
MAFS5250 - Computational Methods for Pricing Structured Products

Solution to Homework Two

Course instructor: Prof. Y.K. Kwok

1. Expand f(x0 − 2∆x) and f(x0 −∆x) at x0 into Taylor series, where

f(x0 − 2∆x) = f(x0)− 2∆xf ′(x0) + 4∆x2f ′′(x0) +O(∆x3)

f(x0 −∆x) = f(x0)−∆xf ′(x0) + ∆x2f ′′(x0) +O(∆x3).

We determine α−2, α−1 and α0 such that

α−2f(x0 − 2∆x) + α−1f(x0 −∆x) + α0f(x0) = f ′(x0) +O(∆x2).

Collecting like terms, we obtain

(α−2 + α−1 + α0)f(x0) + (−2α−2 − α−1)∆xf ′(x0)

+ (4α−2 + α−1)∆x2f ′′(x0) = f ′(x0) +O(∆x2).

The corresponding linear system of equations for α−2, α−1 and α0 is 1 1 1
−2 −1 0
4 1 0

α−2

α−1

α0

 =

 0
1/∆x
0

 .

The solution of the system gives α−2 =
1

2∆x
, α−1 = − 2

∆x
and α0 =

3

2∆x
. The corre-

sponding finite difference formula is the one-sided backward difference formula for the
first order derivative, namely

f ′(x0) ≈
f(x0 − 2∆x)− 4f(x0 −∆x) + 3f(x0)

2∆x
.

By changing ∆x to −∆x, we deduce that the one-sided forward difference formula for the
first order derivative is given by

f ′(x0) ≈
−f(x0 + 2∆x) + 4f(x0 +∆x)− 3f(x0)

2∆x
.

2. Local truncation error of the Crank-Nicolson scheme

=
V (j∆x, (n+ 1)∆τ)− V (j∆x, n∆τ)

∆τ

− σ2

4

[
V ((j + 1)∆x, (n+ 1)∆τ)− 2V (j∆x, (n+ 1)∆τ) + V ((j − 1)∆x, (n+ 1)∆τ)

∆x2

+
V ((j + 1)∆x, n∆τ)− 2V (j∆x, n∆τ) + V ((j − 1)∆x, n∆τ))

∆x2

]
− 1

2

(
r − σ2

2

)[
V ((j + 1)∆x, (n+ 1)∆τ)− V ((j − 1)∆x, (n+ 1)∆τ)

2∆x

+
V ((j + 1)∆x, n∆τ)− V ((j − 1)∆x, n∆τ)

2∆x

]
+

r

2
[V (j∆x, (n+ 1)∆τ) + V (j∆x, n∆τ)] .
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Expanding each term using the Taylor series expansion at the intermediate time level(
j∆x,

(
n+

1

2

)
∆τ

)
, we obtain

V (j∆x, (n+ 1)τ)− V (j∆x, n∆τ)

∆τ

=

{[
V +

∂V

∂τ

∆τ

2
+

1

2

∂2V

∂τ 2

(
∆τ

2

)2

+
1

6

∂3V

∂τ 3

(
∆τ

2

)3

+ · · ·

]

−

[
V − ∂V

∂τ

∆τ

2
+

1

2

∂2V

∂τ 2

(
∆τ

2

)2

− 1

6

∂3V

∂τ 3

(
∆τ

2

)3

+ · · ·

]}/
∆τ

=
∂V

∂τ
+

1

24

∂3V

∂τ 3
(∆τ)2 +O(∆τ 4).

Here, we adopt the convention that any derivative with no argument specified would

implicitly implies that the derivative is evaluated at

(
j∆x,

(
n+

1

2

)
∆τ

)
. Note that

[V ((j + 1)∆x, n∆τ)− 2V (j∆x, n∆τ) + V ((j − 1)∆x, n∆τ)]/(∆x)2

=
∂2V

∂x2
(j∆x, n∆τ) +

∆x2

12

∂4V

∂x4
(j∆x, n∆τ) +O(∆x4)

=
∂2V

∂x2
− ∆τ

2

∂3V

∂x2∂τ
+

1

2

(
∆τ

2

)2
∂4V

∂x2∂τ 2
+ · · ·

+
∆x2

12

[
∂4V

∂x4
− ∆τ

2

∂5V

∂x4∂τ
+

1

2

(
∆τ

2

)2
∂6V

∂x4∂τ 2
+ · · ·

]
+O(∆x4),

and

[V ((j + 1)∆x, (n+ 1)∆τ)− 2V (j∆x, (n+ 1)∆τ) + V ((j − 1)∆x, (n+ 1)∆τ)]/(∆x)2

=
∂2V

∂x2
+

∆τ

2

∂3V

∂x2∂τ
+

1

2

(
∆τ

2

)2
∂4V

∂x2∂τ 2
+ · · ·

+
∆x2

12

[
∂2V

∂x4
+

∆τ

2

∂5V

∂x4∂τ
+

1

2

(
∆τ

2

)2
∂6V

∂x4∂τ 2
+ · · ·

]
+O(∆x4).

Combining the results, we have

σ2

4

[
V ((j + 1)∆x, (n+ 1)∆τ)− 2V (j∆x, (n+ 1)∆τ) + V ((j − 1)∆x, (n+ 1)∆τ)

∆x2

+
V ((j + 1)∆x, n∆τ)− 2V (j∆x, n∆τ) + V ((j − 1)∆x, n∆τ)

∆x2

]
=

σ2

2

[
∂2V

∂x2
+O(∆τ 2) +O(∆x2)

]
.
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Similarly, we obtain

1

2

(
r − σ2

2

)[
V ((j + 1)∆x, (n+ 1)∆τ)− V ((j − 1)∆x, (n+ 1)∆τ)

2∆x

+
V ((j + 1)∆x, n∆τ)− V ((j − 1)∆x, n∆τ)

2∆x

]
=

1

2

(
r − σ2

2

)[
∂V

∂x
+O(∆τ 2) +O(∆x2)

]
,

and

r [V (j∆x, (n+ 1)∆τ) + V (j∆x, n∆τ)]

= rV +O(∆τ)2.

By noting that V

(
j∆x,

(
n+

1

2

)
∆τ

)
satisfies the Black-Scholes equation, we obtain the

local truncation error of the Crank-Nicholson scheme = O(∆τ 2) +O(∆x2).

3. Instead of imposing artificial boundary conditions for the bond price at r = rmin and
r = rmax, we enforce the condition that the option values along the boundary nodes of
the computational domain remain to be governed by the bond price equation. We apply
backward difference operators to approximate the continuous differential operators:

∂2B

∂r2

∣∣∣∣
rmax=(N+1)∆r

≈ BN+1 − 5BN + 4BN−1 −BN−2

∆r2
,

∂B

∂r

∣∣∣∣
rmax=(N+1)∆r

≈ 3BN+1 − 4BN +BN−1

2∆r
.

The corresponding explicit FTCS becomes

Bn+1
N+1 −Bn

N+1

∆τ
=

σ2rmax

2

Bn
N+1 − 5Bn

N + 4Bn
N−1 −Bn

N−2

∆r2

+ α(β − rmax)
3Bn

N+1 − 4Bn
N +Bn

N−1

2∆r
− rmaxB

n
N+1.

In a similar manner, we now apply the forward difference operators to approximate the
differential operators:

∂2B

∂r2

∣∣∣∣
rmin

≈ B0 − 5B1 + 4B2 −B3

∆r2
,

∂B

∂r

∣∣∣∣
rmin

≈ −3B0 + 4B1 −B2

2∆r
.

We obtain the following explicit FTCS at j = 0:

Bn+1
0 −Bn

0

∆τ
=
σ2rmin

2

Bn
0 − 5Bn

1 + 4Bn
2 −Bn

3

∆r2

+ α(β − rmin)
−3Bn

0 + 4Bn
1 −Bn

2

2∆r
− rminB

n
0 .
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4. For the given pricing formulation of the floating strike lookback put, the binomial param-
eters are determined by equating the mean and variance of the discrete random walk and
the continuous price process up to O(∆t):

(1− α)∆x− α∆x =

(
q − r − σ2

2

)
∆t,

(1− α)∆x2 + α∆x2 = σ2∆t.

We obtain ∆x = σ
√
∆t and

(1− 2α)∆x =

(
q − r − σ2

2

)
∆t =

(
q − r − σ2

2

)
∆x2

σ2
.

This gives

α =
1

2
+

∆x

2

(
r − q

σ2
+

1

2

)
.

1

x

x

1

1

n

jV

n

jV

1

1

n

jV

Here, α denotes the probability of down-move in the binomial tree. The binomial scheme
takes the form:

V n
j = αV n+1

j−1 + (1− α)V n+1
j+1 − qV n

j ∆t,

V n
j =

1

1 + q∆t

[
αV n+1

j−1 + (1− α)V n+1
j+1

]
, j ≥ 1.

The term −qV in the governing equation for V is similar to the discount term −rV in the

usual Black-Scholes equation. This gives rise to the discount factor
1

1 + q∆t
in the above

binomial pricing formula. When j = 0, the binomial formula involves the grid point at
j = −1, which is outside the computational domain. We then approximate the Neumann

boundary condition:
∂V

∂x
(0, t) = 0 using the one-sided finite difference formula, that is,

V n+1
−1 = V n+1

0 . The numerical boundary value is given by

V n
0 =

1

1 + q∆t

[
αV n+1

0 + (1− α)V n+1
1

]
.

This binomial scheme is similar to the Cheuk-Vorst scheme. To complete the construction
of the binomial scheme, we adopt the terminal payoff condition:

V N
j = ej∆x − 1, j ≥ 0.
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5. We write the FTCS scheme in the form of the standard 2-level-4-point scheme:

V n+1
j =

(
σ2

2
S2
j

∆τ

∆S2
+ rSj

∆τ

2∆S

)
V n
j+1

+

(
1− σ2S2

j

∆τ

∆S2
− r∆τ

)
V n
j

+

(
σ2

2
S2
j

∆τ

∆S2
− rSj

∆τ

2∆S

)
V n
j−1.

In order to avoid spurious oscillations, it suffices to have all the coefficients to be positive.
That is,

σ2

2
S2
j

∆τ

∆S2
+ rSj

∆τ

2∆S
> 0

1− σ2S2
j

∆τ

∆S2
− r∆τ > 0

σ2

2
S2
j

∆τ

∆S2
− rSj

∆τ

2∆S
> 0.

The first inequality is always satified. The last two inequalities are satisfied provided that

∆S <
σ2Sj

r
and ∆τ <

1

r +
σ2S2

j

∆S2

.

6. Let the first barrier be an up-stream barrier BH while the second barrier be the down-
stream barrier BL. The sequential barrier option is equivalent to a one-sided up-and-out
barrier with a rebate paid upon knock-out. The rebate is a one-sided down-and-out bar-
rier option. We assume a call payoff of the sequential barrier option. Let Bn

j and Rn
j

denote the numerical option value of the sequential barrier option and the rebate barrier
option at the (j, n)th node, respectively.

Design of the computational domain

For the sequential barrier option, we set the right boundary to coincide with the upstream
barrier BH . The left boundary must lie sufficiently far to the left end.

For the down-and-out barrier option (treated as the rebate upon breaching the up-barrier
in the sequential barrier option), we set the left boundary to coincide with the down-
stream barrier BL. The right boundary must lie sufficiently far to the right end. Here,
we choose M such that M >> N .
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Boundary conditions

(i) At j = 0, the sequential barrier option is deep out-of-the-money so that the option
value is close to zero. We set

Bn
0 = 0, for all n.

(ii) At j = N , which corresponds to the up-barrier BH , the sequential barrier option is
apparently “knocked” out, receiving the down-and-out barrier option as the rebate.
Therefore, we have

Bn
N = Rn

N , for all n.

(iii) At j = M , the (rebate) down-and-out barrier option is deep in-the-money so that
it is almost like a forward contract. Accordingly, the second order derivative of the
price function with respect to the stock price is close to zero. That is,

Rn
M =

5Rn
M−1 − 4Rn

M−2 +Rn
M−3

2
, for all n.

(iv) At j = L, the rebate barrier option is knocked out at x = BL with zero value. That
is

Rn
L = 0, for all n.

Both price functions of the sequential barrier option and the rebate barrier option
satisfy the Black-Scholes equation. We start with computation of the rebate barrier
option, then continue with the sequential barrier option. The explicit finite difference
schemes in both option calculations take an identical form:

Rn+1
j =

[
µ+ c

2
Rn

j+1 + (1− µ)Rn
j +

µ− c

2
Rn

j−1

]
e−r∆τ ,

j = L+ 1, · · · ,M − 1, n = 0, 1, 2, · · · .

Bn+1
j =

[
µ+ c

2
Bn

j+1 + (1− µ)Bn
j +

µ− c

2
Bn

j−1

]
e−r∆τ ,

j = 1, · · · , N − 1, n = 0, 1, 2, · · · ,

where µ = σ2∆τ
∆x2 and c =

(
r − q − σ2

2

)
∆τ
∆x

.
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7. In the continuation region where V > h, the penalty term vanishes. However, if the option
remains unexercised when it should be optimally exercised (in the region of optimal
stopping), we have V < h. As a result, the penalty term becomes highly dominant
since the penalty parameter ρ is typically chosen to be a very large positive parameter.
Intuitively, we observe that V should assume the exercise payoff h in the limit ρ → ∞.

Suppose we use S as the state variable and let V n
j denote the numerical option value

at the node (j∆S, n∆τ), where Sj = j∆S + S0 and S0 is the initial stock price. The
Crank-Nicolson scheme takes the form:

V n+1
j − V n

j

∆τ
=

σ2S2
j

2

[
V n+1
j+1 − 2V n+1

j + V n+1
j−1

∆S2
+

V n
j+1 − 2V n

j + V n
j−1

∆S2

]

+ (r − q)Sj

[
V n+1
j+1 − V n+1

j−1

2∆S
+

V n
j+1 − V n

j−1

2∆S

]

− r
V n+1
j + V n

j

2
+ ρmax{h(Sj)−

V n+1
j + V n

j

2
, 0}.

Due to the non-linearity exhibited in the penalty term, we cannot apply the Thomas
algorithm. Indeed, we need to use an iteration method to solve the resulting non-linear
algebraic system of equations.

8. The exponential distribution is the distribution of the random time between two successive
jumps of a Poisson process with rate 1/θ. Inverting the exponential distribution gives

X = −θ ln(1− U).

This can be implemented as
X = −θ ln(U)

since U and 1−U have the same distribution. As a summary, with U ∼ U(0, 1), we have
X = −θ lnU ∼ exp(θ).

9. Write ϵ1
ϵ2
ϵ3

 =

α11 0 0
α21 α22 0
α31 α32 α33

x1

x2

x3


where

M =

α11 0 0
α21 α22 0
α31 α32 α33

 .

The entries in M are determined by the relation:

MMT = Σ.

This yields

MMT =

 α2
11 α11α21 α31α11

α11α21 α2
21 + α2

22 α21α31 + α22α32

α31α11 α21α31 + α22α32 α2
31 + α2

32 + α2
33

 =

 1 0.6 0.5
0.6 1 0.7
0.5 0.7 1

 ,

7



and accordingly,

α2
11 = 1, α11α21 = 0.6, α31α11 = 0.5

α2
21 + α2

22 = 1, α21α31 + α22α32 = 0.7, α2
31 + α2

32 + α2
33 = 1.

We take α11 = 1 (we choose the positive root without loss of generality), then

α21 = 0.6, α22 =
√
1− 0.62 = 0.8 (choosing the positive root).

Also, α31 = 0.5, then

(0.6)(0.5) + 0.8α32 = 0.7 so that

α32 =
0.7− 0.3

0.8
= 0.5.

Lastly, α33 =
√

1− α2
31 − α2

32 = 1/
√
2 (choosing the positive root). Henceϵ1

ϵ2
ϵ3

 =

 1 0 0
0.6 0.8 0

0.5 0.5 1/
√
2

x1

x2

x3

 .

10. Since cAV =
c+ c̃

2
so that

var(cAV ) = var

(
c+ c̃

2

)
=

1

4
var(c) +

1

4
var(c̃) +

1

2
cov(c, c̃).

As c̃ is generated using −ϵ(i) while c is generated using ϵ(i), we expect to have

var(c) = var(c̃)

so that

var(cAV ) =
1

2
var(c) +

1

2
cov(c, c̃). (A)

Now, we apply the following criterion of determining the trade-off between computational
work units and variances: σ2

1/σ
2
2 < W2/W1. Since the amount of computational work

to compute cAV is about twice that of c, the control variate is preferred in terms of
computational efficiency provided that

var(cAV ) <
var(c)

2
. (B)

Based on Eq. (A), Ineq (B) is equivalent to

cov(c, c̃) < 0.

Since we have chosen −ϵ(i) for computing c̃i, the chances are high that ci and c̃i are
negatively correlated. Hence, the antithetic variates method improves computational
efficiency.
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11. E[∆Ŷ ] = E
[√

∆t
2

(
Z1 +

1√
3
Z2

)]
= 0;

E[∆Ŷ 2] = ∆t
4
E

[(
Z1 +

1√
3
Z2

)2
]
= ∆t

4

(
1 + 1

3

)
= ∆t

3
;

E[∆Ŷ∆Ŵ ] = ∆t
2
E
[
Z1

(
Z1 +

1√
3
Z3

)]
= ∆t

2
.

Correlation coefficient between ∆Ŷ and ∆Ŵ
= E[∆Ŷ∆Ŵ ]−E[∆Ŷ ]E[∆Ŵ ]√

var(∆Ŷ )
√
var(∆Ŵ )

=
∆t
2√

∆t
3

√
∆t

=
√
3
2
.

12. We consider

var(Xt) = E

[(
Wt −

t

T
WT

)2
]
− E

[
Wt −

t

T
WT

]2
= E[W 2

t ]−
2t

T
E[WtWT ] +

t2

T 2
E[W 2

T ]

= t− 2t

T
E[Wt(WT −Wt) +W 2

t ] +
t2

T 2
T .

Since the Brownian increments over non-overlapping time intervals are independent, so

E[Wt(WT −Wt)] = 0.

Hence

var(Xt) = t− 2t

T
t+

t2

T 2
T = t− t2

T
= t

(
1− t

T

)
.

Let Yt =
√
t
(
1− t

T

)
Z, Z ∼ N(0, 1), we have

E[Yt] = E[Xt] = 0 and var(Yt) = t

(
1− t

T

)
= var(Xt).

Also, Y0 = X0 = 0 and YT −XT = 0; so
√

t
(
1− t

T

)
Z, with Z ∼ N(0, 1), is a realization

of Xt.

13. (a) Note that

var(X̄Y ) =
1

N
var(X − Y )

=
1

N
[var(X) + var(Y )− 2cov(X, Y )] .

We achieve a reduction of the variance for the control variate estimator provided
that var(X) > var(X−Y ), which is equivalent to 2cov(X,Y ) > var(Y ). If Y is very
close to X, then we have the satisfaction of the inequality. This would imply the
significant reduction of the variance of the crude Monte Carlo estimator by using its
control variate variable.

(b) The efficiency of the control variate hinges on the fact that we can directly simulate
the difference Xi−Yi as one random variable. It is supposed that we know its exact
distribution, so one needs to generate one random variable.
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To obtain the confidence interval for the control variate Monte Carlo estimator, one
starts with that of the crude Monte Carlo estimator for E[X − Y ] and add E[Y ] to
the interval. For example, we obtain an approximate 95%-confidence interval by[

X̄Y − 1.96
σ̂X−Y√

N
, X̄Y + 1.96

σ̂X−Y√
N

]
,

where

σ̂2
X−Y =

1

N − 1

N∑
i=1

[
Xi − Yi −

1

N

N∑
j=1

(Xj − Yj)

]2

.
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