
MAFS 5030

Quantitative Modeling of Derivative Securities

Homework Two

Course Instructor: Prof. Y.K. Kwok

1. Show that a dominant trading strategy exists if and only if there exists a trading strategy satisfying V0 < 0
and V1(ω) ≥ 0 for all ω ∈ Ω.

Hint: Consider the dominant trading strategy H = (h0 h1 · · ·hM )T satisfying V0 = 0 and V1(ω) > 0 for all

ω ∈ Ω. Take G∗
min = min

ω
G∗(ω) > 0 and define a new trading strategy with ĥm = hm,m = 1, · · · ,M

and ĥ0 = −G∗
min −

M∑
m=1

hmS∗
m(0).

2. Consider a portfolio with one risky security and the riskfree security. Suppose the price of the risky asset
at time 0 is 4 and the possible values of the t = 1 price are 1.1, 2.2 and 3.3 (3 possible states of the world
at the end of a single trading period). Let the riskfree interest rate r be 0.1 and take the price of the
riskfree security at t = 0 to be unity.

(a) Show that the trading strategy: h0 = 4 and h1 = −1 is a dominant trading strategy that starts with
zero wealth and ends with positive wealth with certainty.

(b) Find the discounted gain G∗ over the single trading period.

(c) Find a trading strategy that starts with negative wealth and ends with non-negative wealth with
certainty.

3. (a) Show that if the law of one price does not hold, then every payoff in the asset span can be bought at
any price.

(b) Suppose the price of any security in the asset span is unique, does there exist any arbitrage oppor-
tunity? Give a proof or quote a counterexample.

4. Given the discounted terminal payoff matrix

Ŝ∗(1) =

1 6 3
1 2 2
1 12 6

 ,

and the current discounted price vector S(0) = (1 3 2), find the state price of the Arrow security with
discounted payoff ek, k = 1, 2, 3. Do we observe positivity of the state prices? Does the securities model
admit any arbitrage opportunities? If so, find one such example.

5. Define the pricing functional F (x) on the asset span S by F (x) = {y : y = S(0)h for some h such that
x = S∗(1)h, where x ∈ S}. Show that if the law of one price holds, then F is a linear functional.

6. Construct a securities model with 2 risky securities and the riskfree security and 3 possible states of world
such that the law of one price holds but there are dominant trading strategies.
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7. Suppose a betting game has 3 possible outcomes. If a gambler bets on outcome i, then he receives a net
gain of di dollars for one dollar betted, i = 1, 2, 3. The payoff matrix thus takes the form (discounting is
immaterial in a betting game)

S(1; Ω) =

d1 + 1 0 0
0 d2 + 1 0
0 0 d3 + 1


Find the condition on di such that a risk neutral probability measure exists for the above betting game
(visualized as an investment model).

8. Consider the following securities model with discounted terminal payoff of the securities given by the
payoff matrix

Ŝ∗(1; Ω) =

1 2 3 4
1 3 4 5
1 5 6 7

 ,

where the first column gives the discounted payoff of the riskfree security. Let the initial price vector Ŝ∗(0)
be (1 3 5 9). Does the law of one price hold for this securities model? Show that the contingent claim

with discounted payoff

 6
8
12

 is attainable and find the set of all possible trading securities that generate

the payoff. Can we find the price at t = 0 of this contingent claim?

9. Let Πu and Πd denote the state price corresponding to the state of the asset value going up and going down,
respectively. The state prices can also be interpreted as state contingent discount rates. Assuming absence
of arbitrage opportunities, all securities (including the money market account, asset and call option) would
have returns with the same state contingent discount rates Πu and Πd. Hence, the respective relations for
the money market account, asset price and call option value with Πu and Πd are given by

1 = ΠuR+ΠdR

S = ΠuuS +ΠddS

c = Πucu +Πdcd.

By solving for Πu and Πd from the first two equations and substituting the solutions into the third
equation, show that the binomial call price formula over one period is given by

c =
pcu + (1− p)cd

R
where p =

R− d

u− d
.

10. Consider the single-period securities model:

S(0) = (1 2 3) and Ŝ(1; Ω) =

 1 4 5
1 2 3
1 1 2

 .

Find the range of reasonable initial price of the non-attainable contingent claim Y ∗ = (3 4 5)T such that
arbitrage opportunities do not exist.

11. Suppose the one-period securities model is endowed with

S(0) =
(
1 10

)
and S∗(1) =

 1 8
1 10
1 12

 .
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Show that the contingent claim Y =

 y1
y2
y3

 is attainable if and only if

y1 − 2y2 + y3 = 0.

12. Suppose the universe of securities does not contain the riskfree security, all Arrow securities lie in the
asset span and all state prices are strictly positive, show that the single-period securities model admits no
arbitrage opportunity.

13. Consider the sample space Ω = {−3,−2,−1, 1, 2, 3} and the algebra F = {ϕ, {−3,−2}, {−1, 1}, {2, 3},
{−3,−2,−1, 1}, {−3,−2, 2, 3}, {−1, 1, 2, 3}, Ω}. For each of the following random variables, determine
whether it is F-measurable:

(i) X(ω) = ω2, (ii) X(ω) = max(ω, 2).

Find a random variable that is F-measurable.

14. Let X,X1, · · · , Xn be random variables defined on (Ω,F , P ). Prove the following properties on conditional
expectation:

(a) E[XIB ] = E[IBE[X|F ]] for all B ∈ F ,

(b) E[max(X1, · · · , Xn)|F ] ≥ max(E[X1|F ], · · · , E[Xn|F ]).

15. Let X = {Xt; t = 0, 1, · · · , T} be a stochastic process adapted to the filtration F = {Ft; t = 0, 1, · · · , T}.
Does the property: E[Xt+1 −Xt|Ft] = 0, t = 0, 1, · · · , T − 1 imply that X is a martingale?

16. Consider the binomial experiment with probability of success p, 0 < p < 1. We let Nk denote the number
of successes after k independent trials. Define the discrete process Yk by Nk − kp, the excess number of
successes above the mean kp. Show that Yk is a martingale.

17. Consider the two-period securities model in the lecture note of Topic 2, p.101. Suppose the riskless interest
rate r violates the restriction r < 0.2, say, r = 0.3. Construct an arbitrage opportunity associated with
the securities model.
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