Numerical Differentiation & Integration

Numerical Differentiation I

Numerical Analysis (9th Edition)
R L Burden & J D Faires

Beamer Presentation Slides
prepared by
John Carroll
Dublin City University

© 2011 Brooks/Cole, Cengage Learning
Outline

1. Introduction to Numerical Differentiation
Outline

1. Introduction to Numerical Differentiation

2. General Derivative Approximation Formulas
Outline

1. Introduction to Numerical Differentiation
2. General Derivative Approximation Formulas
3. Some useful three-point formulas
Outline

1. Introduction to Numerical Differentiation
2. General Derivative Approximation Formulas
3. Some useful three-point formulas
Introduction to Numerical Differentiation

Approximating a Derivative
Introduction to Numerical Differentiation

Approximating a Derivative

The derivative of the function f at x_0 is

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$
Introduction to Numerical Differentiation

Approximating a Derivative

The derivative of the function f at x_0 is

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

This formula gives an obvious way to generate an approximation to $f'(x_0)$; simply compute

$$\frac{f(x_0 + h) - f(x_0)}{h}$$

for small values of h. Although this may be obvious, it is not very successful, due to our old nemesis round-off error.
Introduction to Numerical Differentiation

Approximating a Derivative

The derivative of the function f at x_0 is

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

This formula gives an obvious way to generate an approximation to $f'(x_0)$; simply compute

$$\frac{f(x_0 + h) - f(x_0)}{h}$$

for small values of h. Although this may be obvious, it is not very successful, due to our old nemesis round-off error.

But it is certainly a place to start.
To approximate $f'(x_0)$, suppose first that $x_0 \in (a, b)$, where $f \in C^2[a, b]$, and that $x_1 = x_0 + h$ for some $h \neq 0$ that is sufficiently small to ensure that $x_1 \in [a, b]$.
Introduction to Numerical Differentiation

Approximating a Derivative (Cont’d)

- To approximate \(f'(x_0) \), suppose first that \(x_0 \in (a, b) \), where \(f \in C^2[a, b] \), and that \(x_1 = x_0 + h \) for some \(h \neq 0 \) that is sufficiently small to ensure that \(x_1 \in [a, b] \).

- We construct the first Lagrange polynomial \(P_{0,1}(x) \) for \(f \) determined by \(x_0 \) and \(x_1 \), with its error term:

\[
f(x) = P_{0,1}(x) + \frac{(x - x_0)(x - x_1)}{2!} f''(\xi(x))
\]

\[
= \frac{f(x_0)(x - x_0 - h)}{-h} + \frac{f(x_0 + h)(x - x_0)}{h} + \frac{(x - x_0)(x - x_0 - h)}{2} f''(\xi(x))
\]

for some \(\xi(x) \) between \(x_0 \) and \(x_1 \).
Numerical Differentiation

\[f(x) = \frac{f(x_0)(x - x_0 - h)}{-h} + \frac{f(x_0 + h)(x - x_0)}{h} + \frac{(x - x_0)(x - x_0 - h)}{2} f''(\xi(x)) \]

Differentiating gives

\[f'(x) = \frac{f(x_0 + h) - f(x_0)}{h} + D_x \left[\frac{(x - x_0)(x - x_0 - h)}{2} f''(\xi(x)) \right] \]
Numerical Differentiation

\[f(x) = \frac{f(x_0)(x - x_0 - h)}{-h} + \frac{f(x_0 + h)(x - x_0)}{h} + \frac{(x - x_0)(x - x_0 - h)}{2} f''(\xi(x)) \]

Differentiating gives

\[f'(x) = \frac{f(x_0 + h) - f(x_0)}{h} + D_x \left[\frac{(x - x_0)(x - x_0 - h)}{2} f''(\xi(x)) \right] \]

\[= \frac{f(x_0 + h) - f(x_0)}{h} + \frac{2(x - x_0) - h}{2} f''(\xi(x)) \]

\[+ \frac{(x - x_0)(x - x_0 - h)}{2} D_x(f''(\xi(x))) \]
Numerical Differentiation

\[f(x) = \frac{f(x_0)(x - x_0 - h)}{-h} + \frac{f(x_0 + h)(x - x_0)}{h} + \frac{(x - x_0)(x - x_0 - h)}{2} f''(\xi(x)) \]

Differentiating gives

\[f'(x) = \frac{f(x_0 + h) - f(x_0)}{h} + D_x \left[\frac{(x - x_0)(x - x_0 - h)}{2} f''(\xi(x)) \right] \]

\[= \frac{f(x_0 + h) - f(x_0)}{h} + \frac{2(x - x_0) - h}{2} f''(\xi(x)) \]

\[+ \frac{(x - x_0)(x - x_0 - h)}{2} D_x(f''(\xi(x))) \]

Deleting the terms involving \(\xi(x) \) gives

\[f'(x) \approx \frac{f(x_0 + h) - f(x_0)}{h} \]
Numerical Differentiation

\[f'(x) \approx \frac{f(x_0 + h) - f(x_0)}{h} \]

Approximating a Derivative (Cont’d)

One difficulty with this formula is that we have no information about \(D_x f''(\xi(x)) \), so the truncation error cannot be estimated.
Numerical Differentiation

\[f'(x) \approx \frac{f(x_0 + h) - f(x_0)}{h} \]

Approximating a Derivative (Cont’d)

- One difficulty with this formula is that we have no information about \(D_x f''(\xi(x)) \), so the truncation error cannot be estimated.
- When \(x \) is \(x_0 \), however, the coefficient of \(D_x f''(\xi(x)) \) is 0, and the formula simplifies to

\[f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2} f''(\xi) \]
Numerical Differentiation

\[f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2} f''(\xi) \]

Forward-Difference and Backward-Difference Formulae

- For small values of \(h \), the difference quotient
 \[\frac{f(x_0 + h) - f(x_0)}{h} \]
 can be used to approximate \(f'(x_0) \) with an error bounded by \(M|h|/2 \), where \(M \) is a bound on \(|f''(x)| \) for \(x \) between \(x_0 \) and \(x_0 + h \).
Numerical Differentiation

\[f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2} f''(\xi) \]

Forward-Difference and Backward-Difference Formulae

- For small values of \(h \), the difference quotient

\[\frac{f(x_0 + h) - f(x_0)}{h} \]

can be used to approximate \(f'(x_0) \) with an error bounded by \(M|h|/2 \), where \(M \) is a bound on \(|f''(x)| \) for \(x \) between \(x_0 \) and \(x_0 + h \).

- This formula is known as the **forward-difference formula** if \(h > 0 \) and the **backward-difference formula** if \(h < 0 \).
Forward-Difference Formula to Approximate $f'(x_0)$

\[f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h} \]
Example 1: $f(x) = \ln x$

Use the forward-difference formula to approximate the derivative of $f(x) = \ln x$ at $x_0 = 1.8$ using $h = 0.1$, $h = 0.05$, and $h = 0.01$, and determine bounds for the approximation errors.
Example 1: $f(x) = \ln x$

Use the forward-difference formula to approximate the derivative of $f(x) = \ln x$ at $x_0 = 1.8$ using $h = 0.1$, $h = 0.05$, and $h = 0.01$, and determine bounds for the approximation errors.

Solution (1/3)

The forward-difference formula

$$\frac{f(1.8 + h) - f(1.8)}{h}$$

with $h = 0.1$
Example 1: \(f(x) = \ln x \)

Use the forward-difference formula to approximate the derivative of \(f(x) = \ln x \) at \(x_0 = 1.8 \) using \(h = 0.1 \), \(h = 0.05 \), and \(h = 0.01 \), and determine bounds for the approximation errors.

Solution (1/3)

The forward-difference formula

\[
\frac{f(1.8 + h) - f(1.8)}{h}
\]

with \(h = 0.1 \) gives

\[
\frac{\ln 1.9 - \ln 1.8}{0.1} = \frac{0.64185389 - 0.58778667}{0.1} = 0.5406722
\]
Numerical Differentiation: Example 1

Solution (2/3)

Because \(f''(x) = -1/x^2 \) and \(1.8 < \xi < 1.9 \), a bound for this approximation error is

\[
\frac{|hf''(\xi)|}{2} = \frac{|h|}{2\xi^2} < \frac{0.1}{2(1.8)^2} = 0.0154321
\]
Numerical Differentiation: Example 1

Solution (2/3)

Because \(f''(x) = -1/x^2 \) and \(1.8 < \xi < 1.9 \), a bound for this approximation error is

\[
\frac{|hf''(\xi)|}{2} = \frac{|h|}{2\xi^2} < \frac{0.1}{2(1.8)^2} = 0.0154321
\]

The approximation and error bounds when \(h = 0.05 \) and \(h = 0.01 \) are found in a similar manner and the results are shown in the following table.
Numerical Differentiation: Example 1

Solution (3/3): Tabulated Results

| h | $f(1.8 + h)$ | $\frac{f(1.8 + h) - f(1.8)}{h}$ | $\frac{|h|}{2(1.8)^2}$ |
|-------|--------------|---------------------------------|------------------------|
| 0.1 | 0.64185389 | 0.5406722 | 0.0154321 |
| 0.05 | 0.61518564 | 0.5479795 | 0.0077160 |
| 0.01 | 0.59332685 | 0.5540180 | 0.0015432 |

Since $f'(x) = \frac{1}{x}$ The exact value of $f'(1.8)$ is 0.555, and in this case the error bounds are quite close to the true approximation error.
Outline

1. Introduction to Numerical Differentiation
2. General Derivative Approximation Formulas
3. Some useful three-point formulas
General Derivative Approximation Formulas

Method of Construction

To obtain general derivative approximation formulas, suppose that \(\{x_0, x_1, \ldots, x_n\} \) are \((n + 1)\) distinct numbers in some interval \(I \) and that \(f \in C^{n+1}(I) \).

From the interpolation error theorem, we have

\[
f(x) = \sum_{k=0}^{n} f(x_k) L_k(x) + \frac{(x - x_0) \cdots (x - x_n)}{(n + 1)!} f^{(n+1)}(\xi(x))
\]

for some \(\xi(x) \) in \(I \), where \(L_k(x) \) denotes the \(k \)th Lagrange coefficient polynomial for \(f \) at \(x_0, x_1, \ldots, x_n \).
General Derivative Approximation Formulas

\[f(x) = \sum_{k=0}^{n} f(x_k) L_k(x) + \frac{(x - x_0) \cdots (x - x_n)}{(n + 1)!} f^{(n+1)}(\xi(x)) \]

Method of Construction (Cont’d)

Differentiating this expression gives

\[f'(x) = \sum_{k=0}^{n} f(x_k) L'_k(x) + D_x \left[\frac{(x - x_0) \cdots (x - x_n)}{(n + 1)!} \right] f^{(n+1)}(\xi(x)) \]

\[+ \frac{(x - x_0) \cdots (x - x_n)}{(n + 1)!} D_x \left[f^{(n+1)}(\xi(x)) \right] \]
General Derivative Approximation Formulas

\[f'(x) = \sum_{k=0}^{n} f(x_k)L'_k(x) + D_x \left[\frac{(x - x_0) \cdots (x - x_n)}{(n + 1)!} \right] f^{(n+1)}(\xi(x)) \]

\[+ \frac{(x - x_0) \cdots (x - x_n)}{(n + 1)!} D_x[f^{(n+1)}(\xi(x))] \]

Method of Construction (Cont’d)

We again have a problem estimating the truncation error unless \(x \) is one of the numbers \(x_j \).
General Derivative Approximation Formulas

\[f'(x) = \sum_{k=0}^{n} f(x_k) L'_k(x) + D_x \left[\frac{(x - x_0) \cdots (x - x_n)}{(n + 1)!} \right] f^{(n+1)}(\xi(x)) \]

\[+ \frac{(x - x_0) \cdots (x - x_n)}{(n + 1)!} D_x[f^{(n+1)}(\xi(x))] \]

Method of Construction (Cont’d)

We again have a problem estimating the truncation error unless \(x \) is one of the numbers \(x_j \). In this case, the term multiplying \(D_x[f^{(n+1)}(\xi(x))] \) is 0, and the formula becomes

\[f'(x_j) = \sum_{k=0}^{n} f(x_k) L'_k(x_j) + \frac{f^{(n+1)}(\xi(x_j))}{(n + 1)!} \prod_{k=0}^{n} (x_j - x_k) \]
General Derivative Approximation Formulas

\[
f'(x) = \sum_{k=0}^{n} f(x_k) L'_k(x) + D_x \left[\frac{(x - x_0) \cdots (x - x_n)}{(n + 1)!} \right] f^{(n+1)}(\xi(x)) + \frac{(x - x_0) \cdots (x - x_n)}{(n + 1)!} D_x[f^{(n+1)}(\xi(x))]\]

Method of Construction (Cont’d)

We again have a problem estimating the truncation error unless \(x \) is one of the numbers \(x_j \). In this case, the term multiplying \(D_x[f^{(n+1)}(\xi(x))] \) is 0, and the formula becomes

\[
f'(x_j) = \sum_{k=0}^{n} f(x_k) L'_k(x_j) + \frac{f^{(n+1)}(\xi(x_j))}{(n + 1)!} \prod_{\substack{k=0 \atop k \neq j}}^{n} (x_j - x_k)\]

which is called an \((n + 1)\)-point formula to approximate \(f'(x_j) \).
General Derivative Approximation Formulas

\[f'(x_j) = \sum_{k=0}^{n} f(x_k) L'_k(x_j) + \frac{f^{(n+1)}(\xi(x_j))}{(n+1)!} \prod_{k=0, k\neq j}^{n} (x_j - x_k) \]

Comment on the \((n + 1)\)-point formula

In general, using more evaluation points produces greater accuracy, although the number of functional evaluations and growth of round-off error discourages this somewhat.
General Derivative Approximation Formulas

\[f'(x_j) = \sum_{k=0}^{n} f(x_k) L'_k(x_j) + \frac{f^{(n+1)}(\xi(x_j))}{(n+1)!} \prod_{k=0}^{n} (x_j - x_k) \]

Comment on the \((n + 1)\)-point formula

- In general, using more evaluation points produces greater accuracy, although the number of functional evaluations and growth of round-off error discourages this somewhat.
- The most common formulas are those involving three and five evaluation points.
General Derivative Approximation Formulas

\[f'(x_j) = \sum_{k=0}^{n} f(x_k) L'_k(x_j) + \frac{f^{(n+1)}(\xi(x_j))}{(n+1)!} \prod_{\substack{k=0 \atop k \neq j}}^{n} (x_j - x_k) \]

Comment on the \((n + 1)\)-point formula

- In general, using more evaluation points produces greater accuracy, although the number of functional evaluations and growth of round-off error discourages this somewhat.
- The most common formulas are those involving three and five evaluation points.

We first derive some useful three-point formulas and consider aspects of their errors.
Outline

1. Introduction to Numerical Differentiation

2. General Derivative Approximation Formulas

3. Some useful three-point formulas
Some useful three-point formulas

Important Building Blocks

Since

\[L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \]
Some useful three-point formulas

Important Building Blocks

Since

\[L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \]

we obtain

\[L'_0(x) = \frac{2x - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \]
Some useful three-point formulas

Important Building Blocks

Since

\[L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \]

we obtain

\[L'_0(x) = \frac{2x - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \]

In a similar way, we find that

\[L'_1(x) = \frac{2x - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \]

\[L'_2(x) = \frac{2x - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \]
Some useful three-point formulas

Important Building Blocks (Cont’d)

Using these expressions for $L_j'(x)$, $1 \leq j \leq 2$, the $n + 1$-point formula

$$f'(x_j) = \sum_{k=0}^{n} f(x_k)L_k'(x_j) + \frac{f^{(n+1)}(\xi(x_j))}{(n + 1)!} \prod_{\substack{k=0 \atop k \neq j}}^{n} (x_j - x_k)$$
Some useful three-point formulas

Important Building Blocks (Cont’d)

Using these expressions for $L'_j(x)$, $1 \leq j \leq 2$, the $n + 1$-point formula

$$f'(x_j) = \sum_{k=0}^{n} f(x_k)L'_k(x_j) + \frac{f^{(n+1)}(\xi(x_j))}{(n + 1)!} \prod_{k=0}^{n}^{k \neq j} (x_j - x_k)$$

becomes for $n = 2$:

$$f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right]$$

$$+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi_j) \prod_{k=0}^{2}^{k \neq j} (x_j - x_k)$$

for each $j = 0, 1, 2$, where $\xi_j = \xi_j(x)$.

Some useful three-point formulas

\[
f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right] \\
+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi_j) \prod_{k=0}^{2} (x_j - x_k)
\]

Assumption
Some useful three-point formulas

\[
f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right] \\
+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi_j) \prod_{k=0}^{2} (x_j - x_k)
\]

Assumption

The 3-point formulas become especially useful if the nodes are equally spaced, that is, when

\[x_1 = x_0 + h \quad \text{and} \quad x_2 = x_0 + 2h, \quad \text{for some } h \neq 0\]
Some useful three-point formulas

\[f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right] + f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi_j) \prod_{k=0, k\neq j}^{2} (x_j - x_k) \]

Assumption

The 3-point formulas become especially useful if the nodes are equally spaced, that is, when

\[x_1 = x_0 + h \quad \text{and} \quad x_2 = x_0 + 2h, \quad \text{for some} \ h \neq 0 \]

We will assume equally-spaced nodes throughout the remainder of this section.
Some useful three-point formulas

\[f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right] \]

\[+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi_j) \prod_{k=0}^{2} (x_j - x_k) \]

Three-Point Formulas (1/3)

With \(x_j = x_0 \), \(x_1 = x_0 + h \), and \(x_2 = x_0 + 2h \), the general 3-point formula becomes

\[f'(x_0) = \frac{1}{h} \left[- \frac{3}{2} f(x_0) + 2 f(x_1) - \frac{1}{2} f(x_2) \right] + \frac{h^2}{3} f^{(3)}(\xi_0) \]
Some useful three-point formulas

\[f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right] + f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi_j) \prod_{\substack{k=0 \atop k \neq j}}^{2} (x_j - x_k) \]

Three-Point Formulas (2/3)

Doing the same for \(x_j = x_1 \) gives

\[f'(x_1) = \frac{1}{h} \left[-\frac{1}{2} f(x_0) + \frac{1}{2} f(x_2) \right] - \frac{h^2}{6} f^{(3)}(\xi_1) \]
Some useful three-point formulas

\[f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right] \\
+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi_j) \prod_{k=0}^{2} (x_j - x_k) \]

Three-Point Formulas (3/3)

... and for \(x_j = x_2 \), we obtain

\[f'(x_2) = \frac{1}{h} \left[\frac{1}{2} f(x_0) - 2f(x_1) + \frac{3}{2} f(x_2) \right] + \frac{h^2}{3} f^{(3)}(\xi_2) \]
Some useful three-point formulas

Three-Point Formulas: Further Simplification
Some useful three-point formulas

Three-Point Formulas: Further Simplification

Since \(x_1 = x_0 + h \) and \(x_2 = x_0 + 2h \), these formulas can also be expressed as

\[
f'(x_0) = \frac{1}{h} \left[-\frac{3}{2} f(x_0) + 2f(x_0 + h) - \frac{1}{2} f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0)
\]

\[
f'(x_0 + h) = \frac{1}{h} \left[-\frac{1}{2} f(x_0) + \frac{1}{2} f(x_0 + 2h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1)
\]

\[
f'(x_0 + 2h) = \frac{1}{h} \left[\frac{1}{2} f(x_0) - 2f(x_0 + h) + \frac{3}{2} f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_2)
\]
Some useful three-point formulas

Three-Point Formulas: Further Simplification

Since \(x_1 = x_0 + h \) and \(x_2 = x_0 + 2h \), these formulas can also be expressed as

\[
f'(x_0) = \frac{1}{h} \left[-\frac{3}{2} f(x_0) + 2f(x_0 + h) - \frac{1}{2} f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0)
\]

\[
f'(x_0 + h) = \frac{1}{h} \left[-\frac{1}{2} f(x_0) + \frac{1}{2} f(x_0 + 2h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1)
\]

\[
f'(x_0 + 2h) = \frac{1}{h} \left[\frac{1}{2} f(x_0) - 2f(x_0 + h) + \frac{3}{2} f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_2)
\]

As a matter of convenience, the variable substitution \(x_0 \) for \(x_0 + h \) is used in the middle equation to change this formula to an approximation for \(f'(x_0) \). A similar change, \(x_0 \) for \(x_0 + 2h \), is used in the last equation.
Three-Point Formulas: Further Simplification (Cont’d)

This gives three formulas for approximating $f'(x_0)$:
Some useful three-point formulas

Three-Point Formulas: Further Simplification (Cont’d)

This gives three formulas for approximating $f'(x_0)$:

$$f'(x_0) = \frac{1}{2h}[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)] + \frac{h^2}{3}f^{(3)}(\xi_0)$$

$$f'(x_0) = \frac{1}{2h}[-f(x_0 - h) + f(x_0 + h)] - \frac{h^2}{6}f^{(3)}(\xi_1), \quad \text{and}$$

$$f'(x_0) = \frac{1}{2h}[f(x_0 - 2h) - 4f(x_0 - h) + 3f(x_0)] + \frac{h^2}{3}f^{(3)}(\xi_2)$$
Some useful three-point formulas

Three-Point Formulas: Further Simplification (Cont’d)

This gives three formulas for approximating $f'(x_0)$:

$$f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0)$$

$$f'(x_0) = \frac{1}{2h} \left[-f(x_0 - h) + f(x_0 + h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1), \quad \text{and}$$

$$f'(x_0) = \frac{1}{2h} \left[f(x_0 - 2h) - 4f(x_0 - h) + 3f(x_0) \right] + \frac{h^2}{3} f^{(3)}(\xi_2)$$

Finally, note that the last of these equations can be obtained from the first by simply replacing h with $-h$, so there are actually only two formulas.
Some useful three-point formulas

Three-Point Endpoint Formula

\[f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0) \]

where \(\xi_0 \) lies between \(x_0 \) and \(x_0 + 2h \).
Some useful three-point formulas

Three-Point Endpoint Formula

\[f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0) \]

where \(\xi_0 \) lies between \(x_0 \) and \(x_0 + 2h \).

Three-Point Midpoint Formula

\[f'(x_0) = \frac{1}{2h} \left[f(x_0 + h) - f(x_0 - h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1) \]

where \(\xi_1 \) lies between \(x_0 - h \) and \(x_0 + h \).
Some useful three-point formulas

\begin{align*}
(1) \quad f'(x_0) &= \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0) \\
(2) \quad f'(x_0) &= \frac{1}{2h} \left[f(x_0 + h) - f(x_0 - h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1)
\end{align*}
Some useful three-point formulas

\[(1) \quad f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0) \]

\[(2) \quad f'(x_0) = \frac{1}{2h} \left[f(x_0 + h) - f(x_0 - h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1) \]

Comments

Although the errors in both Eq. (1) and Eq. (2) are \(O(h^2)\), the error in Eq. (2) is approximately half the error in Eq. (1).
Some useful three-point formulas

(1) \[f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0) \]

(2) \[f'(x_0) = \frac{1}{2h} \left[f(x_0 + h) - f(x_0 - h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1) \]

Comments

- Although the errors in both Eq. (1) and Eq. (2) are \(O(h^2) \), the error in Eq. (2) is approximately half the error in Eq. (1).
- This is because Eq. (2) uses data on both sides of \(x_0 \) and Eq. (1) uses data on only one side.
Some useful three-point formulas

(1) \[f'(x_0) = \frac{1}{2h}[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)] + \frac{h^2}{3}f^{(3)}(\xi_0) \]

(2) \[f'(x_0) = \frac{1}{2h}[f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6}f^{(3)}(\xi_1) \]

Comments

- Although the errors in both Eq. (1) and Eq. (2) are \(O(h^2) \), the error in Eq. (2) is approximately half the error in Eq. (1).
- This is because Eq. (2) uses data on both sides of \(x_0 \) and Eq. (1) uses data on only one side.
- Note also that \(f \) needs to be evaluated at only two points in Eq. (2), whereas in Eq. (1) three evaluations are needed.
Three-Point Midpoint Formula

\[
f'(x_0) = \frac{1}{2h} [f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6} f^{(3)}(\xi_1)
\]

where \(\xi_1 \) lies between \(x_0 - h \) and \(x_0 + h \).
Examples of five-point formulas

Five-Point Midpoint Formula

\[
f'(x_0) = \frac{1}{12h} \left[f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^4}{30} f^{(5)}(\xi)
\]

where \(\xi \) lies between \(x_0 - 2h \) and \(x_0 + 2h \).
Examples of five-point formulas

Five-Point Midpoint Formula

\[
f'(x_0) = \frac{1}{12h} [f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)] + \frac{h^4}{30} f^{(5)}(\xi)
\]

where \(\xi \) lies between \(x_0 - 2h \) and \(x_0 + 2h \).

Five-Point Endpoint Formula

\[
f'(x_0) = \frac{1}{12h} [-25f(x_0) + 48f(x_0 + h) - 36f(x_0 + 2h) + 16f(x_0 + 3h) - 3f(x_0 + 4h)] + \frac{h^4}{5} f^{(5)}(\xi)
\]

where \(\xi \) lies between \(x_0 \) and \(x_0 + 4h \).
Questions?
Reference Material
Suppose x_0, x_1, \ldots, x_n are distinct numbers in the interval $[a, b]$ and $f \in C^{n+1}[a, b]$. Then, for each x in $[a, b]$, a number $\xi(x)$ (generally unknown) between x_0, x_1, \ldots, x_n, and hence in (a, b), exists with

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x - x_0)(x - x_1)\cdots(x - x_n)$$

where $P(x)$ is the interpolating polynomial given by

$$P(x) = f(x_0)L_{n,0}(x) + \cdots + f(x_n)L_{n,n}(x) = \sum_{k=0}^{n} f(x_k)L_{n,k}(x)$$