KMV Model

Expected default frequency

• Expected default frequency (EDF) is a forward-looking measure of actual probability of default. EDF is firm specific.

•

- KMV model is based on the *structural approach* to calculate EDF (credit risk is driven by the firm value process).
 - It is best when applied to publicly traded companies, where the value of equity is determined by the stock market.
 - The market information contained in the *firm's stock price* and *balance sheet* are translated into an *implied risk of default*.

Distribution of terminal firm value at maturity of debt

According to KMV's empirical studies, log-asset returns confirm quite well to a normal distribution, and σ_V stays relatively constant.

Three steps to derive the actual probabilities of default:

1. Estimation of the market value and volatility of the firm's asset.

- 2. Calculation of the distance to default, an index measure of default risk.
- 3. Scaling of the distance to default to actual probabilities of default using a default database.

Estimation of firm value V and volatility of firm value σ_V

- Usually, only the price of equity for most public firms is directly observable, and in some cases, part of the debt is directly traded.
- Using option pricing approach: equity value, $E = f(V, \sigma_V, K, c, r)$ and

volatility of equity, $\sigma_E = g(V, \sigma_V, K, c, r)$

where K denotes the leverage ratio in the capital structure, c is the average coupon paid on the long-term debt, r is the riskfree rate.

Solve for V and σ_E from the above 2 equations.

Distance to default

default point, $d^* = \text{short-term debt} + \frac{1}{2} \times \text{long-term debt}$

distance to default,

$$d_{f} = \frac{E(V_{T}) - d^{*}}{\sigma_{V}}$$
$$= \frac{\ln \frac{V_{0}}{d^{*}} + \left(\mu - \frac{\hat{\sigma}_{V}^{2}}{2}\right)\Gamma}{\hat{\sigma}_{V}\sqrt{T}},$$

where V_0 is the current market value of firm, μ is the expected net return on firm value and $\hat{\sigma}_v$ is the annualized firm value volatility.

Probabilities of default from the default distance

Based on historical information on a large sample of firms, for each time horizon, one can estimate the proportion of firms of a given default distance (say, $d_f = 4.0$) which actually defaulted after one year.

Example

Current market value of assets Net expected growth of assets per annum^{*} Expected asset value in one year Annualized asset volatility Default point $V_0 = 1,000$ $\mu = 20\%$ $V_T = 1,200$ $\sigma_V = 100$ $d^* = 800$

default distance,
$$d_f = \frac{1,200 - 800}{100} = 4.$$

Among the population of all the firms with $d_f = 4$ at one point in time, say 5,000 firms, 20 defaulted in one year. Then

$$EDF_{1-yr} = \frac{20}{5,000} = 0.004 = 40bp.$$

KMV Credit Monitor uses a constant asset growth assumption for all firms in the same market.

Example *Federal Express* (dollars in billions of US\$)

A CARLAND AND A CAR	November 1997	February 1998
Market capitalization	\$7.9	\$7.3
(price × shares outstanding)	我们的大学和学生	
Book liabilities	\$4.7	\$4.9
Market value of assets	\$12.6	\$12.2
Asset volatility	15%	17%
Default point	\$3.4	\$3.5
Default distance	12.6 - 3.4 = 4.9	$\frac{12.2 - 3.5}{4.2}$
	$\overline{0.15 \times 12.6} = 4.9$	$\frac{12.2 - 3.5}{0.17 \times 12.2} = 4.2$
EDF	$0.06\%(6bp) \equiv AA^-$	$0.11\%(11bp) \equiv A^-$

The causes of changes for an EDF are due to variations in the *stock price*, *debt level* (leverage ratio), and *asset volatility*.

Key features in KMV model

- 1. Dynamics of EDF comes mostly from the *dynamics of the equity values*.
- 2. Distance to default ratio determines the level of default risk.
 - This key ratio compares the firm's net worth to its volatility.
 - The net worth is based on values from the equity market, so it is both timely and superior estimate of the firm value.
- 3. Ability to adjust to the *credit cycle* and ability to quickly reflect any *deterioration in credit quality*.
- 4. Work best in highly efficient liquid market conditions.

Strength of KMV approach

• Changes in EDF tend to anticipate at least one year earlier than the downgrading of the issuer by rating agencies like Moody's and S & P's.

•

• Accurate and timely information from the *equity market* provides a *continuous* credit monitoring process that is difficult and expensive to duplicate using traditional credit analysis.

• Annual reviews and other traditional credit processes cannot maintain the same degree of vigilance that EDFs calculated on a monthly or a daily basis can provide.

Weaknesses of KMV approach

- It requires some *subjective estimation* of the input parameters.
- It is difficult to construct theoretical EDF's without the *assumption of normality* of asset returns.
- *Private firms' EDFs* can be calculated only by using some comparability analysis based on accounting data.
- It does not *distinguish* among different types of long-term bonds according to their seniority, collateral, covenants, or convertibility.

Example

Valuation of a zero coupon bond with a promised payment in a year of \$100, with a recovery of (1 - LGD) upon issuer's default.

* LGD = loss given default (assumed to be 40% here)

Q = risk neutral probability that the issuer defaults in one year from now (assumed to be 20% here)

The expectation is calculated using the risk neutral probabilities but not the actual probabilities as they can be observed in the market from historical data or EDFs.

 $PV_{1} = PV(\text{risk-free cash flow}) = \$100 (1 - \text{LGD})/(1 + r) = \54.5 r = risk free rate (assumed to be 10% here) $PV_{2} = PV(\text{risky cash flow}) = E_{Q} \text{ (discounted risky cash flow)}$ $= \frac{100\text{LGD}(1-Q) + 0 \times Q}{1+r} = \$29.1.$

Let s denote the credit spread

 $\frac{100(1-LGD)}{1+r} + \frac{100LGD(1-Q)}{1+r} = \frac{100}{1+r+s}$

so that

$$s = \frac{\text{LGD} \times Q}{1 - L\text{GD} \times Q} (1 + r) = 9.6\%.$$

Derivation of the risk neutral EDFs

Let V_T^* be the firm value process at *T* under the modified risk neutral process.

$$\frac{dV_t^*}{V_t^*} = rdt + \sigma dZ_t$$

 $Q = P_r[V_T^* \le DPT_T]$

$$= P_r \left[\ln V_0 + \left(r - \frac{\sigma}{2} \right) T + \sigma \sqrt{T} Z_T \le \ln DPT_T \right] \right]$$
$$= P_r \left[Z_T \le -\frac{\ln \left[\frac{V_0}{DPT_T} + \left(r - \frac{\sigma^2}{2} \right) T \right]}{\sigma \sqrt{T}} \right] = N(-d_2^*)$$

where

$$d_2^* = \frac{\ln \frac{V_0}{DPT_T} + \left(r - \frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}}$$

On the other hand, the expected default frequency under the actual process is given by

$$EDF_T = N(-d_2)$$

where

$$d_2 = \frac{\ln \frac{V_0}{DPT_T} + (\mu - \frac{\sigma^2}{2})T}{\sigma\sqrt{T}}$$

Hence, the risk neutral EDF

$$Q = N \left[N^{-1} (EDF_T) + \frac{\mu - r}{\sigma} \sqrt{T} \right]$$

From CAPM, we have

$$\mu - r = \beta(\mu_M - r) = \frac{\rho_{FM}\sigma}{\sigma_M}(\mu_M - r)$$

where β = beta of the asset with the market portfolio $\mu_M - r$ = market risk premium for one unit of beta risk (to be estimated by a separate statistical process).