
MAFS5250 - Computational Methods for Pricing Structured Products

Computer Assignment Two

Work in a group of two Instructor: Prof. Y.K. Kwok

Pricing of Participating Life Insurance Policies

Product nature
A contract of nominal value P0 is issued by the company at time zero. The contract is imme-
diately acquired by an investor for a single premium of V0. We treat P0 as exogenously given
whereas V0 is determined by the pricing model. We refer V0 as the fair value of the contract.

The benefit from the contract at the maturity date is denoted by P (T ) and we shall generally
refer to {P (t)}0≤t≤T as the policy account balance process of the contract.

The evolution of P (·) between successive time points in the set Υ ≡ {1, 2, . . . , T} is deter-
mined by the discretely compounded policy interest rate process, {rP (t)}t∈Υ. Specifically, we
have

P (t) = P0Π
t
i=1[1 + rP (i)], t ∈ Υ.

Time is measured in years, given that P (·) is updated annually. The modeling of the annualized
interest rate crediting rP (·) is crucial, the details of which are presented below.

We use A(t) to denote the market value of the asset base backing the contract. Since the
pension and life insurance companies typically invest largely in highly liquid assets such as
bonds and stocks for which market prices are easily observable, we can safely assume that A
is tradeable. The policy account balance, P (t), which was introduced above, is a book value.
Alternatively, we can think of P (t) as the funds set aside to cover the contract liability – a
distributed reserve. B(t) denotes the undistributed reserve or simply the buffer, which is used
to partly protect the policy reserve, P (t), (in some sense company solvency) from unfavorable
fluctuations in the asset base.

To model the dynamics of the asset side, we specify the following stochastic differential
equation under the risk neutral measure Q for the evolution of the market value of the tradeable
asset base through time:

dA(t) = rA(t) dt+ σA(t) dWQ(t), A(0) = A0.

Here, r, σ and A0 are positive constants and WQ(t) is a standard Brownian motion defined on
the filtered probability space (Ω,ℑ, Q) in the finite time interval [0, T ]. The asset base thus
evolves through time according to the geometric Brownian motion (GBM).

Balance sheet

Assets Liabilities

A(t) P (t)

B(t)∑
= A(t)

∑
= A(t)

This balance sheet is not the company balance sheet but rather a snap-shot of the asset and
liability situation in relation to a given contract.
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For the liability side of the balance sheet, the interest rate crediting mechanism is modeled
by specifying the policy interest rate (compounded annually) as follows

rP (t) = max

{
rG, α

[
B(t−)

P (t−)
− γ

]}
,

where rG, α and γ are positive constants. We call γ as the target budget ratio and α as
the distribution ratio. Note that rP (·) is a discretely updated process and that rP (t) is fixed
for the year beginning at time t − 1. The investor is always guaranteed an annualized policy
interest rate of at least rG. Since rG is assumed to be positive, P (t) will be a strictly increasing
process. This again implies that the buffer, B(t), may in fact become (temporarily) negative –
a situation that can be interpreted as insolvency with respect to the individual contract. The
probability of this happening can be controlled mainly via the parameters α and γ. If the
actual/observed buffer relative to the policy account balance exceeds the desired level, γ, of
that ratio, the company will attempt to distribute a fraction, α, of the surplus. Provided that

α

[
B(t−)

P (t−)
− γ

]
> rG, we have

P (t+) = P (t−)

{
1 + α

[
B(t−)

P (t−)
− γ

]}
= P (t−) + α[B(t−)− γP (t−)]

= P (t−) + α[B(t−)−B∗(t−)],

where B∗(t−) = γP (t−) denotes the optimal buffer at time t−. Finally, we have the following
relation between account balances across the sampling time point t

P (t) = P (t−)

{
1 + max

(
rG, α

[
B(t−)

P (t−)
− γ

])}
= P (t−)

{
1 + rG +max

(
0, α

[
A(t−)− P (t−)

P (t−)
− γ

]
− rG

)}
.

Numerical algorithms
The fully implicit finite difference scheme has been well discussed in the lecture note. The key
steps are summarized below:

1. Start at time T and apply the terminal condition on a suitable grid in (A,P )-space,
where VT = P (T+). The crediting mechanism remains to be applicable at T+ since the
policyholder is eager to receive the last credit bonus.

2. For every value of P , solve the Black-Scholes partial differential equation, via a finite
difference scheme applied to the corresponding vector of constract values. This first step
will determine V(T−1)+ everywhere in the grid.

3. Apply the no-jump condition to obtain V(T−1)− everywhere in the grid.

4. Repeat steps 2 and 3 to obtain Vt− from V(t+1)− everywhere in the grid working backwards
from t = T − 1 to t = 0.
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An important aspect in the finite difference scheme is the no-jump (continuity) condition on
the value function across a sampling date t, where

Vt− = Vt+ ⇔ V (t−, A(t), P (t−)) = V (t+, A(t), P (t+)).

Note that A(t) is continuous across t while P (·) has a jump at t. A brief overview of the
procedure is presented below:

1. For each i and j in the grid, we compute

j̃ ≡ j∆P +max{(j∆P )rG, α((i∆A− j∆P )− (j∆P )γ)}
∆P

= j +max

{
jrG, α

[(
i
∆A

∆P
− j

)
− jγ

]}
.

Denote the integer part of j̃ as j.

2. If j + 1 ≤ J , we compute V i,j
t−1,0 by using the linear interpolation

V i,j
t−1,0 = [1− (j̃ − j)]V

i,j

t,K + (j̃ − j)V
i,j+1

t,K .

3. If j + 1 > J and hence lies outside the computational domain, then the above equation
cannot be used. Instead, since for large values of P , the contract value V is approximately
linear in P , we can apply the linear extrapolation

V i,j
t−1,0 = V i,J

t,K + (j̃ − J)
(
V i,J
t,K − V i,J−1

t,K

)
.

Work elements
Jensen et al. (2001) report various studies on the pricing properties of the participating policies.
In this computer assignment, you are asked to verify some of their numerical results and explore
several new phenomena in pricing behavior. By using the fully implicit scheme as presented
in the lecture note (or paper), we compute the contract value with and without the surrender
right under various sets of parameter values.

1. As a warm up for checking accuracy of your program, reproduce the tables of values on
the contract value as documented on P.27 of Topic 4. Use the same set of parameter
values and try the three pairs (I, J) : (100, 100), (200, 200), and (400, 400). Also, report
the CPU required.

2. We would like to explore the impact of the distribution ratio α and target budget ratio γ
on the option value of the surrender right with rG = 2% and r = 6%. The surrender option
value is the difference between the values of the contract with and without the surrender
right. You are asked to plot the surrender option value against time to maturity (up to
20 years) using the set of parameter values on P.27 of Topic 4 (other than the variation
of the parameter values for rG, r, α and γ). Try the following pairs of (α, γ):

(i) (α, γ) = (0.3, 0.1), (ii) (α, γ) = (0.4, 0.1), (iii) (α, γ) = (0.3, 0.15).

In the figure, show the 3 curves of the surrender option value corresponding to the 3 pairs
of (α, γ) listed above.
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(i) Explain the implementation of the surrender right at t = 1, 2, . . . , T − 1. Note that
the surrender right is immaterial at t = T (maturity date). Similar to an American
put on a discrete dividend paying asset, it may not be optimal to surrender at
instants that are right before a sampling date.

(ii) Give the financial interpretation of your numerical plots.

3. By choosing (α, γ) = (0, 3, 0.1) and rG = 2%, show the plots of the contract value against
maturity (up to 20 years) at r = 4%, 7% and 10%. Explore the interplay between the
increasing property of the surrender value and decreasing property of the bond component
when maturity lengthens.
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