]) be the set of functions with continuous derivatives on [0, 1]. For f ∈ C1([0, 1]), let
‖f‖C1([0,1]) = ‖f‖∞ + ‖f ′‖∞. This is a complete norm by properties of uniform convergence. So C1([0, 1]) is
a Banach space. Let Y = C([0, 1]) and K : X → Y be the inclusion map K(f) = f. Then K is compact by
the Arzela-Ascoli theorem because for all f ∈ B, ‖f‖C1([0,1]) ≤ 1 implies ‖f‖∞ ≤ 1 (hence K(B) bounded
in C([0, 1])) and ‖f ′‖∞ ≤ 1 (hence K(B) is equicontinuous in C([0, 1]) by the mean-value theorem).

Proof of Properties of Compact Operators. Let B and B′ denote the open unit balls of X and Y
respectively.

(a) For the first statement, dimran F < ∞ implies ran F closed. Also, F (B) ⊆ B(0, ‖F‖) implies F (B) is
bounded. Hence F (B) is compact. For the second statement, let Z be a closed subspace of Y in ran K, then
W = K−1(Z) is closed in X. So K|W : W → Z is surjective. By the open mapping theorem, K|W sends the
open unit ball BW of W to an open neighborhood K(BW ) of 0 in Z. Then K(BW ), being a closed subset
of K(B), is a compact neighborhood of 0 in Z. Hence, K(BW ) contains some compact B(0, r) of Z, which
implies Z is finite dimensional.

(b) K1 + cK2 compact follows from (K1 + cK2)(B) ⊆ K1(B) + cK2(B), which is compact as it is the image
of K1(B) × K2(B) under the continuous function g(x, y) = x + cy.
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(c) TK compact follows from TK(B) ⊆ T (K(B)), which is compact.

(d) KT compact follows from KT (B) ⊆ K(‖T‖B′) ⊆ ‖T‖K(B′), which is compact.

(e) By (c) and (d), K−1K = I and KK−1 = I are compact and hence the closed unit balls of X and Y are
compact. Then X, Y are finite dimensional. K invertible implies the dimensions are the same.

(f) K|V compact follows from K|V (B ∩ V ) ⊆ K(B), which is compact.

(g) This follows from K(B) totally bounded, hence separable, and ran K =
∞
∪

n=1
nK(B).

(h) To show K(B) compact, it is enough to show K(B) is totally bounded. For ε > 0, take n with
||Kn − K‖ < ε/3. Since Kn(B) is compact, it is totally bounded. So there is a finite set {x1, . . . , xm} ⊆ B
such that {Kn(x1), . . . , Kn(xm)} is (ε/3)-dense in Kn(B). Hence, for every y ∈ B, there is j with ‖Kn(y) −
Kn(xj)‖ < ε/3, so

‖K(y) − K(xj)‖ ≤ ‖K(y) − Kn(y)‖ + ‖Kn(y) − Kn(xj)‖ + ‖Kn(xj) − K(xj)‖ <
ε

3
+

ε

3
+

ε

3
= ε.

Hence, {K(x1), . . . , K(xm)} is ε-dense in K(B). Therefore, K(B) is totally bounded.

(i) Let K be compact and U be the closed unit ball of X, then K(U ) = K(B) is compact in Y. Let {yn} be
a sequence in Y ∗ with ‖yn‖ ≤ 1. Since for every x, z ∈ K(U ), |yn(x) − yn(z)| ≤ ‖yn‖‖x − z‖ ≤ ‖x− z‖, the
functions yn are equicontinuous in C(K(U ), K). By the Arzela-Ascoli theorem, there is a subsequence {yni}
convergent in C(K(U ), K). Since K∗yni = yni ◦ K, the sequence {K∗yni} converges uniformly on U. Since
norm of T in X∗ is sup-norm of T on U, K∗yni converges in X∗. Hence K∗ is compact.

Conversely, K∗ compact implies K∗∗ is compact, which implies K = K∗∗|X is compact.

From property (h), we know the limit of finite rank operators is compact. This raised the question of
whether compact operators are always limit of finite rank operators or not. In the case Y = X is a Hilbert
space, it is true and will be shown in the next chapter. Below we will prove it for a separable Hilbert space
with the help of the following theorem.

Theorem. If K ∈ L(X, Y ) is compact, then K is completely continuous, i.e. for every {xn} w-converges to
x in X, Kxn norm-converges to Kx in Y. For reflexive X, the converse is true.

Proof. For the first statement, assume Kxn does not converge to Kx. Then there are ε > 0 and subsequence
{xnk} such that ‖Kxnk − Kx‖ ≥ ε. Since {xnk} w-converges to x, by the uniform boundedness principle,
{xnk} is bounded. By compactness of K, there is a subsequence xnkj

such that Kxnkj
norm-converges

(hence also w-converges) to some z. Since ‖z − Kx‖ = lim
j→∞

‖Kxnkj
− Kx‖ ≥ ε, z 6= Kx. Since xn−→w x, for

every f ∈ Y ∗, we have K∗(f) ∈ X∗ and f(Kxnkj
− Kx) = K∗(f)(xnkj

− x) → 0, i.e. Kxnkj
w-converges to

Kx. This leads to Kx = z, a contradiction.

For the second statement, since X is reflexive, if K is completely continuous, then for every bounded
sequence {xn} in X, by the Eberlein-Smulian theorem, there is a subsequence {xnk} w-converges to some y.
Then {Kxnk} converges to Ky by complete continuity of K. Therefore, K is compact.

Theorem. Let H be a separable Hilbert space and K ∈ L(H) be a compact operator. Then K is the limit of
a sequence of finite rank operators in L(H) under the norm topology.

Proof. For K with finite rank, take every term to be K. For compact K, not finite rank, by property
(g) of compact operators, ran K is separable. Let {y1, y2, y3, . . .} be an orthonormal basis of ran K and

Pnx =
n∑

j=1

(x, yj)yj be the projection onto span{y1, . . . , yn}. Then ‖Pn‖ = 1 = ‖I − Pn‖. For 1 ≤ m ≤ n,

ran Pn ⊇ ran Pm implies PnPm = Pm and so (I − Pn)(I − Pm) = I − Pn − Pm + PnPm = I − Pn. Then

‖K − PnK‖ = ‖(I − Pn)K‖ = ‖(I − Pn)(I − Pm)K‖ ≤ ‖(I − Pm)K‖ = ‖K − PmK‖.
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Hence ‖K − PnK‖ → η ∈ [0, +∞). Assume its limit is η > 0. Then for every n, there is xn ∈ H such that
‖xn‖ = 1 and ‖(I − Pn)Kxn‖ > η/2. By the Eberlein-Smulian theorem, since Hilbert spaces are reflexive,
{xn} has a subsequence {xnk} converges weakly to some x. By the last theorem, Kxnk converges in norm
to u = Kx. Now Pnu converges to u in norm. Then

η/2 < ‖(I − Pnk)Kxnk‖ ≤ ‖(I − Pnk)(Kxnk − u)‖ + ‖(I − Pnk)u‖ ≤ ‖Kxnk − u‖ + ‖u − Pnku‖ → 0,

a contradiction. Therefore, ‖K − PnK‖ → η = 0 and PnK is finite rank.

Definition. (1) A Banach space Y has the approximation property iff for every Banach space X, every
compact operator in L(X, Y ) is the limit of a sequence of finite rank operators in L(X, Y ).

(2) A sequence {xn} in a Banach space Y is a Schauder basis of Y iff for every y ∈ Y, there is a unique

sequence {cn} of scalars such that y =
∞∑

n=1

cnxn. (Such spaces are clearly separable.)

Remarks. It is known that if Y has a Schauder basis, then Y has the approximation property (see [M],
p. 364) and in particular, every compact operator in L(Y ) is the limit of a sequence of finite rank operators in
L(Y ). See [CL], pp. 212-213. In 1932, Banach conjectured that every Banach space Y has the approximation
property and further conjectured that every separable Banach space has a Schauder basis. On November
6, 1936, Mazur offered a goose as a prize for a solution of these problems in (problem 153 of) the famous
“Scottish book” of open problems kept at the Scottish Coffee House in Lwów, Poland by Banach, Mazur,
Ulam and other mathematicians.

In 1955, A. Grothendieck proved that Y has the approximation property iff for every compact subset
W of Y and every ε > 0, there is a finite rank operator T ∈ L(Y ) such that for all y ∈ W, ‖Ty − y‖ < ε.
Thus to check the approximation property, there is no need to involve other Banach spaces X. Separable
Hilbert spaces, c0 and `p (1 ≤ p < ∞) have the approximation property.

Finally, in 1971, Swedish mathematician and pianist Per Enflo showed that there is a separable reflexive
Banach space Y and a compact operator in L(Y ) that is not the limit of any sequence of finite rank operators
in L(Y ). This refuted both conjectures. About a year after solving the problem, Enflo traveled to Warsaw
to give a lecture on his solution, after which he was awarded the goose. Enflo’s solution was published in
Acta Mathematica, vol. 130 (1973), pp. 309-317.

Next we will look at theorems about compact operators, which are useful for differential equations.

Lemma (Riesz-Fredholm). If K ∈ L(X) is compact and c 6= 0, then N = ker(K−cI) is finite dimensional
and M = ran(K − cI) is closed and finite codimensional (i.e. codim M = dim(X/M ) < ∞).

Proof. For N, by property (f), K|N is compact. Also, K|N = cI is invertible. By property (e), N is finite
dimensional. Next, M⊥ = ker(K∗ − cI) is finite dimensional by property (i) and last sentence. If we can
show M is closed, then (X/M )∗ = M⊥ is finite dimensional and hence ∞ > dim(X/M )∗ = dim(X/M )∗∗ ≥
dim(X/M ) = codim M. Let Z be a complementary subspace of N = ker(K − cI). Since Z ∩ N = {0},
S = (K − cI)|Z : Z → X is injective. To show M is closed, since M = ran(K − cI) = ran S, by the lower
bound theorem, it suffices to show S is bounded below.

Assume S is not bounded below. Then there is zn ∈ Z, ‖zn‖ = 1 and S(zn) → 0. Since K is compact,
passing to a subsequence, we may assume K(zn) → w. Then zn = (K −S)(zn)/c → w/c, which is in Z as Z
is closed. As ‖zn‖ = 1, so ‖w‖ = |c| 6= 0. Also, K(zn) → K(w/c). By the uniqueness of limit, w = K(w/c).
Then w ∈ ker(K − cI) ∩ Z = {0}, contradicting ‖w‖ 6= 0.

Theorem (Riesz-Fredholm). Let K ∈ L(X) be compact, c 6= 0, Ni = ker(K−cI)i and Mi = ran(K−cI)i.

(a) K(Ni) ⊆ Ni and dimNi < ∞. N1 ⊆ N2 ⊆ N3 ⊆ · · · and there is a least j such that Nj = Nj+1 =
Nj+2 = · · · .
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(b) K(Mi) ⊆ Mi, Mi is closed and codimMi < ∞. M1 ⊇ M2 ⊇ M3 ⊇ · · · and there is a least k such that
Mk = Mk+1 = Mk+2 = · · · .

(c) j = k and X = Mj ⊕Nj. Also, (K − cI)|Mj ∈ L(Mj ) is invertible and (K − cI)|Nj ∈ L(Nj) is nilpotent
of index j (i.e. (K − cI)|j−1

Nj
6= 0, but (K − cI)|jNj

≡ 0.)

(d) dimker(K − cI) = codim ran(K − cI) = dimker(K∗ − cI) = codim ran(K∗ − cI) < ∞. In particular,
K − cI is injective iff K − cI is surjective iff K∗ − cI is injective iff K∗ − cI is surjective.

Proof. (a) Observe that z ∈ Ni implies (K −cI)i(Kz) = K(K−cI)i(z) = 0 (i.e. Kz ∈ Ni). So K(Ni) ⊆ Ni.

Next, K compact implies T = (K − cI)i − (−c)iI compact. So Ni = ker(K − cI)i = ker(T + (−c)iI) is
finite dimensional by the lemma.

For all i > 1, Ni−1 ⊆ Ni because (K − cI)i−1(x) = 0 implies (K − cI)i(x) = 0. Assume Ni−1 ⊂ Ni for
all i > 1. Then Ni/Ni−1 6= {0}. we may pick xi ∈ Ni with ‖xi‖ ≤ 2 and ‖xi + Ni−1‖ = 1. (This is possible
by taking x + Ni−1 ∈ Ni/Ni−1 with ‖x + Ni−1‖ = 1, then there is y ∈ Ni−1 such that ‖x + y‖ ≤ 2 and we
can let xi = x + y, then xi + Ni−1 = x + Ni−1.) If i < j, then xi ∈ Ni implies Kxi ∈ Ni and

Kxj − Kxi = cxj + (Kxj − cxj) − Kxi ∈ cxj + Nj−1 + Ni = cxj + Nj−1 = c(xj + Nj−1).

So ‖Kxj −Kxi‖ ≥ ‖c(xj +Nj−1)‖ = |c| > 0. Then {Kxi} has no convergent subsequence, contradicting K is
compact. Therefore, there is a least j such that Nj = Nj+1. Since x ∈ Nj+2 implies (K − cI)x ∈ Nj+1 = Nj,
which implies x ∈ Nj+1, so Nj+1 = Nj+2 and so on.

(b) Observe that K compact implies T = (K − cI)i − (−c)iI compact and Mi = ran(K − cI)i = ran(T +
(−c)iI) is closed by the lemma. The rest is similar to (a).

(c) To show j = k, suppose a ∈ Nk+1, i.e. (K − cI)k+1(a) = 0. Take m > 0 such that m + k ≥ j.
Since (K − cI)k(a) ∈ Mk = Mm+k , we have (K − cI)k(a) = (K − cI)m+k(b) for some b ∈ X. Since
Nj = · · · = Nm+k = Nm+k+1, so 0 = (K − cI)k+1(a) = (K − cI)m+k+1(b) = (K − cI)m+k(b) = (K − cI)k(a).
So Nk+1 = Nk. By minimality of j, we get j ≤ k (or more precisely, jK ≤ kK for every compact K).

For the converse, as N⊥
i = (ker(K − cI)i)⊥ = ran(K∗ − cI)i

w∗
= ran(K∗ − cI)i = ran(K∗ − cI)i by the

closed range theorem, so Ni 6= Ni+1 for i < kK∗ . This implies kK∗ ≤ jK . Similarly, ⊥(ker(K∗ − cI)i) =
ran(K − cI)i = ran(K − cI)i implies kK ≤ jK∗ . So kK ≤ jK∗ ≤ kK∗ ≤ jK . Therefore, the j, k for K and K∗

are all equal.

Next, we show X = Mj ⊕Nj. Let x ∈ X. Since (K − cI)j(x) ∈ Mj = M2j, (K − cI)j(x) = (K − cI)2j(y)
for some y ∈ X. Write x = (K − cI)j(y) + z. Then (K − cI)j (z) = (K − cI)j(x) − (K − cI)2j(y) = 0,
i.e. z ∈ Nj . So X = Mj + Nj . Next for r ∈ Mj ∩ Nj , there is s ∈ X such that r = (K − cI)j(s) and
0 = (K − cI)j(r) = (K − cI)2j(s). Then s ∈ N2j = Nj . So r = (K − cI)j(s) = 0. Therefore, X = Mj ⊕ Nj .

Next we show (K−cI)|Mj : Mj → Mj is injective and surjective. For x ∈ ker(K−cI)|Mj , there is y such
that x = (K − cI)j(y) ∈ Mj and (K − cI)x = 0. Then y ∈ Nj+1 = Nj so that x = (K − cI)j(y) = 0. Hence,
(K − cI)|Mj is injective. Also, for z ∈ Mj = Mj+1, we have z = (K − cI)j+1(w) = (K − cI)(K − cI)j(w) for
some w and so z ∈ ran(K − cI)|Mj . Hence, (K − cI)|Mj is surjective. Therefore, (K − cI)|Mj is invertible.

Finally, since Nj−1 ⊂ Nj, there is x ∈ Nj \ Nj−1. So (K − cI)|j−1
Nj

(x) 6= 0. By definition of Nj,

(K − cI)|jNj
≡ 0. So (K − cI)|Nj is nilpotent of index j.

(d) By (c), X = Mj ⊕ Nj . For the left equality, we have

∞ > dimker(K − cI) = dimker(K − cI)|Nj = codim ran(K − cI)|Nj = codim ran(K − cI), (1)

where the invertibility of (K − cI)|Mj is used in the first and third equalities and dimNj < ∞ is used in
the second equality. Similarly, dimker(K∗ − cI) = codim ran(K∗ − cI) < ∞. For the middle equality, by the
kernel-range relations and the duality theorem,

ker(K∗ − cI) = ker(K − cI)∗ = (ran(K − cI))⊥ = (X/ ran(K − cI))∗. (2)
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By (1), ∞ > codim ran(K − cI) = dim(X/ ran(K − cI)) = dim(X/ ran(K − cI))∗ = dim ker(K∗ − cI), where
the last equality is by (2).

The following theorem of Riesz and Schauder on the spectrums of compact operators together with the
Riesz-Fredholm theorem provided our understanding to the Sturm-Liouville boundary value problems.

Theorem (Riesz-Schauder). Let K ∈ L(X) be compact.

(a) If dimX = ∞, then 0 ∈ σ(K). If c ∈ σ(K) and c 6= 0, then c is an eigenvalue of K and K∗ of finite
multiplicities (i.e. the dimensions of the spaces of eigenvectors are finite).

(b) σ(K) is a countable compact set and 0 is the only possible limit point of σ(K).

Proof. (a) If 0 6∈ σ(K) (i.e. K is invertible), then by property (e), dimX < ∞. The contrapositive asserts
that if dimX = ∞, then 0 ∈ σ(K).

Next, if c ∈ σ(K) \ {0}, then K − cI is either not injective or not subjective. By part (d) of the
Riesz-Fredholm theorem, 0 < dimker(K − cI) = dimker(K∗ − cI) < ∞. Therefore, c is an eigenvalue of K
and K∗ of finite multiplicities.

(b) For c ∈ σ(K) \ {0}, by part (c) of the Riesz-Fredholm theorem, A = (K − cI)|Mj is invertible. By the
lemma on inverses, for |z − c| < ‖A−1‖−1, we know (K − zI)|Mj = A − (z − c)I is invertible.

Also, by part (c) of the Riesz-Fredholm theorem, T = (K − cI)|Nj is nilpotent of index j, i.e. T j ≡ 0.
Observe that for α 6= 0, (T −αI)−1 = −α−j(T j−1+αT j−2+· · ·+αj−1I). Hence σ(T ) = {0}. Then, for z 6= c,
(K − zI)|Nj = T − (z − c)I is invertible. So for 0 < |z− c| < ‖A−1‖−1, K − zI is invertible on X = Mj ⊕Nj ,
i.e. z 6∈ σ(K). Hence c is an isolated point in σ(K). For n = 1, 2, 3, . . . , the set Sn = σ(K) ∩ {z : |z| ≥ 1/n}
is finite (otherwise, by the Bolzano-Weierstrass theorem, Sn has a limit point c, which cannot be isolated).
Therefore, σ(K) \ {0} = S1 ∪ S2 ∪ S3 ∪ · · · is countable and 0 is the only possible limit point of σ(K).

In the beginning of the twentieth century, Fredholm inspired many mathematicians to investigate integral
equations. These works led to the solutions of the Neumann and Dirichlet problems by single and double layer
potential methods (see Folland’s Introduction to Partial Differential Equations, Chapter 3). The integral

equations were mostly of the form
∫ b

a

G(s, t)x(t) dt− cx(s) = y(s). In case G and x are continuous, the

first term on the left is a compact operator. The studies on these equations led to the theory of compact
operators. The following were the results obtained for these equations.

Corollary (Fredholm Alternatives). Let X be a Banach space, K ∈ L(X) be compact and c 6= 0. Either
(a) K − cI is invertible or (b) 0 < dim ker(K − cI) < ∞.

If (a) holds, then K∗ − cI is invertible. If (b) holds, then 0 < dimker(K − cI) = dimker(K∗ − cI) < ∞.

Furthermore, there exists x ∈ X such that (K − cI)x = y if and only if y ∈ ⊥(ker(K∗ − cI)). Also, there
exists x∗ ∈ X∗ such that (K∗ − cI)x∗ = y∗ if and only if y∗ ∈ (ker(K − cI))⊥.

Proof. By part (d) of the Riesz-Fredholm theorem, 0 ≤ dimker(K − cI) = codimran(K − cI) < ∞.
Alternative (a) is the case 0 = dimker(K − cI) = codim ran(K − cI). Alternative (b) is the case 0 <
dimker(K − cI) < ∞.

If (a) holds, then 0 = dimker(K∗ − cI) = codimran(K∗ − cI). If (b) holds, then 0 < dim ker(K − cI) =
dimker(K∗ − cI) < ∞.

The furthermore statement follows as ran(K−cI) = ran(K − cI) = ⊥(ker(K∗−cI)) and ran(K∗−cI) =

ran(K∗ − cI) = ran(K∗ − cI)
w∗

= (ker(K − cI))⊥ by using the closed range theorem and the kernel-range
relations.
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In ordinary differential equation, the Sturm-Liouville boundary value problems (see Boyce and DiPrima’s
Elementary Differential Equations and Boundary Value Problems, Chapter 11) are important. It is well-
known that the corresponding Sturm-Liouville operators have real eigenvalue sequence tending to infinity.
Being unbounded operators, when they are injective, it is known (see Gohberg, Goldberg and Kaashoek’s
Basic Classes of Linear Operator, Chapter 6) to have inverses, which are compact integral operators.

One of the most important problems in operator theory is to determine if every operator T ∈ L(X) has
a nontrivial closed invariant subspace M (i.e. {0} ⊂ M ⊂ X and T (M ) ⊆ M ). For X = `1, Enflo proved
that there exists operators without nontrivial closed invariant subspaces. The case X is a Hilbert space is
still open. For compact operators, not only do they have nontrivial closed invariant subspaces, but we also
have the following stronger results.

Lomonosov’s Theorem. Let X be an infinite dimensional Banach space over C and K be a nonzero
compact operator. Then there exists a closed subspace M of X such that {0} ⊂ M ⊂ X and for every
T ∈ L(X) commuting with K (i.e. satisfying TK = KT ), we have T (M ) ⊆ M. Such a closed subspace M is
called a nontrivial hyperinvariant subspace of K.

Proof. (Due to H. M. Hilden) Let Γ = {S ∈ L(X) : SK = KS}, which is called the commutant of K. For
every y ∈ X, Γy = {Sy : S ∈ Γ} is a closed subspace of X which contains I(y) = y. If y 6= 0, then {0} ⊂ Γy.
Also, for all T, S ∈ Γ, since TSK = TKS = KTS implies TS ∈ Γ, we get T (Γy) ⊆ Γy.

If there is a y 6= 0 such that Γy ⊂ X, then M = Γy is a nontrivial hyperinvariant subspace of K.

Otherwise, Γy = X for all y 6= 0. Since K 6= 0, there exists x0 ∈ X \ {0} such that Kx0 6= 0. Since
K is bounded, K−1(B(Kx0, ‖Kx0‖/2)) is an open set containing x0. Then for some r > 0, B = B(x0, r)
is inside B(x0, ‖x0‖/2) ∩ K−1(B(Kx0, ‖Kx0‖/2)). So for all x ∈ B, ‖x − x0‖ < r ≤ ‖x0‖/2, which implies
‖x‖ ≥ ‖x0‖−‖x− x0‖ ≥ ‖x0‖/2 > 0. Then 0 6∈ B. Similarly, for all x ∈ B, ‖Kx−Kx0‖ < ‖Kx0‖/2 implies
‖Kx‖ ≥ ‖Kx0‖ − ‖Kx − Kx0‖ ≥ ‖Kx0‖/2 > 0. Then 0 6∈ K(B).

For every y ∈ K(B), since Γy = X, hence {Sy : y ∈ Γ} is dense in X, there is some Sy ∈ Γ such that
Sy(y) ∈ B. Then Wy = S−1

y (B) is open and contains y. Since {Wy : y ∈ K(B)} is an open cover of K(B),
there are Wy1 , . . . , Wyn such that K(B) ⊆ Wy1 ∪ · · · ∪ Wyn . For simplicity, write Wi for Wyi and Si for Syi .
Since Si(Wi) ⊆ B and 0 6∈ B, Si 6= 0. So d = max{‖S1‖, . . . , ‖Sn‖} > 0.

Recall x0 is the center of B. “Now Kx0 ∈ K(B). So there are Si1 and Wi1 such that Kx0 ∈ Wi1 ,
Si1Kx0 ∈ Si1(Wi1 ) ⊆ B and KSi1Kx0 ∈ K(B). So there are Si2 and Wi2 such that KSi1Kx0 ∈ Wi2

so that Si2KSi1Kx0 ∈ B.” Inductively, for every positive integer j, there is xj = Sij K · · ·Si1Kx0 =
Sij · · ·Si1K

jx0 ∈ B. Hence, dj‖Kj‖‖x0‖ ≥ ‖xj‖ ≥ ‖x0‖ − ‖xj − x0‖ ≥ ‖x0‖/2. By the Gelfand-Mazur
theorem, r(K) = lim

j→∞
‖Kj‖1/j ≥ 1/d > 0. Then σ(K) contains some c 6= 0.

By the Riesz-Fredholm Lemma, c is an eigenvalue of K. Then M = ker(K − cI) = {v ∈ X : Kv = cv}
is finite dimensional. Hence, M is a closed subspace satisfying {0} ⊂ M ⊂ X. For every T ∈ Γ and v ∈ M,
we have KTv = TKv = T (cv) = cTv, which implies T (M ) ⊆ M. So, M is hyperinvariant.

Remark. In fact, Lomonosov proved a even stronger result, namely if A 6= 0 commutes with B 6= 0, which
commutes with a nonzero compact operator, then A has a nontrivial closed invariant subspace.

Appendix : Fredholm Operators

In this appendix, we study a special class of operators, for which we can associate an index that has
deep connections with elliptic differential operators on manifolds. In the 1960s, Atiyah and Singer proved a
theorem connecting this analytic index on some differential operators to a topological index on a manifold
that generalized the winding number of a closed curve around a point. The famous Atiyah-Singer index
theorem was a great achievement in the 20th century mathematics. We recommend Booss and Bleecker’s
book Topology and Analysis for an understanding of this theorem.
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Definitions. For Banach spaces X and Y, T ∈ L(X, Y ) is a Fredholm operator iff (ran T is closed,)
dimker T < ∞ and codimran T < ∞. For a Fredholm operator, the index of T is ind T = dimker T −
codimran T. In some literatures, the cokernel of T is defined to be coker T = Y/(ran T ) and in that case,
ind T = dimker T − dimcoker T.

Theorem. If Y/ ran T is finite dimensional as a vector space, then ran T is closed. So the condition ran T
is closed is unnecessary in the definition of Fredhom operators.

Proof. Let W be a finite dimensional vector subspace of Y such that ran T ∩W = {0} and ran T + W = Y.
Then (X/ ker T ) ⊕ W is a Banach space. Define f : (X/ ker T ) ⊕ W → Y by f([x], w) = Tx + w. Since
T̂ : X/ ker T → ran T is an isomorphism, f = T̂ ⊕ I is bijective and continuous. Then f−1 is continuous.
Since (X/ ker T ) ⊕ {0} is complete, hence closed, ran T = f((X/ ker T ) ⊕ {0}) is closed.

Examples. (1) If T : X → Y is invertible, then T is Fredholm with ker T = {0}, ran T = Y and so indT = 0.

(2) If T0 : X0 → Y0 and T1 : X1 → Y1 are Fredholm, then T0 ⊕ T1 : X0 ⊕ X1 → Y0 ⊕ Y1 is Fredholm with
ker(T0 ⊕ T1) = (ker T0) ⊕ (ker T1), ran(T0 ⊕ T1) = (ran T0) ⊕ (ran T1) and so ind(T0 ⊕ T1) = ind T0 + ind T1.

(3) If K ∈ L(X) is compact and c 6= 0, then K − cI is Fredholm and ind(K − cI) = 0 by the Riesz-Fredholm
lemma and theorem. (It is proved below that an operator is Fredholm with index 0 iff it is the sum of an
invertible operator and a compact (in fact, finite rank) operator.)

(4) The unilateral shift S on `2 defined by S(c0, c1, c2, . . .) = (0, c0, c1, c2, . . .) is Fredholm with ind S =
dimker S − codim ran S = 0 − 1 = −1. The backward shift S∗ on `2 defined by S∗(c0, c1, c2, . . .) =
(c1, c2, c3, . . .) is also Fredholm with ind S∗ = dimker S∗ − codimran S∗ = 1 − 0 = 1. (It is proved be-
low that indT ∗ = − ind T.) Also, Sn and (S∗)n are Fredholm with ind(Sn) = −n and ind((S∗)n) = n.

(5) If T ∈ L(X, Y ), dimX < ∞ and dimY < ∞, then T is Fredholm. Since codim ran T = dim(Y/ ran T ) =
dimY − dimran T and dimker T + dimran T = dimX, so ind T = dimX − dimY.

Theorem (Atkinson). Let T ∈ L(X, Y ). The following are equivalent:

(a) T is Fredholm,

(b) there is S ∈ L(Y, X) such that I − TS and I − ST are finite rank (S is called a Fredholm inverse of T ).

(c) there are S, S′ ∈ L(Y, X) such that I − TS and I − S′T are compact.

Proof. (a) ⇒ (b) Since dimker T < ∞, there exists a projection P ∈ L(X) with ran P = ker T. Since
codimran T < ∞, there exists a projection Q ∈ L(Y ) with ran Q = ran T. Let Z = ran(I −P ) = ker P. From
X = ran P ⊕ ran(I − P ) = ker T ⊕ Z, we see T0 = T |Z : Z → ran T is injective (as ker T ∩ Z = {0}) and
surjective (as T (X) = T (ker T ⊕ Z) = T (Z)). By the inverse mapping theorem, T0 is invertible.

Let S = T−1
0 Q : Y → Z ⊆ X. We first check QT = T0(I − P ). (For all x ∈ X, Tx ∈ ran Q. So

QTx = Tx = T (Px + (I − P )x) = T0

(
(I − P )x

)
.) So we have ST = T−1

0 QT = T−1
0 T0(I − P ) = I − P and

TS = TT−1
0 Q = ToT

−1
o Q = Q = I − (I − Q). Now dimran(I − ST ) = dimran P = dimker T < ∞ and

dimran(I − TS) = dimran(I − Q) = codimran Q = codim ran T < ∞.

(b) ⇒ (c) Let S′ = S. Finite rank operators are compact.

(c) ⇒ (a) TS = I+K for some compact operator K ∈ L(Y ). By the Riesz-Fredholm lemma, ran TS = ran(I+
K) is closed and codim ran TS = codimran(I + K) < ∞. Also, since ran TS ⊆ ran T ⊆ Y, codim ran T < ∞.
By the theorem following the definition of Fredhom operators, ran T is closed.

Next S′T = I + L for some compact operator L ∈ L(X). Since dim ker S′T = dimker(I + L) < ∞ and
ker T ⊆ ker S′T, we get dimker T < ∞. Therefore, T is Fredholm.

Definition. Let K(X) be the set of all compact operators on X. By the properties of compact operators,
we see K(X) is a closed two-sided ideal in L(X). Then L(X)/K(X) is a Banach algebra with [T ][S] =
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(T + K(X))(S + TK(X)) = TS + K(X) = [TS]. (Let Kn, Ln ∈ K(X) satisfy ‖T − Kn‖ → ‖[T ]‖ and
‖S − Ln‖ → ‖[S]‖. Then

‖[TS]‖ = inf{‖TS − K‖ : K ∈ K(X)} ≤ liminf
n→∞

‖TS − TLn − KnS + KnLn‖

≤ lim
n→∞

‖T − Kn‖‖S − Ln‖ = ‖[T ]‖‖[S]‖.)

We called L(X)/K(X) the Calkin algebra on X.

Theorem (Properties of Fredholm Operators). (a) T ∈ L(X) is Fredholm iff [T ] = T + K(X) is
invertible in L(X)/K(X).

(b) If T ∈ L(X, Y ) is Fredholm and K ∈ L(X, Y ) is compact, then T + K is Fredholm.

(c) If T ∈ L(X, Y ) is Fredholm and S ∈ L(Y, X) is a Fredholm inverse of T , then S is Fredholm.

(d) If T ∈ L(X, Y ) is Fredholm, then T ∗ ∈ L(Y ∗, X∗) is Fredholm with indT ∗ = − ind T.

Proof. (a) If T is Fredholm, then let S be a Fredholm inverse of T. We have [T ][S] − [I] = [TS − I] =
[0] = [ST − I] = [S][T ] − [I]. So [T ][S] = [I] = [S][T ]. Conversely, if [S] = [T ]−1 ∈ L(X)/K(X), then
[I −TS] = [0] = [I −ST ] implies I −TS and I −ST are compact. So T is Fredholm by Atkinson’s theorem.

(b) By (b) of Atkinson’s theorem, there is S ∈ L(Y, X) such that I − TS and I − ST are finite rank. Then
I − (T + K)S = (I − TS) − KS and I − S(T + K) = (I − ST ) − SK are compact, which implies T + K
Fredholm by Atkinson’s theorem.

(c) Observe that S has T as a Fredholm inverse. By Atkinson’s theorem, S is Fredholm.

(d) By the closed range theorem, ran T closed implies ran T ∗ closed and w∗-closed. Since ker T and Y/ ranT
are finite dimensional, by the kernel-range relations and the duality theorem,

dimker T ∗ = dim(ran T )⊥ = dim(Y/ ranT )∗ = dim(Y/ ran T ) = codim ran T < ∞,

codim ran T ∗ = codimran T ∗w∗

= codim(ker T )⊥ = dim(X∗/(ker T )⊥) = dim(ker T )∗ = dimker T < ∞.

Then ind T ∗ = dim ker T ∗ − codimran T ∗ = codimran T − dimker T = − ind T.

Lemma 1. If T ∈ L(X, Y ) is Fredholm and M is a closed subspace of X, then T (M ) is closed in Y.

Proof. As dimker T < ∞, it has a complementary subspace W so that X = ker T ⊕W. Now ker T ∩W = {0}
implies T |W is injective. Also ran T |W = ran T is closed, hence complete. By lower bound theorem, T |W is
bounded below. Hence T maps closed subspaces of W to complete (hence closed) subspaces of Y.

If M is a closed subspace of X, then M + ker T is a closed subspaces of X because letting πM :
X → X/M be the quotient map, dim πM(ker T ) ≤ dimker T < ∞ implies πM(ker T ) is closed in X/M
and so π−1

M (πM(ker T )) = M + ker T is closed. Next, T (M + ker T ) = T ((M + ker T ) ∩ W ) because every
x ∈ M+ker T ⊆ X = ker T⊕W is of the form t+w, where t ∈ ker T and w ∈ W, so x−t = w ∈ (M+ker T )∩W
and T (x) = T (w). Therefore, T (M ) = T (M + ker T ) = T

(
(M + ker T ) ∩ W

)
is a closed subspace of Y.

Lemma 2. If F is a subspace of X with finite codimension, E0 is a subspace of X such that E0 ∩F = {0},
then there is a closed subspace E ⊇ E0 such that E ⊕ F = X.

Proof. For the quotient map π : X → X/F, we have ker π = F. Since E0 ∩ F = {0}, so π|E0 is injective.
Take a basis B = {x1, . . . , xi} of E0. Then π(B) is a basis of π(E0). Since dim(X/F ) < ∞, we can extend
π(B) to a basis W = {x1 + F, . . . , xn + F} of X/F for some n ≥ i. Let E = span{x1, . . . , xn}. Then E
contains E0. Now dimE < ∞ implies E is complete, hence closed. Also, W linearly independent implies
E ∩F = {0} because c1x1 + · · ·+ cnxn ∈ E ∩F implies c1(x1 + F ) + · · ·+ cn(xn + F ) = 0 + F, which forces
all ci = 0 by linear independence of W. Also, X/F = span W implies E + F = X. Therefore, E ⊕ F = X.
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Multiplication Theorem. If T ∈ L(X, Y ) is Fredholm and S ∈ L(Y, Z) is Fredholm, then ST is Fredholm
with ind(ST ) = ind S + ind T.

Proof. (Due to Donald Sarason) In the finite dimensional case (i.e. dimX, dimY, dimZ < ∞), by example
5, ST is Fredholm and ind(ST ) = dimX − dimZ = dimX − dimY + dimY − dimZ = ind S + indT.

Otherwise, by lemma 1, ran ST = S(ran T ) is closed. Now dimker ST =dimT−1(ker S) ≤ dimker S +
dimker T < ∞ and codimran ST = codimS(ran T ) ≤ codimran S + codimran T < ∞. So ST is Fredholm.

To get ind(ST ) = indS + indT, it suffices to decompose X = X0 ⊕ X1, Y = Y0 ⊕ Y1, Z = Z0 ⊕ Z1 with
dimX0, dimY0, dimZ0 < ∞. Also, decompose T = T |X0 ⊕T |X1 , S = S|Y0 ⊕S|Y1 , where T |Xi : Xi → Yi and
S|Yi : Yi → Zi, with T |X1 and S|Y1 invertible.

Once these are done, we can finish as follow: ST |Xi = S|Yi ◦T |Xi : Xi → Zi and ST |X1 is invertible. By
examples 1 and 2, ind S = indS|Y0 , indT = ind T |X0 and ind(ST ) = ind(ST |X0 ). From the finite dimensional
case, ind(ST |X0 ) = ind(S|Y0 ) + ind(T |X0), which gives ind(ST ) = ind S + indT.

Now we begin the decompositions. Let X0 = ker ST. From above, dimX0 < ∞. So there is a closed
subspace X1 such that X0 ⊕X1 = X. By lemma 1, Y1 = TX1 is closed in Y. Since ker T ⊆ ker ST = X0, so
ker T∩X1 = {0} and T |X1 : X1 → TX1 = Y1 is invertible. Now ran T = TX0⊕TX1 and dim(ran T/TX1) =
dimTX0 ≤ dim X0 < ∞ imply

codim Y1 = dim(Y/TX1) = dim(Y/ ran T ) + dim(ran T/TX1) ≤ codim ran T + dimX0 < ∞. (∗)

Next ker S ∩ Y1 = ker S ∩ TX1 = {0} because Tx1 ∈ ker S for some x1 ∈ X1 implies x1 ∈ X1 ∩ X0 = {0}.
By lemma 2, there is a closed subspace Y0 ⊇ ker S such that Y0 ⊕ Y1 = Y. Then TX0 = T (ker ST ) =
T (T−1(ker S)) ⊆ ker S ⊆ Y0, i.e. T |X0 : X0 → Y0. Also dimY0 = dim(Y/Y1) = codimY1 < ∞ by (*). So
we have T = T |X0 ⊕ T |X1 .

By lemma 1, Z1 = SY1 is a closed subspace of Z. Since Y = Y0 ⊕Y1, ker S ⊆ Y0 and ker S ∩Y1 = {0},
so S|Y1 : Y1 → SY1 = Z1 is invertible. As in (*) above, codim Z1 ≤ codim ran S + dimY0 < ∞. (**)

Next SY0 ∩Z1 = SY0 ∩SY1 = {0} (because Sy0 = Sy1 for y0 ∈ Y0, y1 ∈ Y1 implies y0 − y1 ∈ ker S ⊆ Y0,
which implies y1 ∈ Y0 ∩ Y1 = {0}, then Sy0 = Sy1 = 0). By lemma 2, there is a closed subspace Z0 ⊇ SY0

such that Z0 ⊕ Z1=Z and S|Y0 : Y0 → Z0 . Also dimZ0 = codim Z1 < ∞ by (**). So S = S|Y0 ⊕ S|Y1 .

Corollary. If T ∈ L(X, Y ) is Fredholm and S ∈ L(Y, X) is a Fredholm inverse of T, then ind(S) = − ind(T ).

Proof. By property (c) of Fredholm operators, we know S is Fredholm. Now I −ST = K for some compact
operator K ∈ L(X). By example 3 and muliplication theorem, 0 = ind(I − K) = ind(ST ) = indS + ind T.
So indS = − ind T.

Perturbation Theorem. Let T ∈ L(X, Y ) be Fredholm. Then there is ε > 0 so that T + A is Fredholm
with ind(T + A) = ind T, where A ∈ L(X, Y ) with ‖A‖ < ε. (This implies the Fredholm operators form an
open set in L(X, Y ) and the index is continuous and constant on each connected component of that set.)

Proof. By Atkinson’s theorem, there exists S ∈ L(Y, X) such that K = I − TS and L = I − ST are finite
rank. Let ε = ‖S‖−1. Let A ∈ L(X, Y ) satisfy ‖A‖ < ε. As ‖AS‖ ≤ ‖A‖‖S‖ < 1, I + AS is invertible. Now

(T + A)S = I − K + AS = (I + AS) − K =
(
I − K(I + AS)−1

)
(I + AS).

Solving for K(I + AS)−1, we see I − (T + A)
(
S(I + AS)−1

)
= K(I + AS)−1 is compact. Similarly, I + SA

is invertible and I −
(
(I + SA)−1S

)
(T + A) = (I + SA)−1L is compact. So, by Atkinson’s theorem, T + A

is Fredholm. The last equation is the same as I − (I + SA)−1L = (I + SA)−1S(T + A). Taking index on
both sides, by example 3, multiplication theorem and example 1, we get 0 = 0 + ind S + ind(T + A). By the
corollary above, ind(T + A) = − ind S = ind T.
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Corollary. If T ∈ L(X, Y ) is Fredholm and K ∈ L(X, Y ) is compact, then ind(T + K) = ind T.

Proof. Since f(t) = ind(T +tK) is a continuous function on [0, 1] with integer value, it is a constant function.
In particular, ind(T + K) = f(1) = f(0) = ind(T ).

Theorem. Let A ∈ L(X, Y ). The following are equivalent.

(a) A is Fredholm with indA = 0,

(b) A = C + F, where C is invertible in L(X, Y ) and F is finite rank in L(X, Y ),

(c) A = B + K, where B is invertible in L(X, Y ) and K is compact in L(X, Y ).

Proof. (a)⇒(b) If indA = 0, then dimker A = codim ran A < ∞. Let Z be a complementary subspace of
ker A in X. Let W be a complementary subspace of ran A in Y. Let P ∈ L(X) be a projection such that
ran P = ker A is finite dimensional. Since dimW = codimran A = dimker A < ∞, there is an invertible
operator T : ker A → W.

Now A + TP is injective because (A + TP )(x) = 0 implies Ax = −TPx ∈ ran A ∩ W = {0}. Then
Ax = 0 implies x ∈ ker A = ran P so that Px = x and Tx = TPx = −Ax = 0. Since T is invertible, x = 0.

For surjectivity of A + TP, first observe that X = ker A ⊕ Z implies ran A = A(X) = A(Z). Next, P is
the projection onto ker A implies P (Z) = {0}. Also, TP (ker A) = TP (ran P ) = T (ran P ) = T (ker A) = W.
Then, A + TP is surjective since (A + TP )(ker A ⊕ Z) = TP (ker A) ⊕ A(Z) = W ⊕ ran A = Y.

Hence, A + TP is invertible. Since dimW < ∞, TP is finite rank. Then A = (A + TP ) − TP satisfies
the required conditions.

(b)⇒(c) Finite rank implies compactness.

(c)⇒(a) B +K is Fredholm follows by example 1 and property (b) of Fredholm operators. Also, by example
1 and the last corollary, ind(B +K) = ind(B) = 0. Alternatively, ind A = ind(B +K) = indB(I +B−1K) =
ind B + ind(I + B−1K) = 0 by the multiplication theorem, examples 1 and 3.
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Chapter 6. Basic Operator Facts on Hilbert Spaces.

§1. Adjoints. Throughout this chapter H, H1, H2 will denote Hilbert spaces over C. The inner product on
H will be denoted by ( , ). For every y ∈ H, the linear functional fy(x) = (x, y) is in H∗. Recall that the Riesz
representation theorem asserted that there is a bijection from H onto H∗ given by y 7→ fy . For all y, y′ ∈ H,
it satisfies ‖y‖ = ‖fy‖, fy+y′ = fy + fy′ . It may seem H∗ is isometric isomorphic to H. Unfortunately, for all
c ∈ K and y ∈ H, fcy = cfy. Keeping this in mind, we say there is a conjugate-linear isometric isomorphism
between H and H∗. By a slight abuse of meaning, it is popular to write H∗ = H, where fy is identified with
y. Alternatively, we can consider H∗ = Htwin, where cx in Htwin is cx in H. In particular, H is reflexive so
that the weak and weak-star topologies coincide.

Now for every T ∈ L(H1, H2) and y ∈ H2, the function g(x) = (Tx, y) is in H∗
1 . By the Riesz represen-

tation theorem, there exists a unique w ∈ H1 such that g(x) = (x, w). Define the adjoint of T ∈ L(H1, H2)
to be T ∗ ∈ L(H2, H1) given by T ∗y = w. So (Tx, y) = (x, T ∗y) for all x ∈ H1, y ∈ H2. Taking conjugate on
both sides, also (y, Tx) = (T ∗y, x).

Remarks. (1) For S, T ∈ L(H1, H2), S = T if and only if for all y ∈ H1, x ∈ H2, (x, Sy) = (x, Ty), which is
clear if we set x = Sy − Ty and get ‖Sy − Ty‖2 = 0. Hence T ∗∗ = T as (x, T ∗∗y) = (T ∗x, y) = (x, Ty).

(2) For T, S ∈ L(H1, H2) and c ∈ C, we have (T + S)∗ = T ∗ + S∗ and(cT )∗ = cT ∗ because (x, (T + S)∗y) =
((T + S)x, y) = (Tx, y) + (Sx, y) = (x, T ∗y) + (x, S∗y) = (x, (T ∗ + S∗)y) and (x, (cT )∗y) = (cTx, y) =
c(Tx, y) = c(x, T ∗y) = (x, cT ∗y).

(3) For T0 ∈ L(H0, H1) and T1 ∈ L(H1, H2), we have (T1T0)∗ = T ∗
0 T ∗

1 because (x, (T1T0)∗y) = (T1T0x, y) =
(T0x, T ∗

1 y) = (x, T ∗
0 T ∗

1 y). Also, T is invertible if (and only if) T ∗ is invertible with (T ∗)−1 = (T−1)∗.

In general, facts about Banach spaces also apply to Hilbert spaces and in some places where adjoints
will be needed, we need to do conjugations. For example, (T − cI)∗ = T ∗ − cI. So σ(T ∗) = {c : c ∈ σ(T )}
because c 6∈ σ(T ) iff T − cI is invertible iff (T − cI)∗ = T ∗ − cI is invertible iff c 6∈ σ(T ∗).

Definitions. (1) An involution on a Banach algebra B is a map from B to B sending every x ∈ B to some
x∗ ∈ B such that for every a, b ∈ B and c ∈ K, a∗∗ = a, (a + b)∗ = a∗ + b∗, (ca)∗ = ca∗ and (ab)∗ = b∗a∗.

(2) A C∗-algebra is a Banach algebra B with an involution such that for every x ∈ B, we have ‖x∗x‖ = ‖x‖2.
(Then ‖x∗‖ = ‖x‖ because ‖x‖2 = ‖x∗x‖ ≤ ‖x∗‖‖x‖ implies ‖x‖ ≤ ‖x∗‖ and from this, ‖x∗‖ ≤ ‖x∗∗‖ = ‖x‖.
Also, the involution operation is continuous since xn → x ⇐⇒ ‖x∗

n − x∗‖ = ‖xn − x‖ → 0 ⇐⇒ x∗
n → x∗.)

Theorem. For T ∈ L(H1, H2), we have ‖T ∗T‖ = ‖T‖2. (So L(H) is a C∗-algebra with adjoint as involution.)
Also, H1 = ker T ⊕ ran T ∗ and H2 = ker T ∗ ⊕ ran T .

Proof. Since ‖T ∗‖ = ‖T‖, so ‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2. Conversely, for ‖x‖ ≤ 1, ‖Tx‖2 = (Tx, Tx) =
(x, T ∗Tx) ≤ ‖T ∗Tx‖‖x‖ ≤ ‖T ∗T‖‖x‖2 ≤ ‖T ∗T‖, which implies ‖T‖2 ≤ ‖T ∗T‖. The last statement follows
from H = V ⊕ V ⊥ in a Hilbert space H with a subspace V and the formulas (ker T )⊥ = ran T ∗ and
(ker T ∗)⊥ = ran T .

In computations later, we will need to know if two operators are equal. The concept of numerical range
(in particular part (1) of the following theorem) will be useful in such situation.

Definitions. The numerical range of T ∈ L(H) is W (T ) = {(Tx, x) : ‖x‖ = 1}. The numerical radius of T
is sup{|(Tx, x)| : ‖x‖ = 1}.

Theorem. Let T, T0, T1 ∈ L(H).

(1) T = 0 iff W (T ) = {0}, i.e. (Tx, x) = 0 for all x ∈ H. T0 = T1 iff (T0x, x) = (T1x, x) for all x ∈ H.

(2) σ(T ) ⊆ W (T ) and if the distance from c to W (T ) is d > 0, then ‖(T − cI)−1‖ ≤ 1/d.

Proof. (1) T = 0 implies W (T ) = {0} is trivial. For the converse, W (T ) = {0} implies for all w ∈ H,
(Tw, w) = 0. For every x ∈ H, let y = Tx, then

‖Tx‖2 = (Tx, y) =
1
4

((
T (x + y), x + y

)
−

(
T (x− y), x− y

)
+ i

(
T (x + iy), x + iy

)
− i

(
T (x− iy), x− iy

))
= 0.
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(2) Let c 6∈ W (T ). Then the distance from c to W (T ) is d > 0. For ‖x‖ = 1, ‖(T − cI)x‖ ≥ |
(
(T − cI)x, x

)
| =

|(Tx, x) − c| ≥ d > 0 implies T − cI is bounded below. By the lower bound theorem, T − cI is injective
and has closed range. Assume ran(T − cI) is not dense. Then ker(T ∗ − cI) = (ran(T − cI))⊥ 6= {0}. So
there is ‖v‖ = 1 such that T ∗v = cv. Then c = (v, cv) = (v, T ∗v) = (Tv, v) ∈ W (T ), a contradiction. Hence
ran(T − cI) is dense. So T − cI is invertible and c 6∈ σ(T ). From T − cI bounded below, for ‖x‖ = 1, let
y = (T − cI)−1x, then ‖(T − cI)−1x‖ = ‖y‖ ≤ ‖(T − cI)(y)‖/d = ‖x‖/d = 1/d. So ‖(T − cI)−1‖ ≤ 1/d.

Exercise. Prove the Toeplitz-Hausdorff theorem that asserts for every Hilbert space H and T ∈ L(H),
W (T ) is convex.

Recall the projection theorem asserts that for every closed subspace M of H, every x ∈ H has a unique
decomposition x = y +z, where y ∈ M (is the closest point to x in M ) and z ∈ M⊥. The function PM : H →
M defined by PM (x) = y is a projection since P 2

Mx = PMy = y = PMx. Its kernel M⊥ and its range M are
orthogonal. If M 6= {0}, then ‖PM‖ = 1. Note PM⊥ = I−PM and ker PM = M⊥ = ran PM⊥ = ran(I−PM ).

Definition. A projection P ∈ L(H) is orthogonal iff ker P ⊥ ran P. In that case, P = PM , where M = ran P.

Theorem. For a nonzero projection P, (a) P is orthogonal, (b) P ∗ = P and (c) ‖P‖ = 1 are equivalent.

Proof. (a) ⇒ (b) P is orthogonal implies ran P ⊥ ran(I − P ). So, for all x ∈ H, 0 = (Px, (I − P )x) =
((I −P ∗)Px, x). So W ((I −P ∗)P ) = {0}. Hence, (I −P ∗)P = 0, i.e. P = P ∗P. So P ∗ = (P ∗P )∗ = P ∗P ∗∗ =
P ∗P = P.

(b) ⇒ (c) P ∗ = P implies ‖Px‖2 = (Px, Px) = (P ∗Px, x) = (P 2x, x) = (Px, x) ≤ ‖Px‖‖x‖. So ‖Px‖ ≤ ‖x‖
with equality if x ∈ ran P. Thus, ‖P‖ = 1.

(c) ⇒ (a) Assume P is not orthogonal. Then there is x ∈ ran P, y ∈ ker P such that ‖x‖ = 1 = ‖y‖
and (x, y) 6= 0. Replacing x by eiθx, we may assume (x, y) = −t < 0. Take z = x + ty. Then ‖z‖2 =
‖x‖2 + 2t(x, y) + t2‖y‖2 = 1 − t2 < 1 = ‖x‖2 = ‖Pz‖2, which implies ‖P‖ 6= 1, contradiction.

Remark. For an orthogonal projection P, in the last proof we saw (Px, x) = ‖Px‖2. This is useful.

Theorem (Sum of Orthogonal Projections). Let E, F be orthogonal projections with ranges Y, Z, re-
spectively. The following are equivalent:

(a) Y ⊥ Z, (b) E(Z) = {0}, (c) EF = 0, (d) F (Y ) = {0} and (e) FE = 0.

Also E + F is an orthogonal projection iff Y ⊥ Z, in which case ran(E + F ) = Y + Z is the closed linear
span of Y ∪ Z.

Proof. Y ⊥ Z ⇔ Z ⊆ Y ⊥ = ker E ⇔ E(Z) = E(ran F ) = {0} ⇔ E(Fx) = 0 for all x ∈ H ⇔ EF = 0.
Similarly Z ⊥ Y ⇔ F (Y ) = {0} ⇔ FE = 0.

If Y ⊥ Z, then (E+F )2 = E2+EF +FE+F 2 = E+0+0+F = E+F and (E+F )∗ = E∗+F ∗ = E+F,
so E + F is an orthogonal projection.

Conversely, E + F is an orthogonal projection implies ‖E + F‖ = 1. So for x ∈ Y = ran E,

‖x‖2 ≥ ‖(E + F )x‖2 = ((E + F )x, x) = (Ex, x) + (Fx, x) = ‖Ex‖2 + ‖Fx‖2 = ‖x‖2 + ‖Fx‖2.

So F (Y ) = {0}, which is equivalent to Y ⊥ Z.

Finally, in case E +F is an orthogonal projection, let M = span(Y ∪ Z). Since (E +F )|Y = E|Y +0 = I
and similarly (E + F )|Z = I, we have (E + F )|

span(Y ∪Z)
= I. Then M = span(Y ∪ Z) ⊆ ran(E + F ) ⊆

Y + Z ⊆ M. So ran(E + F ) = Y + Z = M.

Exercises. Let E, F be orthogonal projections with ranges Y, Z, respectively.

(1) Prove that EF is an orthogonal projection iff EF = FE, in which case, ran EF = Y ∩ Z.
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(2) Prove that the following are equivalent: (a) Y ⊆ Z, (b) FE = E, (c) EF = E, (d) ‖Ex‖ ≤ ‖Fx‖
for all x ∈ H and (e) E ≤ F. Then prove that F − E is an orthogonal projection iff Y ⊆ Z, in which case
ran(F − E) = Z ∩ Y ⊥.

§2. Normal Operators. Next we will study an important class of operators.

Definitions. Let T ∈ L(H).

(1) T is normal iff T ∗T = TT ∗ (iff (T ∗Tx, x) = (TT ∗x, x) iff (Tx, Tx) = (T ∗x, T ∗x) iff ‖Tx‖ = ‖T ∗x‖ for
all x ∈ H). So ker T = ker T ∗ and ran T = (ker T ∗)⊥ = (ker T )⊥ = ran T ∗.

(2) T is self-adjoint (or Hermitian) iff T = T ∗ (iff (Tx, x) = (T ∗x, x) = (x, Tx) = (Tx, x), i.e. (Tx, x) ∈ R
for all x ∈ H).

(3) T is positive (and we write T ≥ 0) iff (Tx, x) ≥ 0 for all x ∈ H (which implies T ∗ = T ). For self-adjoint
operators A and B, define A ≤ B (or B ≥ A) iff B − A ≥ 0.

(4) T is an isometry iff I = T ∗T (iff (x, x) = (T ∗Tx, x) = (Tx, Tx) iff ‖Tx‖ = ‖x‖ for all x ∈ H). T is an
co-isometry iff TT ∗ = I iff T ∗ is an isometry.

(5) T is unitary iff TT ∗ = I = T ∗T. (By (4), it is equivalent to an invertible isometry.) If K = R, unitary
operators are also called orthogonal operators.

Other than isometry and co-isometry, these are all normal operators. Also, for orthogonal projection P,
since (Px, x) = ‖Px‖2 ≥ 0, they are positive, hence normal. Now we begin to study normal operators.

Theorem (Properties of Normal Operators). Let T ∈ L(H) be normal.

(1) For every c ∈ C, T − cI is normal. If T is invertible, then T−1 is normal.

(2) Eigenvectors for different eigenvalues of T are orthogonal, i.e. if a 6= b, Tx = ax and Ty = by, then
(x, y) = 0.

(3) T is invertible iff T is right invertible iff T is bounded below iff T is left invertible.

(4) σ(T ) = σap(T ).

(5) The spectral radius and the numerical radius both equal ‖T‖.

Proof. (1) (T − cI)(T − cI)∗ = (T − cI)(T ∗ − cI) = TT ∗ − cT ∗ − cT + |c|2I = T ∗T − cT ∗ − cT + |c|2I =
(T ∗−cI)(T −cI) = (T −cI)∗(T −cI). For T invertible, since (T−1)∗ = (T ∗)−1, so T−1(T−1)∗ = T−1(T ∗)−1 =
(T ∗T )−1 = (TT ∗)−1 = (T ∗)−1T−1 = (T−1)∗T−1.

(2) For normal T, Ty = by iff T ∗y = by since ‖(T − bI)y‖ = ‖(T − bI)∗y‖ = ‖(T ∗ − bI)y‖. Then a(x, y) =
(Tx, y) = (x, T ∗y) = (x, by) = b(x, y) and a 6= b imply (x, y) = 0.

(3) The left inverse theorem asserts that an operator in L(H) is left invertible iff it is bounded below. Now
T is right invertible ⇔ T ∗ is left invertible ⇔ T ∗ is bounded below ⇔ T is bounded below ⇔ T is left
invertible. Finally T invertible ⇒ T is right invertible ⇒ T is left and right invertible ⇒ T is invertible.

(4) By (1) and (3), c 6∈ σ(T ) iff T − cI is invertible iff T − cI is bounded below iff c 6∈ σap(T ).

(5) ‖T 2‖ = ‖(T 2)∗T 2‖1/2 = ‖(T ∗T )∗(T ∗T )‖1/2 = ‖T ∗T‖ = ‖T‖2. Iterating this, we get ‖T 2n‖ = ‖T‖2n

.
Therefore, r(T ) = lim

n→∞
‖T 2n

‖1/2n

= ‖T‖.

Next, since σ(T ) is compact, there is c ∈ σ(T ) with |c| = r(T ) = ‖T‖. By (4), there are xn ∈ H such that
‖xn‖ = 1 and ‖(T −cI)xn‖ → 0. Since ‖(T −cI)xn‖ ≥ |

(
(T −cI)xn, xn

)
| = |(Txn, xn)−c|, so (Txn, xn) → c.

Hence ‖T‖ = |c| = lim
n→0

|(Txn, xn)| ≤ sup{|(Tx, x)| : ‖x‖ = 1} ≤ ‖T‖ and the numerical radius of T is ‖T‖.

Remark. It is known that for a normal operator, the closure of the numerical range is the convex hull of
the spectrum. See [H], pp. 116 and 318.
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Theorem. (1) If T is self-adjoint, then σ(T ) ⊆ R.

(2) If T ≥ 0, then σ(T ) ⊆ [0, +∞).

(3) If T is unitary, then σ(T ) ⊆ {z : |z| = 1}.

(4) If T is normal and c 6∈ σ(T ), then ‖(T − cI)−1‖ = 1/d, where d = min{|z − c| : z ∈ σ(T )}.

Proof. (1) Since (Tx, x) ∈ R, we get σ(T ) ⊆ W (T ) ⊆ R.

(2) Since (Tx, x) ≥ 0, we get σ(T ) ⊆ W (T ) ⊆ [0, +∞).

(3) For |c| 6= 1, since ‖Tx‖ = ‖x‖, we have ‖(T − cI)x‖ ≥
∣∣‖Tx‖ − ‖cx‖

∣∣ =
∣∣1 − |c|

∣∣‖x‖. Then T − cI is
normal and bounded below, hence invertible by property (3) of normal operators. So σ(T ) ⊆ {z : |z| = 1}.

(4) Observe that if S is invertible, then 0 6∈ σ(S) and σ(S−1) = {w−1 : w ∈ σ(S)}. This follows from the
identity −w−1S−1(S − wI) = S−1 − w−1I and the fact that −w−1S−1 is invertible. From this, letting
S = T − cI, we have σ((T − cI)−1) = {w−1 : w ∈ σ(T − cI)} = {(z − c)−1 : z ∈ σ(T )}.

Finally, by property (1) of normal operators, (T − cI)−1 is normal and so

‖(T − cI)−1‖ = r
(
(T − cI)−1

)
= max{|z − c|−1 : z ∈ σ(T )} = 1/ min{|z − c| : z ∈ σ(T )}.

Theorem (Properties of Self-adjoint Operators). If T is self-adjoint, then

(1) either ‖T‖ or −‖T‖ is in σ(T ),

(2) sup σ(T ) = sup W (T ), inf σ(T ) = inf W (T ) and so σ(T ) ⊆ [inf σ(T ), sup σ(T )] = [inf W (T ), sup W (T )]
(in particular, m = inf W (T ) and M = sup W (T ) are in σ(T ) = σap(T )),

(3) T ≥ 0 iff σ(T ) ⊆ [0, +∞).

Proof. (1) By property (5) of normal operators, r(T ) = ‖T‖. Since σ(T ) ⊆ R and {z ∈ C : |z| = r(T )}
intersects σ(T ), so either ‖T‖ or −‖T‖ is in σ(T ).

(2) Let M = sup W (T ) = sup{(Tx, x) : ‖x‖ = 1} and M ′ = sup σ(T ) = sup{c : c ∈ σ(T )}. Now S = ‖T‖I+T
is positive (as

(
(‖T‖I + T )x, x

)
= ‖T‖‖x‖2 + (Tx, x) ≥ 0) and self-adjoint. Now W (S) = {‖T‖ + (Tx, x) :

‖x‖ = 1} ⊆ [0, +∞) and σ(S) = {‖T‖ + c : c ∈ σ(T )} ⊆ [0, +∞). By property (5) of normal operators, the
numerical radius of S and the spectral radius of S are equal. So ‖T‖ + M = ‖T‖ + M ′. Hence M = M ′.
Applying a similar argument to ‖T‖I − T, we see the infima are the same.

(3) The only-if direction follows from part (2) of the last theorem. For the if-direction, since σ(T ) ⊆ [0, +∞),
so by (2), inf W (T ) = inf σ(T ) ≥ 0. Then W (T ) ⊆ [0, +∞), which implies T ≥ 0.

Definitions. Let T ∈ L(H) and M be a subspace of H. We say M is invariant under T iff T (M ) ⊆ M.
Also, M reduces T iff T (M ) ⊆ M and T (M⊥) ⊆ M⊥.

Lemma. Let T ∈ L(H), M be a subspace of H and P be the orthogonal projection onto M.

(1) T (M ) ⊆ M iff PTP = TP iff T ∗(M⊥) ⊆ M⊥. T (M⊥) ⊆ M⊥ iff PTP = PT iff T ∗(M ) ⊆ M.

(2) M reduces T iff PT = TP iff M reduces T ∗.

Proof. (1) For x ∈ H, write x = y+y′, T y = z+z′, where y, z ∈ M, y′, z′ ∈ M⊥. We have PTPx = PTy = z
and TPx = Ty = z + z′. So PTP = TP ⇔ TPx = z ∈ M for all x ∈ H ⇔ T (M ) = TP (H) ⊆ M.

Next I −P is the orthogonal projection onto M⊥. So T ∗(M⊥) ⊆ M⊥ iff (I −P )T ∗(I −P ) = T ∗(I −P )
iff PT ∗P = PT ∗ iff PTP = TP iff T (M ) ⊆ M. The second statement is similar.

(2) follows from (1) by combining the two statements.

Remarks. For all x, y ∈ M, (x, (T |M)∗y) = (T |Mx, y) = (Tx, y) = (x, T ∗y) = (x, T ∗|My). So (T |M )∗ =
T ∗|M . Similarly, (T |M⊥ )∗ = T ∗|M⊥ .
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Theorem (Properties of Normal Operators). Let T ∈ L(H) be normal and M a subspace of H.

(6) For every c ∈ C, ker(T − cI) reduces T (and hence also T ∗).

(7) If M reduces T, then T |M , T |M⊥ and their adjoints are normal and ‖T‖ = max{‖T |M‖, ‖T |M⊥‖}.

Proof. (6) For x ∈ ker(T − cI), (T − cI)Tx = T (T − cI)x = 0 implies Tx ∈ ker(T − cI). Similarly,
(T − cI)T ∗x = T ∗(T − cI)x = 0 implies T ∗x ∈ ker(T − cI). By the lemma, ker(T − cI) reduces T and T ∗.

(7) Using the remark, T |M(T |M)∗ = T |MT ∗|M = (TT ∗)|M = (T ∗T )|M = T ∗|MT |M = (T |M )∗T |M . So T |M
and T ∗|M are normal. Since M⊥ also reduces T , similarly T |M⊥ and T ∗|M⊥ are normal.

Next, let A = max{‖T |M‖, ‖T |M⊥‖}. Clearly ‖T |M‖, ‖T |M⊥‖ ≤ ‖T‖. So A ≤ ‖T‖. For the reverse
inequality, write x = y + z, where y ∈ M and z ∈ M⊥. Then ‖x‖2 = ‖y‖2 + ‖z‖2. Since M reduces T, so
Ty ∈ M, Tz ∈ M⊥. Then ‖Tx‖2 = ‖Ty‖2 + ‖Tz‖2 ≤ ‖T |M‖2‖y‖2 + ‖T |M⊥‖2‖z‖2 ≤ A2‖x‖2. So ‖T‖ ≤ A.

Spectral Theorem for Compact Normal Operators. Let T ∈ L(H) be a compact normal operator. For
an eigenvalue c of T, let Pc denote the orthogonal projection onto Hc = ker(T − cI). As σ(T ) is a countable
set with 0 as the only possible accumulation point, let its nonzero elements be c1, c2, c3, . . . arranged so that
|c1| ≥ |c2| ≥ |c3| ≥ · · · . Then T =

∑

i

ciPci (where the series converges in the norm of L(H) if there are

infinitely many terms) and H has an orthonormal basis consisting of eigenvectors of T.

Proof. Since T is compact, the Hc’s (c 6= 0) are finite dimensional by the Riesz-Fredholm lemma. Since T
is normal, by property (2) of normal operators, the Hc’s (for all c ∈ σ(T )) are pairwise orthogonal. By the
theorem on sum of orthogonal projections, (*) PcPc′ = 0 = Pc′Pc if c 6= c′.

For every ε > 0, there exists N ∈ N such that k > N implies |ck| < ε, i.e. σ(T )\{c1, c2, . . . , cN} ⊆ B(0, ε).

Let M =
N∑

i=1

Hci and TN =
N∑

i=1

ciPci . By (*), TN Pc = PcTN . By property (6) of normal operators, TPc = PcT.

Hence, T − TN is normal since T, T ∗ commute with Pc’s and TN , T ∗
N are in the span of Pc’s. Since Hc’s

are pairwise orthogonal, PM =
N∑

i=1

Pci by the theorem on sum of orthogonal projections. Then M reduces

T and TN . Note T |M = TN |M (as T |M(vi) = civi = TN |M(vi) for vi ∈ Hci with i ≤ n) and TN |M⊥ = 0 (as
v ∈ M⊥ implies v ⊥ Hci for i ≤ n and so these Pci(v) = 0). By property (7) of normal operators and last
sentence,

‖T − TN‖ = max{‖T |M − TN |M‖, ‖T |M⊥ − TN |M⊥‖} = ‖T |M⊥‖.

By property (7) of normal operators and properties (f) of compact operators, T |M⊥ is also a compact normal
operator. Now the eigenvalues of T |M⊥ are in σ(T ) \ {c1, c2, . . . , cN}. By property (5) of normal operators,
‖T − TN‖ = ‖T |M⊥‖ = r(T |M⊥) < ε. So T is the limit of TN in the norm of L(H), i.e. T =

∑

i

ciPci.

Let H ′ be the closed linear span of the union of all Hc’s, where c ∈ σ(T ). Since Hc’s reduce T for
all c ∈ σ(T ), so H ′ reduces T. By property (7) of normal operators, T |H′⊥ is compact normal and cannot
have any nonzero eigenvalues by the definition of H ′. So σ(T |H′⊥ ) = {0} and ‖T |H′⊥‖ = r(T |H′⊥ ) = 0.

Then H ′⊥ ⊆ ker T = H0. By the definition of H ′, H ′⊥ ∩ H0 = {0}. So H ′⊥ = {0}, i.e. H ′ = H. Taking an
orthonormal basis in every Hc (c ∈ σ(T )), their union is complete, hence is an orthonormal basis of H.

Remark. The compact self-adjoint case of the spectral theorem is called the Hilbert-Schmidt theorem.

Simultaneous Diagonalization Therorem. Let T1, T2 ∈ L(H) be compact normal operators such that
T1T2 = T2T1. Then H has an orthonormal basis B consisted of common eigenvectors of T1 and T2.

(By the last theorem, the matrices of T1, T2 are diagonal. By induction, the same result also holds
for finitely many pairwise commuting compact normal operators. In particular, this is true for commuting
normal operators on finite dimensional vector spaces since all operators are finite rank, hence compact.)
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Proof. Apply the spectral theorem to T1. Then H is the closed linear span of all Hc = ker(T1 − cI), where
c ∈ σ(T1). From x ∈ Hc implies (T1−cI)T2x = T2(T1−cI)x = 0, we get T2(Hc) ⊆ Hc. Also, H⊥

c =
∑

c′ 6=c Hc′

is invariant under T2. So Hc reduces T2, hence T2|Hc is normal. Applying the spectral theorem to T2|Hc , we
get an orthonormal basis of Hc consisting of eigenvectors of T2 (which are also eigenvectors of T1 as they are
in Hc). The union of these orthonormal bases of Hc is a desired orthonormal basis for H.

Tensor Notations for Rank One Operators. For v, e ∈ H, define the linear functional e ⊗ v on H by
(e ⊗ v)(x) = (x, v)e. If v, e 6= 0, then it is a rank one operator since its range is the span of {e}.

Theorem. Every rank n operator F ∈ L(H) is the sum of n rank one operators.

Proof. Let {e1, . . . , en} be an orthonormal basis of ran F. Since ei ∈ ran F, gi(x) = (F (x), ei) is a nonzero
element of H∗. By the Riesz representation theorem, there is a nonzero vi ∈ H such that gi(x) = (x, vi).

Then F (x) =
n∑

i=1

(F (x), ei)ei =
n∑

i=1

gi(x)ei =
n∑

i=1

(x, vi)ei, i.e. F =
n∑

i=1

ei ⊗ vi.

Theorem. Let T ∈ L(H) be a compact operator. Then there are countable orthonormal sets {ei} and
{vi} in H and positive real numbers {ci} (converging to 0 if infinitely many i’s) such that for all x ∈ H,

Tx =
∑

i

ci(x, vi)ei. (
∑

i

ci(ei ⊗ vi) is called the Schmidt representation of T. The ci’s are called the singular

values of T .) In particular, every compact operators on a Hilbert space is the limit of finite rank operators.

Proof. Since T is compact, S = T ∗T is a positive compact operator. By the spectral theorem for compact
normal operators, S =

∑

a∈σ(S)\{0}

aPa. Let sequence {vi} be the union of the orthonormal bases of ker(S−aI)

for all a ∈ σ(S) \ {0}. So every vi is the eigenvector of some a ∈ σ(S) \ {0} ⊆ (0, +∞). Let ci =
√

a and let
ei = (Tvi)/ci. If σ(S) is infinite, we may arrange the a’s to go to 0, then ci’s will also go to 0.

For i 6= j, (Tvi, T vj) = (Svi, vj) = a(vi, vj) = 0, Also, (Tvi, T vi) = (Svi, vi) = a(vi, vi) = c2
i , which

implies ‖Tvi‖ = ci, so ‖ei‖ = 1. Hence, {ei} is an orthonormal set.

For all x ∈ H, we now check Tx =
∑

i

ci(x, vi)ei. On span{vi}, it holds since Tvj = cjej =
∑

i

ci(vj , vi)ei.

On (span{vi})⊥, x ∈ (span{vi})⊥ implies for all a ∈ σ(S)\{0}, x ∈ (ker(S−aI))⊥ as ker(S−aI) ⊆ span{vi}.
Hence, all Pax = 0 and so Sx = 0. Then ‖Tx‖2 = (Sx, x) = 0 =

∑

i

ci(x, vi)ei).
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