
MAFS5250 - Computational Methods for Pricing Structured Products

Solution to Homework One

Course instructor: Prof. Y.K. Kwok

1. When the underlying asset pays a continuous dividend yield at the rate q, the expected
rate of return of the asset is r − q under the risk neutral measure. Under the continuous
Geometric Brownian process model, the logarithm of the asset price ratio over ∆t time

interval is normally distributed with mean

(
r − q − σ2

2

)
∆t and variance σ2∆t. Accord-

ingly, the mean and variance of
St+∆t

St

are e(r−q)∆t and e2(r−q)∆t(eσ
2∆t − 1). By equating

the mean and variance of the discrete binomial model and the continuous Geometric
Brownian process model, we obtain

pu+ (1− p)d = e(r−q)∆t

pu2 + (1− p)d2 = e2(r−q)∆teσ
2∆t.

Also, we use the usual tree-symmetry condition: u = 1/d. Solving the system of 3
equations, we obtain

u =
1

d
=

σ̃2 + 1 +
√

(σ̃2 + 1)2 − 4R2

2R
, p =

R− d

u− d
,

where R = e(r−q)∆t and σ̃2 = R2eσ
2∆t. As an analytic approximation to u and d up to

order ∆t accuracy, we take

u = eσ
√
∆t and d = e−σ

√
∆t.

There is only one modification that occurs in the binomial parameter p, where

p =
e(r−q)∆t − d

u− d
,

while u and d remain the same. The binomial pricing formula takes a similar form
(discounted expectation of the terminal payoff):

V = [pV ∆t
u + (1− p)V ∆t

d ]e−r∆t.

The discount factor e−r∆t remains the same while the risk neutral probability of up-move
p is modified.

2. (a) With the usual notation

p =
R− d

u− d
and 1− p =

u−R

u− d
.

If R < d or R > u, then one of the above two probabilities becomes negative. This
happens when either

e(r−q)∆t < e−σ
√
∆t
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or
e(r−q)∆t > eσ

√
∆t.

The above two inequalities are equivalent to (q − r)
√
∆t > σ or (r − q)

√
∆t > σ.

Hence, negative probabilities occur when

σ < |(r − q)
√
∆t|.

To avoid the occurrence of negative probability values, the time step must be chosen
to be sufficiently small such that

∆t <
σ2

(r − q)2
.

(b) We approximate ln
St+∆t

St

by a discrete random variable ζa, where

ζa =

{
v1 with probability equals 0.5
v2 with probability equals 0.5

.

Matching the mean and variance of the discrete and continuous distributions, we
obtain

E[ζa] =
v1 + v2

2
=

(
r − q − σ2

2

)
∆t

var(ζ2) =
v21 + v22

2
= σ2∆t [dropping O((∆t)2) term].

Solving the pair of equations [up to O(∆t) accuracy], we obtain

v1 =

(
r − q − σ2

2

)
∆t+ σ

√
∆t and v2 =

(
r − q − σ2

2

)
∆t− σ

√
∆t.

As a check, we consider

v21 + v22 = 2

[(
r − q − σ2

2

)
∆t

]2
+ 2σ2∆t

so that
v21 + v22

2
= σ2∆t+O((∆t)2).

3. For a n-step trinomial tree, the number of nodes at which we need to perform backward
induction calculations is given by

n−1∑
i=0

(2i+ 1) = n+
n(n− 1)

2
× 2 = n2.

Each backward induction calculation involves 2 additions and 3 multiplications. There-
fore, the number of multiplications is 3n2 and the number of additions is 2n2. In a similar
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manner, the number of nodes in a n-step binomial tree at which we need to perform
backward induction calculations is given by

n−1∑
i=0

(i+ 1) = n+
n(n− 1)

2
=

n2 + n

2
.

Each backward induction calculation involves 1 addition and 2 multiplications. Therefore,
the number of multiplications is n2 + n and the number of additions is n2+n

2
.

4. Unlike the derivation in the lecture note, we now keep all the terms that are O((∆t)2).
From the second equation, we obtain

v =

√(
r − σ2

2

)2

∆t2 + σ2∆t.

Substituting v into the first equation: (2p− 1)v =
(
r − σ2

2

)
∆t, we have

p =
1

2

1 +
(
r − σ2

2

)
∆t√

σ2∆t+
(
r − σ2

2

)2
∆t2

 .

5. Consider the system of equations for p1, p2 and p3: 1 1 1
u 1 d
u2 1 d2

p1
p2
p3

 =

 1
R
W

 .

Eliminating p2 from the equations, we obtain

(u− 1)p1 + (d− 1)p3 = R− 1

(u2 − 1)p1 + (d2 − 1)p3 = W − 1.

Solving for p1 and p3 gives

p1 =
(W −R)u− (R− 1)

(u− 1)(u2 − 1)
and p3 =

(W −R)u2 − (R− 1)u3

(u− 1)(u2 − 1)
.

When λ = 1, the parameter u becomes eσ
√
∆t, which agrees with that of the Cox-

Rubinstein-Ross binomial scheme. One can show that

p1 + p3 = 1 +O(∆t),

or equivalently,
p2 = O(∆t).

If we consider order of accuracy up to O(∆t), then p2 vanishes. As a result, the trinomial
scheme reduces to a binomial scheme.

6. By equating the corresponding mean, variances and covariances [up to O(∆t) accuracy],
we have
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E[ζa1 ] = v1(p1 + p2 + p3 + p4 − p5 − p6 − p7 − p8) =

(
r − σ2

1

2

)
∆t (i)

E[ζa2 ] = v2(p1 + p2 − p3 − p4 + p5 + p6 − p7 − p8) =

(
r − σ2

2

2

)
∆t (ii)

E[ζa3 ] = v3(p1 − p2 + p3 − p4 + p5 − p6 + p7 − p8) =

(
r − σ2

3

2

)
∆t (iii)

var[ζa1 ] = v21(p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8) = σ2
1∆t (iv)

var[ζa2 ] = v22(p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8) = σ2
2∆t (v)

var[ζa3 ] = v23(p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8) = σ2
3∆t (vi)

E[ζa1 ζ
a
2 ] = v1v2(p1 + p2 − p3 − p4 − p5 − p6 + p7 + p8) = σ1σ2ρ12∆t (vii)

E[ζa1 ζ
a
3 ] = v1v3(p1 − p2 − p3 − p4 − p5 − p6 + p7 + p8) = σ1σ3ρ13∆t (viii)

E[ζa2 ζ
a
3 ] = v2v3(p1 − p2 − p3 + p4 + p5 − p6 − p7 + p8) = σ2σ3ρ23∆t (ix)

Lastly, the sum of probabilities must be one so that

p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 = 1. (x)

Recall that v1 = λ1σ
√
∆t, v2 = λ2σ

√
∆t and v3 = λ3σ

√
∆t. In order that Eqs (iv), (v)

and (vi) are consistent, we must set λ1 = λ2 = λ3. We write the common value as λ.
These 3 equations then reduce to single equation:

p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 =
1

λ2
.

There are only 8 equations and 9 unknowns. We impose the last condition: E[ζa1 ζ
a
2 ζ

a
3 ] = 0

[up to O(∆t) accuracy], which gives one additional equation:

E[ζa1 ζ
a
2 ζ

a
3 ] = v1v2v3(p1 − p2 − p3 + p4 − p5 + p6 + p7 − p8) = 0.

The probability values are obtained as follows:

p2 =
1

8

[
1

λ2
+

√
∆t

λ

(
r − σ2

1

2

2
+

r − σ2
2

2

2
−

r − σ2
3

2

2

)

+
ρ12 − ρ13 − ρ23

λ2

]
,

p3 =
1

8

[
1

λ2
+

√
∆t

λ

(
r − σ2

1

2

σ1

−
r − σ2

2

2

σ2

+
r − σ2

3

2

2

)

+
ρ13 − ρ12 − ρ23

λ2

]
,

p4 =
1

8

[
1

λ2
+

√
∆t

λ

(
r − σ2

1

2

2
−

r − σ2
2

2

2
−

r − σ2
3

2

2

)

+
ρ23 − ρ13 − ρ12

λ2

]
, etc.

7. Unlike the floating strike lookback call normalized by the asset price, where the exercise

payoff is expressible as
M(tj)

S(tj)
−1 = Yj−1, the exercise payoff in the fixed strike lookback
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call normalized by the asset price is
M(tj)−K

S(tj)
. It cannot be expressed in terms of

max(M(tj), K)

S(tj)
; so the dynamic programming procedure in pricing the corresponding

American option cannot be implemented. Pricing of the European option counterpart
causes no problem since the terminal payoff of the uncertain option component is zero
while the accumulated payments of the certainty option component is homogeneous in
S(tj).

8. (a) When tj+1 ̸= iZ, for all i, there will be no monitoring of the realized maximum of
the asset price in the next time step, so the usual backward induction procedure
prevails. The usual discounted expectation procedure gives

CX(S(tj), K
′, tj) = [pCX(uS(tj), K

′, tj+1) + (1− p)CX(dS(tj), K
′, tj+1)]e

−r∆t.

Since K ′ does not change, so k increases (decreases) by one when S(tj) moves up
(down). Upon normalizing CX(S(tj), K

′, tj) by S(tj), we obtain

XZ(k, tj) = [pXZ(k + 1, tj+1)u+ (1− p)XZ(k − 1, tj+1)d]e
−r∆t.

(b) When k ≥ 1 and tj+1 = iZ, the next time step is a monitoring instant for the new
realized maximum. Since k ≥ 1, an updated realized K ′ will be recorded at tj+1 =
iZ, so the index k becomes zero at tiZ , irrespective of either an up-move or down-
move of the asset price. Recall that S(tj) = K ′uk, k ≥ 1, given that an up-move
of the asset price occurs in the next time step, the guaranteed payment at maturity
is uS(tj) − K ′. When normalized by S(tj), it becomes u − u−k. This occurs with
probability p and it is paid N− (iz−1) time steps later. Similarly, for a down-move,
the normalized guaranteed payment at maturity is [dS(tj)−K ′]/S(tj) = u−1 − u−k.
Combining all these results together, we obtain

XZ(k, tiZ−1) = XZ(0, tiZ) + [p(u− u−k) + (1− p)(u−1 − u−k)]e−(N−iz+1)∆t.

(c) When k = 0 and tj+1 = iz, we have S(tj) = K ′. A newly realized maximum is
recorded if the asset price has an up-move in the next time step and k becomes zero.
Otherwise, k becomes −1 for a down-move of the asset price. For an up-move with
probability p, since S(tj) = K ′, the normalized guaranteed payment at maturity is
[uS(tj)−K ′]/S(tj) = u− 1. Combining all these results, we obtain

XZ(0, TiZ−1) = [pXZ(0, tiZ)u+ (1− p)XZ(−1, tiZ)d]e
−r∆t

+ p(u− 1)e−(N−iZ+1)∆t

9. If m is set equal to m̂, then the window Parisian feature reduces to the consecutive
Parisian feature. We define a binary string A = (a1, a2, · · · , aNw) of size Nw to represent
the history of the asset price path falling inside or outside the knock-out region at the
previous Nw consecutive monitoring instants prior to the current time. By convention,
the value of ap is set to be 1 if the asset price falls on or below the down barrier B at the
p-th monitoring instant counting backward from the current time; and it is set to be 0 if
otherwise.
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There are altogether 2Nw different binary strings to represent all possible breaching history
of asset price path at the previous Nw monitoring instants. The number of states that
have to be recorded is CNw

0 + CNw
1 + · · ·+ CNw

N−1, where CNw
i denotes the combination of

Nw strings taken i strings at a time. We sum from i = 0 to i = N − 1 since the window
Parisian option value becomes zero when the number of breaches reaches N , so those
states with N or more “1” in the string are irrelevant.

Let Vwin[m, j;A] denote the value of a window Parisian option at the (m, j)-th node,
arugmented with the asset price path history represented by the binary string A. The
binary string A has to be modified according to the event of either breaching or no
breaching at a monitoring instant. The corresponding numerical scheme can be succinctly
represented by

Vwin[m− 1, j;A] =


{puVwin[m, j + 1;A]

+ p0Vwin[m, j;A]

+ pdVwin[m, j − 1;A]}e−r∆t if m∆t ̸= t∗ℓ

where

gwin(A, j) =

{
(1, a1, a2, · · · , aNw−1) if xj ≤ lnB
(0, a1, a2, · · · , aNw−1) if xj > lnB

.

Note that Vwin[m, j;A] = 0 at a monitoring instant when the string A has N or more “1”.
Due to the higher level of path dependence exhibited by the window feature, the operation
counts of the window Parisian option calculations are roughly CNw

0 + CNw
1 + · · · + CNw

N−1

times of those of the plain vanila option calculations.

10. The payoff of a floating strike lookback call at time t, t ∈ (0, T ], is given by

max
τ∈[0,t]

Sτ − St,

where maxτ∈[0,t] Sτ denotes the realized maximum of the asset price over [0, t]. The
corresponding grid function at the (n, j)th node with asset price Sn

j = Suj is given by

glookback(k, j) = max(k, j).

Here, k is the numbering index for the lookback state variable and Smax
k = Suk. The FSG

algorithm is given by

V n
j,k = [puV

n+1
j+1,glookback(k,j+1) + p0V

n+1
j,glookback(k,j)

+ pdV
n+1
j−1,glookback(k,j−1)]e

−r∆t.

At the terminal nodes in the N -step trinomial tree, the terminal payoff dictates

V N
j,k = Suk − Suj,

where j = −N,−N + 1, · · · , N − 1, N , and k = −N,−N + 1, · · · , N − 1, N .

To incorporate the American early exercise feature, we simply incorporate the dynamic
programming procedure at each node and for each number index:

V n
j,k = max

{[
puV

n+1
j+1,glookback(k,j+1) + p0V

n+1
j,glookback(k,j)

+ pdV
n+1
j−1,glookback(k,j−1)

]
e−r∆t, Suk − Suj

}
.
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11. We let the current time be time 0 for convenience, ti be the ith observation date, Ti be
the settlement date of stocks based on the ith observation, Ti > ti. Let S denote the asset

value at the current time and define M = ln
H

S
. We write Xti as the log asset price ratio

ln
Sti

S
on the ith observation date. According to eq.(4.1.27) in Kwok’s text, the restricted

density function of the log asset price ratio with an upstream barrier M is given by

fup(x, ti;M) =
1

σ
√
ti

[
n

(
x− µti
σ
√
ti

)
− e

2µM

σ2 n

(
x− 2M − µti

σ
√
ti

)]
,

where µ = r − q − σ2

2
. The up-and-out call option value is given by

cuo(S, ti;K,H) = e−rti

∫ ln H
S

ln K
S

(Sex −K)fup(x, ti;M) dx.

We take advantage of the well known down-and-out call option value function cdo(S, ti;H),
where the strike price K is larger than the down barrier H. From eq.(4.1.40) in Kwok’s
text [also refer to eq.(4.1.10)], we obtain

cdo(S, ti;K,H) = e−rti

∫ ∞

lnK

(Sex −K)fdown(x, ti;M) dx

= cE(S, ti;K)−
(
H

S

)λ−1

cE(
H2

S
, ti;K),

where λ =
2(r − q)

σ2
and fdown(x, ti;M) has the same analytic form as that of fup(x, ti;M),

M = ln
H

S
. Here, cE(S, ti;K) is the value function of the vanilla European call option as

given by
cE(S, ti;K) = Se−qtiN(d

(i)
1 )−Ke−rtiN(d

(i)
2 ),

where

d
(i)
1 =

ln S
K
+
(
r − q + σ2

2

)
ti

σ
√
ti

and d
(i)
2 = d

(i)
1 − σ

√
ti.

Since fup(x, ti;M) and fdown(x, ti;M) share the same analytic form, we deduce that [see
eq.(4.1.41) in Kwok’s text]

cuo(S, ti;K,H) = cdo(S, ti;K,H)− cdo(S, ti;H,H)

=

[
cE(S, ti;K)−

(
H

S

)λ−1

cE(
H2

S
, ti;K)

]

−

[
cE(S, ti;H)−

(
H

S

)λ−1

cE(
H2

S
, ti;H)

]
.

In a similar manner, one can show that the value of the up-and-out put option with
K < H is given by (see Problem 4.5 in Kwok’s text)

puo(S, ti;K,H) = Xe−rtiN(−d
(i)
2 )− Se−qtiN(−d

(i)
1 )

−

[(
H

S

)λ−1

Xe−rtiN(−d
(i)
4 )−

(
H

S

)λ+1

Se−qtiN(−d
(i)
3 )

]
,
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where

d
(i)
3 =

2 ln H
S

σ
√
ti

+ d
(i)
1 and d

(i)
4 = d

(i)
3 − σ

√
ti.

According to Lam et al. (2009), we may express cuo(S, ti;K,H) and puo(S, ti;K,H) as

cuo(S, ti;K,H) = e−rti
{
EQ[e

Xti1A]−KEQ[1A]
}

puo(S, ti;K,H) = e−rti
{
KEQ[1B]− EQ[e

Xti1B]
}
,

where Q is a risk neutral measure, and

A =

{
ω ∈ Ω

∣∣∣∣Xti ≥ ln
K

S
,Mt < ln

H

S

}
,

B =

{
ω ∈ Ω

∣∣∣∣Xti < ln
K

S
,Mt < ln

H

S

}
,

Mt = max
0≤u≤ti

Xu.

With the delay settlement on Ti, the value function of the up-and-out-call and up-and-
out-put with delay settlement are given by

c(d)uo (S, Ti;K,H) = e−rTi
{
EQ[e

Xti1A]EQ[e
XTi

−Xti ]−KEQ[1A]
}

p(d)uo (S, Ti;K,H) = e−rTi
{
KEQ[1B]− EQ[e

Xti1B]EQ[e
XTi

−Xti ]
}
.

Since EQ[e
XTi

−Xti ] = e−q(Ti−ti), we can deduce easily that-

p(d)uo (S, Ti;K,H) = Xe−rTiN(−d
(i)
2 )− Se−qTiN(−d

(i)
1 )

−

[(
H

S

)λ−1

Xe−rTiN(−d
(i)
4 )−

(
H

S

)λ+1

Se−qTiN(−d
(i)
3 )

]
.

Comparing p
(d)
uo (S, Ti;K,H) and puo(S, ti;K,H), the up-and-out put price function with

and without delay settlement, we observe that the discount factors differ while the ex-
pectation terms N(−d

(i)
j ), j = 1, 2, 3, 4, stay the same. This is not surprising since the

shares of stock and strike price are delivered on Ti after the ith observation date ti while
the deciding criterion on the delivery of one or two units of stock remains to be deter-
mined by Sti ≥ K or Sti < K. In a similar manner, we can deduce c

(d)
uo (S, Ti;K,H) from

cuo(S, ti;K,H) by modifying the discount factors while the expectation terms N(d
(i)
j ),

j = 1, 2, 3, 4, stay the same.
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