
MAFS5250 – Computational Methods for Pricing Structured

Products

Topic 2 – Implied binomial trees and calibration of interest rate

trees

2.1 Implied binomial trees of fitting market data of option prices

• Arrow-Debreu prices and structures of the implied binomial trees

• Derman-Kani algorithm

2.2 Hull-White interest rate model and pricing of interest rate deriva-

tives

• Analytic procedure of fitting the initial term structures of bond

prices

• Calibration of interest rate trees against market discount curves
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2.1 Implied binomial tree

The implied binomial tree method is a numerical procedure of comput-

ing a discrete approximation to the continuous risk neutral process for

the underlying asset in a lattice tree that is consistent with observed

market prices of options.

The implied binomial tree procedure should observe

• node transition probabilities fall between 0 and 1.

Suppose that options with any strike prices and maturities are available

in the market and the implied binomial tree has been constructed to

match the market prices of the options up to the nth time step, how to

devise a forward induction procedure to find stock prices and transition

probabilities at the (n+1)th time step.
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Derman-Kani binomial tree versus Cox-Ross-Rubinstein (CRR) bino-

mial tree

In the CRR binomial tree, we assume σ to be constant. The upward

jump ratio is u = eσ
√
∆t. We obtain a symmetric recombining tree

by setting u = 1/d. Let F be the price of the forward maturing one

time step later. The martingale condition dictates the probability of

up move, where

p =
F − dS

uS − dS
=

er∆t − d

u− d
, where F = er∆tS.

The martingale condition dictates the expected rate of return of the

asset to be r.
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In the derivation of the CRR tree, we equate mean and variance of the

discrete and continuous asset price processes to determine p, u and

d. Equating variance gives u = eσ
√
∆t, equating mean is equivalent

to setting the martingale condition. We are free to set u = 1/d to

generate a symmetric recombining tree.

In the Derman-Kani binomial tree, we do not prescribe σ. Instead,

we enforce the amount of proportional jumps in asset price so that

consistency with market observed call and put prices are observed.

The jump ratio in the stock price tree reflects the level of volatility at

the time level and stock price level, implicitly, σ(S, t) (so called local

volatility function).
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At the nth time level, the n + 1 discrete asset prices are S
j
n, j =

0,1, . . . , n. Some structures of the implied binomial tree are imposed

for the nodes along the center level, and the two nodes right above

and below the center level.

1. Let the time step index n be even, say 4 time steps from the tip, the

central node is set to lie at the center level with S
n/2
n = S0

0 = S0.
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2. In the next time step, the corresponding index n+1 becomes odd,

we set the two nodes just above and below the center level to have

equal proportional jump in asset price from the central node in the

last time step. That is,

S
n
2+1
n+1

S
n
2
n

=
S

n
2
n

S
n
2
n+1

.

For example, when n = 8, we have

S5
9

S4
8
=

S4
8

S4
9

Next, we determine the positions of the upper and lower nodes suc-

cessively one node at a time by calibrating with known current market

prices of call and put options, respectively.

6



Derman-Kani algorithm

Nodal stock prices, risk neutral transition probabilities and Arrow-

Debreu prices (discounted risk neutral probabilities) in the implied bino-

mial tree are calculated iteratively over successive time steps, starting

at the level zero.

Construction of an implied binomial tree
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• The forward price at level n+1 of Si
n at level n is F i

n = er∆tSi
n.

• Conditional probability Pn
i+1 = P [S((n + 1)∆t) = Si+1

n+1|S(n∆t) =

Si
n] is the risk neutral transition probability of making an upward

move from node (n, i) to (n+1, i+1), i = 0,1, . . . , n.

Recall Ft = EQ[ST |Ft] or F i
n = EQ[S((n + 1)∆t)|S(n∆t) = Si

n] based

on martingale property of the asset price process, the risk neutral

transition probability is given by

F i
n = Pn

i+1S
i+1
n+1 + (1− Pn

i+1)S
i
n+1 (1)

so that

Pn
i+1 =

F i
n − Si

n+1

Si+1
n+1 − Si

n+1

.

Once the asset prices at the nodes of the implied binomial tree at

the (n+ 1)th time step are known, the transition probabilities Pn
i , i =

0,1, . . . , n, can be determined based on the martingale property of the

asset price process.
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• The Arrow-Debreu price λin is the price of an option that pays $1

if S(n∆t) attains the value Si
n, and 0 otherwise. Mathematically,

it is given by the discounted probability that S(n∆t) assumes Si
n,

where

λin = e−rn∆tE[1{S(n∆t)=Si
n}|S(0) = S0].

Iterative scheme for computing λin: Starting with λ00 = 1, based on law

of total probability, we generate the successive iterates by

λ0n+1 = e−r∆t[λ0n(1− Pn
1 )],

λi+1
n+1 = e−r∆t[λinP

n
i+1 + λi+1

n (1− Pn
i+2)], i = 0,1, . . . , n− 1.

λn+1
n+1 = e−r∆tλnnP

n
n+1.

There is only one down-move branch that leads to the node λ0n+1 from

the node λ0n. The corresponding probability of this downward move is

1− Pn
1 .
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To reach Si+1
n+1, we either move up from Si

n with risk neutral probability

Pn
i+1 or move down from Si+1

n with risk neutral probability 1− Pn
i+2.

10



Arrow-Debreu price tree

The Arrow-Debreu price tree can be calculated from the asset price

tree via the risk neutral transition probabilities.

CRR binomial tree for Arrow-Debreu prices with T = 2 years, ∆t = 1,

σ = 0.1 and r = 0.03.

asset price tree Arrow-Debreu price tree
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We start with

F0
0 = S0

0e
0.03 = 103.05,

so that the risk neutral transition probability is obtained as follows:

P0
1 =

F0
0 − S0

1

S1
1 − S0

1
=

103.05− 90.52

110.47− 90.52
= 0.628.

In a similar manner, we can compute P1
1 and P1

2 from the information

given in the asset price tree. The Arrow-Debreu prices are found to

be (see the Arrow-Debreu price tree)

λ01 = e−r∆tλ00(1− P0
1 ) = 0.36

λ11 = e−r∆tλ00P
0
1 = e−0.03 × 0.628 = 0.61

λ02 = e−r∆tλ01(1− P1
1 ) = 0.13

λ12 = e−r∆t[λ01P
1
1 + λ11(1− P1

2 )] = 0.44

λ22 = e−r∆tλ11P
1
2 = 0.37.
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Option prices and Arrow-Debreu prices

Based on the discounted expectation valuation principle under a risk

neutral measure, option prices maturing on (n + 1)∆t are related to

the Arrow-Debreu prices:

C((n+1)∆t;K) =
n+1∑
i=0

λin+1max(Si
n+1 −K,0) (2)

P ((n+1)∆t;K) =
n+1∑
i=0

λin+1max(K − Si
n+1,0). (3)

The call option price formula represents the sum of the contribution to

the option value from the payoff max(Si
n+1−K,0) when S((n+1)∆t) =

Si
n+1, i = 0,1, . . . , n + 1. The call option is equivalent to a portfolio

of Arrow-Debreu securities with number of units max(Si
n+1 − K,0)

corresponding to the state Si
n+1.

The forward price formula [eq.(1)] and the call and put option price

formulas [eqs.(2) and (3)] are used to compute the tree parameters in

the implied binomial tree. The implied binomial tree is built from the

center level up and down.
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λin, S
i
n, i = 0,1, . . . , n are assumed to be known at the nth time level.

Si
n+1, i = 0,1, . . . , n+1

Pn
i , i = 1, . . . , n+1

We determine Si
n+1, i = 0,1, . . . , n + 1, sequentially from the center

level up and down using market option prices at the (n+1)th time level

and known S
j
n, j = 0,1, . . . , n. The risk neutral transition probabilities

Pn
i , i = 1, . . . , n+1, are determined subsequently.
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Determination of the asset prices at the upper nodes

The upper part of the implied binomial tree grows from the central

node up one by one by using market call prices.

Applying the call option price formula at discrete times and using the

relation of the Arrow-Debreu prices at successive time steps, we obtain

er∆tC((n+1)∆t;K)

= λ0n(1− Pn
1 )max(S0

n+1 −K,0) + λnnP
n
n+1max(Sn+1

n+1 −K,0)

+
n−1∑
j=0

{λjnPn
j+1 + λj+1

n (1− Pn
j+2)}max(Sj+1

n+1 −K,0).

Next, we set K to be Si
n so that the call option is in-the-money at

t = (n+ 1)∆t when the stock price at the (n+ 1)th time level equals

S
j
n+1, j = i + 1, i + 2, . . . , n + 1. Only those terms in the summation

for j = i, i+1, . . . , n− 1 survive. We then have
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er∆tC((n+1)∆t;Si
n)

= {λinPn
i+1 + λi+1

n (1− Pn
i+2)}(S

i+1
n+1 − Si

n) + λnnP
n
n+1(S

n+1
n+1 − Si

n)

+
n−1∑

j=i+1

{λjnPn
j+1 + λj+1

n (1− Pn
j+2)}(S

j+1
n+1 − Si

n).

Note that we deliberately isolate the term that corresponds to j = i.

We group the terms with common λ
j
n by changing the summation index

and obtain

er∆tC((n+1)∆t;Si
n)

= λinP
n
i+1(S

i+1
n+1 − Si

n)

+
n−1∑

j=i+1

λjnP
n
j+1(S

j+1
n+1 − Si

n) + λnnP
n
n+1(S

n+1
n+1 − Si

n)

+ λi+1
n (1− Pn

i+2)(S
i+1
n+1 − Si

n) +
n∑

j=i+2

λjn(1− Pn
j+1)(S

j
n+1 − Si

n)

= λinP
n
i+1(S

i+1
n+1 − Si

n)

+
n∑

j=i+1

λjn[(1− Pn
j+1)(S

j
n+1 − Si

n) + Pn
j+1(S

j+1
n+1 − Si

n)].
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Recall F j
n = Pn

j+1S
j+1
n+1+(1−Pn

j+1)S
j
n+1 and the terms involving Si

n re-

duce to −λ
j
nS

i
n. Therefore, the time-0 price of the call option maturing

at (n+1)∆t and with strike Si
n is given by

C((n+1)∆t;Si
n) =

λinPn
i+1(S

i+1
n+1 − Si

n) +
n∑

j=i+1

λjn(F
j
n − Si

n)

 e−r∆t.

Lastly, we may eliminate Pn
i+1 in the above equation using

Pn
i+1 =

F i
n − Si

n+1

Si+1
n+1 − Si

n+1

.

This gives an equation that expresses Si+1
n+1 in terms of Si

n+1, C(Si
n, (n+

1)∆t) and other known quantities at the nth time level. The solution

for Si+1
n+1 is given in eq.(4) on P.21.
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Financial interpretation of the call price formula

The call with strike X = Si
n expires in-the-money at (n+1)∆t when

(i) at the nth time level, S(n∆t) = Si
n and moves up to Si+1

n+1 with

conditional probability Pn
i+1;

(ii) S(n∆t) = S
j
n, j ≥ i+1.

By nested expectation, the time-0 price of the call maturing at t =

(n+1)∆t is given by the discounted expectation of reaching the state

S
j
n (which is simply given by λ

j
n) followed by taking the discounted

conditional expectation of the terminal payoff of the call based on

reaching the state S
j
n. We write C((n+1)∆t;Si

n) as the terminal payoff

of the call with strike Si
n, then the discounted conditional expectation

is given by (see a similar proof on P.57 for interest rate tree)

e−r∆tE[C((n+1)∆t;Si
n)|S(n∆t) = Sj

n]

=

 e−r∆tPn
i+1(S

i+1
n+1 − Si

n) j = i

e−r∆t(F j
n − Si

n) j = i+1, i+2, . . . , n.
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With K being set to be Si
n, the call expires in-the-money at S

j
n+1,

j ≥ i+1.
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To avoid arbitrage, upward move probabilities must lie between 0 and

1.
• Suppose Pn

i+1 > 1, then F i
n > Si+1

n+1. The forward price cannot be

higher than the stock price even when the stock price at the next

move is in the upstate. We demand F i
n < Si+1

n+1.

• Suppose Pn
i+2 < 0, then F i+1

n < Si+1
n+1. The forward price cannot

be lower than the stock price even when the stock price at the next

move is in the down-state. We demand Si+1
n+1 < F i+1

n .

Combining the results together, we require F i
n < Si+1

n+1 < F i+1
n . If

the asset price Si+1
n+1 obtained from the above procedure violates this

inequality, we override the option price that produces it. Instead, we

choose an asset price that keeps the logarithmic spacing between this

node and its adjacent node the same as that between corresponding

nodes at the previous time level. That is,

Si+1
n+1

Si
n+1

=
Si+1
n

Si
n

.

Implicitly, volatility is assumed to stay at the same value in the next

time level and similar asset price level.
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Key procedures in the Derman-Kani algorithm

1. For the nodes above the center level, we are able to obtain Si+1
n+1 in

terms of Si
n+1, C((n + 1)∆t;Si

n), F i
n, and other known quantities

at the nth time level. We obtain

Si+1
n+1 =

Si
n+1[C((n+1)∆t;Si

n)e
r∆t − ρui ]− λinS

i
n(F

i
n − Si

n+1)

C((n+1)∆t;Si
n)er∆t − ρui − λin(F i

n − Si
n+1)

, (4)

where ρui denotes the following summation term:

ρui =
n∑

j=i+1

λjn(F
j
n − Si

n).

The above formula is used to find Si+1
n+1 knowing Si

n+1, starting

from the central nodes in the tree and going upwards.

21



(a) In the initiation step for the first upward node at j =
n

2
+ 1 when

n+1 is odd, we do not know S
n
2
n+1. By applying

S
n
2+1
n+1 =

(
S

n
2
n

)2
S

n
2
n+1

and substituting into eq.(4) with the elimination of S
n
2
n+1, we obtain

S
n
2+1
n+1 =

S
n
2
n

[
C((n+1)∆t;S

n
2
n)er∆t + λ

n
2
nS

n
2
n − ρun

2

]
λ
n
2
nF

n
2
n − C((n+1)∆t;S

n
2
n)er∆t + ρun

2

.

Recall S
n
2
n = S0. Once S

n
2+1
n+1 has been determined, we apply eq.(4)

to determine S
j
n+1, j =

n

2
+ 2,

n

2
+ 3, . . . , n+1.

(b) When n+1 is even, we set S
n+1
2

n+1 = S0
0. Again, we apply eq.(4) to

determine S
j
n+1, j =

n+3

2
,
n+5

2
, . . . , n+1, successively.
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2. We calculate the parameters in the lower nodes using known market

put prices P (Si
n, (n+1)∆t). In a similar manner, we obtain

Si
n+1 =

Si+1
n+1[e

r∆tP ((n+1)∆t;Si
n)− ρℓi] + λinS

i
n(F

i
n − Si+1

n+1)

er∆tP ((n+1)∆t;Si
n)− ρℓi + λin(F i

n − Si+1
n+1)

,

where ρℓi denotes the sum over all nodes below the one with price

Si
n:

ρℓi =
i−1∑
j=0

λjn(S
i
n − F j

n).

Once Si
n+1, i = 0,1, . . . , n + 1, are obtained, the transition proba-

bilities and Arrow-Debreu prices can be calculated accordingly.

Remark

Market option prices may not be available at the required strikes and

maturity dates. Interpolation is commonly used to estimate the re-

quired market option prices in the algorithm from limited data set of

observed market option prices.
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Numerical example (“Volatility Smile and its Implied Tree,” E.Derman

and I.kani, 1994)

We assume that the current value of the index is 100, its dividend yield

is zero, and that the annually compounded riskless interest rate is 3%

per year for all maturities.

We assume that the annual implied volatility of an at-the-money Euro-

pean call is 10% for all expirations, and that implied volatility increases

(decreases) linearly by 0.5 percentage points with every 10 point drop

(rise) in the strike. This defines the smile in this numerical example.

We show the standard (not implied) CRR binomial stock tree for a

local volatility of 10% everywhere. This tree produces no smile. It

is the discrete binomial analog of the continuous-time Black-Scholes

equation. We use the binomial tree for a given σ set at the implied

volatility to convert implied volatilities into quoted option prices. Its up

and down moves are generated by factors exp(±σ∆t). The transition

probability at every node is 0.625.
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Binomial stock tree with constant 10% stock volatility
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Implied stock tree obtained in the numerical example
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We determine the transition probabilities and Arrow-Debreu prices se-

quentially once the stock prices have been determined in the implied

stock prices one time step at a time.
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The assumed 3% interest rate means that the forward price one year

later for any node is 1.03 = 1+ 0.03 times that node’s stock price.

Today’s stock price at the first node on the implied tree is 100, and

the corresponding initial Arrow-Debreu price λ0 = 1.000. Let us find

the node A stock price in level 2. For even levels, we set Si+1 = SA,

S = 100, er∆t = 1.03 and λ1 = 1.000, then

SA =
100[1.03× C(100,1) + 1.000× 100−Σ]

1.000× 103− 1.03× C(100,1) +Σ
,

where C(100,1) is the value today of a one-year call with strike 100.

Note that Σ must be set to zero because there are no higher nodes

than the one with strike above 100 at level 0.
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According to the smile, we must value the call C(100,1) at an implied

volatility of 10%. In the simplified binomial world, C(100,1) = 6.38

when valued on the CRR tree. Inserting these values into the above

equation yields SA = 110.52. The price corresponding to the lower

node B in the implied tree is given by our chosen centering condition

SB = S2/SA = 90.48. The transition probability at the node in year 0

is

P =
103− 90.48

110.52− 90.48
= 0.625

Using forward induction, the Arrow-Debreu price at node A is given

by λA = λ0P/1.03 = (1.00 × 0.625)/1.03 = 0.607, as shown on the

bottom tree. In this way, the smile has implied the second level of the

tree.

We choose the central node to lie at 100. The next highest node C

is determined by the one-year forward value FA = 113.84 of the stock

price SA = 110.52 at node A, and by the two-year call C(SA,2) struck

at SA.

30



Since there are no nodes with higher stock values than that of node

A in year 1, the
∑

term is again zero, we obtain

SC =
100[1.03× C(SA,2)]− 0.607× SA × (FA − 100)

1.03× C(SA,2)− 0.607× (FA − 100)
.

The value of C(SA,2) at the implied volatility of 9.47% = 10% −
0.05× (110.52−100) corresponding to a strike of 110.52 is 3.92 in our

binomial world.

Substituting the values into the above equation yields SC = 120.27.

The transition probability is given by

PA =
113.84− 100

120.27− 100
= 0.682.

We can similarly find the new Arrow-Debreu price λC. We can also

show that the stock price at node D must be 79.30 to make the put

price P (SB,2) have an implied volatility of 10.47% consistent with the

smile.
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Suppose that we have already constructed the implied tree up to year

4, and also found the value of SF at node F to be 110.61. The stock

price SG at node G is given by

SG =
SF [1.03× C(SE,5)−Σ]− λE × SE × (FE − 110.61)

[1.03× C(SE,5)−Σ]− λE × (FE − 110.61)
,

where SE = 120.51 and FE = 120.51× 1.03 = 124.13 and λE = 0.329.

The smile’s interpolated implied volatility at a strike of 120.51 is 8.86%,

corresponding to a call value C(120.51,5) = 6.24. The value of the

Σ term in the above equation is given by the contribution to this call

from the node H above node E in year 4. We obtain

Σ = λH(FH − SE)

= 0.181× (1.03× 139.78− 120.51)

= 4.247

Substituting these values gives SG = 130.15.
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2.2. Hull-White interest rate model and pricing of interest rate

derivatives

Analytic procedure of fitting the initial term structures of bond

prices

In the Hull-White short rate model, ϕ(t) in the drift term is the only

time dependent parameter function in the model. Under the risk neu-

tral measure Q, the instantaneous short rate rt is assumed to follow

drt = [ϕ(t)− αrt] dt+ σ dZt,

where α and σ are constant parameters. The model includes the mean

reversion property. When rt > ϕ(t)/α, the drift becomes negative and

pulls rt back to the mean reversion level of ϕ(t)/α.

We assume that the two constant parameters α and σ can be estimated

by some other means. We illustrate the analytic procedure for the

calibration of ϕ(t) using the information of the current term structure

of bond prices.
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The discount bond price B(r, t;T ) is given by Et
Q[e

−
∫ T
t ru du]. By virtue

of the Feynman-Kac representation theorem, the governing partial d-

ifferential equation for the discount bond price B(r, t;T ) is given by

∂B

∂t
+

σ2

2

∂2B

∂r2
+ [ϕ(t)− αr]

∂B

∂r
− rB = 0, B(r, T ;T ) = 1.

We assume that the bond price function to be the affine form [linear

in r for lnB(t, T )]

B(t, T ) = ea(t,T )−b(t,T )r.

By substituting the assumed affine solution into the partial differential

equation and collecting like terms with and without r, the governing

ordinary differential equations for a(t, T ) and b(t, T ) are found to be

db

dt
− αb+1 = 0, t < T ; b(T, T ) = 0;

da

dt
+

σ2

2
b2 − ϕ(t)b = 0, t < T ; a(T, T ) = 0.
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Solving the pair of ordinary differential equations for a(t, T ) and b(t, T ),

we obtain

b(t, T ) =
1

α

[
1− e−α(T−t)

]
,

a(t, T ) =
σ2

2

∫ T

t
b2(u, T ) du−

∫ T

t
ϕ(u)b(u, T ) du.

It is easy to check that b(T, T ) = a(T, T ) = 0 so that B(T, T ) = 1. Our

goal is to determine ϕ(T ) in terms of the current term structure of

bond prices B(r, t;T ).

Applying the relation:

lnB(r, t;T ) + rb(t, T ) = a(t, T ),

we have∫ T

t
ϕ(u)b(u, T ) du =

σ2

2

∫ T

t
b2(u, T ) du− lnB(r, t;T )− rb(t, T ). (1)
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To solve for ϕ(u) in the above integral equation, the first step is to

obtain an explicit expression for
∫ T

t
ϕ(u) du. Given that b(t, T ) only

involves a constant and an exponential function, this can be achieved

by differentiating
∫ T

t
ϕ(u)b(u, T ) du with respect to T and subtracting

the terms involving
∫ T

t
ϕ(u)e−α(T−t) du.

The differentiation of the left hand side of Eq. (1) with respect to T

gives

∂

∂T

∫ T

t
ϕ(u)b(u, T ) du = ϕ(u)b(u, T )

∣∣∣∣∣
u=T

+
∫ T

t
ϕ(u)

∂

∂T
b(u, T ) du

=
∫ T

t
ϕ(u)e−α(T−u) du.
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We equate the derivatives on both sides to obtain∫ T

t
ϕ(u)e−α(T−u) du =

σ2

α

∫ T

t
[1− e−α(T−u)]e−α(T−u) du

−
∂

∂T
lnB(r, t;T )− re−α(T−t). (2)

We multiply Eq. (1) by α and obtain∫ T

t
ϕ(u)

[
1− e−α(T−u)

]
du =

σ2

2

∫ T

t

1

α

[
1− 2e−α(T−u) + e−2α(T−u)

]
du

− α lnB(r, t;T )− r
[
1− e−α(T−t)

]
. (3)

Adding Eq.(2) and Eq.(3) together, we have∫ T

t
ϕ(u) du =

σ2

2α

∫ T

t
[1− e−2α(T−u)] du− r

−
∂

∂T
lnB(r, t;T )− α lnB(r, t;T ).

Recall that lnB(r, t;T ) can be observed directly from the current term

structure of the discount bond prices.
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By differentiating the above equation with respect to T again and

noting that r is independent of T , we obtain ϕ(T ) in terms of the

current term structure of bond prices B(r, t;T ) as follows:

ϕ(T ) =
σ2

2α
[1− e−2α(T−t)]−

∂2

∂T2
lnB(r, t;T )

− α
∂

∂T
lnB(r, t;T ).

Alternatively, one may express ϕ(T ) in terms of the current term struc-

ture of the instantaneous forward rates F (t, T ), where

B(r, t;T ) = exp

(
−
∫ T

t
F (t, u) du

)
.

Note that −
∂

∂T
lnB(r, t;T ) = F (t, T ) so that we may rewrite ϕ(T ) in

the form

ϕ(T ) =
σ2

2α
[1− e−2α(T−t)] +

∂

∂T
F (t, T ) + αF (t, T ).

The merit of using F (t, T ) is analytic simplicity where the second

derivative term is avoided.
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Remarks on various versions of interest rates

1. Instantaneous short rate rt
This is the instantaneous interest rate known at time t and being

applied over (t, t + dt). For u > t, ru is not known at time t. In

terms of rt, the discount bond price is given by

B(r, t;T ) = Et
Q

[
e−
∫ T
t ru du

]
.

2. Instantaneous forward rate F (t, u)

This is the instantaneous interest rate known at time t and being

applied over (u, u + du), where u > t. Obviously, F (t, t) = rt. In

terms of F (t, u), the discount bond price is given by

B(r, t;T ) = e−
∫ T
t F (t,u) du.

In the reverse sense, this relation dictates the determination of

F (t, u) in terms of observed term structure of discount bond price,

where

F (t, T ) = −
∂

∂T
lnB(r, t;T ).
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Calibration of interest rate trees against market discount curves

In the discrete world, the interest rates on the Hull-White tree are

interpreted as the ∆-period rates over a finite period ∆, not the same

as the instantaneous short rate r. Let R(t) denote the ∆t-period rate

at time t applied over the finite time interval (t, t + ∆t). We can

equate the discount bond price B(r, t; t+∆t) and the discount factor

over (t, t+∆t) based on known ∆t-period rate R(t) to give

B(r, t; t+∆t) = e−R(t)∆t = ea(t,t+∆t)e−b(t,t+∆t)r(t).

The two rates r(t) and R(t) are related by

r(t) =
R(t)∆t+ a(t, t+∆t)

b(t, t+∆t)
.

• We assume that the ∆t-rate, R, follows a similar mean reversion

process as the instantaneous short rate r:

dR = [α(t)− aR] dt+ σ dZ.
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Tree construction procedures

Unlike the usual trinomial trees used in equity pricing, the calibrated

interest rate trees are distorted. The size of the displacement is the

same for all nodes at a particular time t.

• The first stage in building a tree for this model is to construct a

tree for a variable R∗ that is initially zero and follow the process

dR∗ = −aR∗ dt+ σ dZ, a > 0.

We build a symmetrical tree similar to Figure 2 for R∗.

• In the second stage, we build the tree for R that calibrates to the

initial term structures of discount bond prices. This is done by

determining αm = α(m∆t), m = 0,1,2, . . ., recursively.
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• Though there is a mean reversion term −aR∗, the mean reversion

level is zero. Hence, the stochastic process R∗(t) is symmetrical

about R∗ = 0. The mean and variance of the increment of R∗(t)
over ∆t are

E
[
R∗(t+∆t)−R∗(t)

]
= −aR∗(t)∆t

var
(
R∗(t+∆t)−R∗(t)

)
= σ2∆t

= E
[[
R∗(t+∆t)−R∗(t)

]2]− a2R∗2(t)∆t2.

• We define ∆R as the spacing between interest rates on the tree

and set ∆R = σ
√
3∆t. This proves to be a good choice of ∆R

from the viewpoint of minimization of discretization errors. When

σ is constant, ∆R has the same value at all nodes.

• In the first stage of this procedure, we build a tree similar to that

shown in Figure 2 for R∗. Due to the mean reversion feature of

R∗, we must resolve which of the three branching methods shown

in Figure 1 will apply at each node. This will determine the overall

geometry of the tree. Once this is done, the branching probabilities

must also be calculated.
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Which of the three branching methods shown in Figure 1 will apply at

each node?

Figure 1. Alternative branching methods in a trinomial tree.
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Mean reversion feature

The branching method used at a node must lead to the probabilities

on all three branches being positive. For those nodes that are not

close to the edge of the trinomial tree, the normal branching shown in

Figure 1(a) is appropriate.

It is necessary to switch from the normal branching in Figure 1(a) to

the downward branching in Figure 1(c) for a sufficiently large j. The

mean reversion drift becomes stronger at a high value of j, so further

upward moves of R∗ should be prohibited. Similarly, it is necessary

to switch from the normal branching in Figure 1(a) to the upward

branching in Figure 1(b) when j is sufficiently negative.
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Define (i, j) as the node where t = i∆t and R∗ = j∆R. The variable i is

a positive integer and j is a positive or negative integer. Define pu, pm,

and pd as the probabilities of the highest, middle, and lowest branches

emanating from the node. The probabilities of discrete moves of R∗

are chosen to match with the expected change and variance of the

change in R∗ under the continuous model over the next time interval

∆t. The probabilities must also sum to unity. This leads to three

equations in the three probabilities.

Normal branching

If the branching has the form shown in Figure 1(a), the mean and

variance of the discrete moves of R∗ over ∆t is pu∆R − pd∆R and

pu∆R2 + pd∆R2 − (pu∆R− pd∆t)2, respectively. The nodal transition

probabilities pu, pm, and pd at node (i, j) must satisfy the following

three equations:

pu∆R− pd∆R = −aj∆R∆t

pu∆R2 + pd∆R2 = σ2∆t+ a2j2∆R2∆t2

pu + pm + pd = 1.
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Using ∆R = σ
√
3∆t, the solution to these equations is

pu =
1

6
+

1

2
(a2j2∆t2 − aj∆t)

pm =
2

3
− a2j2∆t2

pd =
1

6
+

1

2
(a2j2∆t2 + aj∆t).

The nodal transition probabilities have dependence on j, where pd
becomes larger when j is larger. This is consistent with the mean

reversion feature.

We observe that pm remains positive when |aj∆t| <
√
2/3. This impos-

es a constraint on the time step ∆t, which becomes more restrictive

when j is large. It is desirable not to allow j to be too large. One can

show that x2 − x+
1

3
> 0 and x2 + x+

1

3
> 0 for all values of x, so pu

and pd are always positive.
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Upward branching

If the branching has the form shown in Figure 1(b), the corresponding

equations are

2pu∆R+ pm∆R = −aj∆R∆t

4pu∆R2 + pm∆R2 = σ2∆t+ a2j2∆R2∆t2

pu + pm + pd = 1.

The solution to these equations give the following probabilities

pu =
1

6
+

1

2
(a2j2∆t2 + aj∆t)

pm = −
1

3
− a2j2∆t2 − 2aj∆t

pd =
7

6
+

1

2
(a2j2∆t2 +3aj∆t).

Note that the roots of x2 +2x+
1

3
= 0 are −1±

√
2/3, so pm remains

positive when −1−
√
2/3 < aj∆t < −1+

√
2/3. When this condition is

satisfied, both pu and pd remain positive as well. Recall that upward

branching is chosen when j is sufficiently negative in value.
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Downward branching

If the branching has the form shown in Figure 1(c), the probabilities

are

pu =
7

6
+

1

2
(a2j2∆t2 − 3aj∆t)

pm = −
1

3
− a2j2∆t2 +2aj∆t

pd =
1

6
+

1

2
(a2j2∆t2 − aj∆t).

The roots of x2 − 2x −
1

3
= 0 are 1 ±

√
2/3, so pm remains positive

when 1−
√
2/3 < aj∆t < 1 +

√
2/3. Note that downward branching is

chosen when j is sufficiently positive.
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One can readily derive conditions on j for the transition probabilities

in the three branching methods to be strictly positive.

(i) For normal branching

−
√
2/3

a∆t
< j <

√
2/3

a∆t
;

(ii) For upward branching

−1−
√
2/3

a∆t
< j <

−1+
√
2/3

a∆t
;

(iii) For downward branching

1−
√
2/3

a∆t
< j <

1+
√
2/3

a∆t
.

The left side inequality gives the lower bound on j such that positiv-

ity of all probability values is guaranteed. Since 1−
√
2/3 <

√
2/3, it

is feasible to use either the normal branching or downward branch-

ing when
1−

√
2/3

a∆t
< j <

√
2/3

a∆t
.
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Number of time steps taken before downward branching starts (maxi-

mum number of upward moves)

Let jdown
start =


1−

√
2/3

a∆t

, which is the smallest integer greater than

1−
√
2/3

a∆t
. When j ≥ jdown

start >
1−

√
2/3

a∆t
, the downward branching can

be adopted with no occurrence of negative transition probabilities.

In actual implementation, it is desirable to adopt downward branching

once we reach the
(
jdown
start

)th
time step so that the most upper node

has the value of j that equals jdown
start . Due to the mean reversion of R∗

(reverting to the zero value), it is not sensible to allow R∗ to achieve

too high value (too many upward moves) in the trinomial tree of R∗.

Essentially, jdown
start is the maximum number of upward moves jmax in

the R∗-tree.
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Numerical example – Forward induction procedure

• Suppose that σ = 0.01, a = 0.1, and ∆t = 1 year. In this case,

∆R = 0.01
√
3 = 0.01732. We set jmax to be the smallest integer

greater than
1−

√
2/3

a∆t
= 0.184/0.1 so that jmax = 2. The choice

of jmax guarantees that all nodal probabilities are positive when

upward branching is used. By symmetry, we take jmin = −jmax, so

jmin = −2. The tree is as shown in Figure 2. The probabilities on

the branches emanating from each node are calculated using the

equations on p.46-48 for pu, pm and pd.

• The probabilities at each node in Figure 2 depend only on j, so the

probabilities at node B are the same as the probabilities at node F .

Furthermore, the tree is symmetrical. The probabilities at node D

are the mirror image of the probabilities at node B; that is, pu of

node D is the same as pd of node B. Due to the drift term −aR∗dt,
we have pu < pd at B and pu > pd at D.

51



Figure 2. Tree for R∗ in the Hull-White model (first stage)
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Spot rates used in generating the trees for R∗ and R

in Figures 2 and 3 respectively

Maturity Rate (%) time-0 price of discount bond

0.5 3.430 e−0.0343×0.5

1.0 3.824 e−0.03824×1

1.5 4.183 e−0.04183×1.5

2.0 4.512 e−0.04512×2 = 0.9137

2.5 4.812 e−0.04812×2.5

3.0 5.086 e−0.05086×3

The n-year spot rate is set to be the yield to maturity of the discount

bond maturing n years later.

Recall that R(t) is the ∆t-period rate known at time t. With ∆t = 1,

so R(0) = 0.03824.
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Second Stage

• The second stage in the tree construction is to convert the tree for

R∗ into a tree for R. This is accomplished by displacing the nodes

on the R∗-tree so that the initial term structure of discount bond

prices is exactly matched.

• Define

α(t) = R(t)−R∗(t).

We calculate the α’s iteratively so that the initial term structure

of discount bond prices is matched exactly.

• Define αi as α(i∆t), the value of R at time i∆t on the R-tree minus

the corresponding value of R∗ at time i∆t on the r∗-tree.

• Define Qi,j as the present value of a security that pays off $1 if node

(i, j) is reached and zero otherwise. The discrete mean reversion

level αi and the discrete Arrow-Debreu price Qi,j can be calculated

using forward induction in such a way that the initial term structure

of discount bond prices is matched exactly.
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Formulas for α’s and Q’s

By the definition of discrete Arrow Debreu price, we observe

E
[
D(t0, tm)1{R(tm)=αm+j∆R}

∣∣∣Ft0

]
= Qm,j.

To express the approach more formally, we suppose that the Arrow De-

breu prices Qm,j have been determined. The next step is to determine

αm so that the tree correctly prices a zero-coupon bond maturing at

(m+1)∆t. The ∆t-period spot rate R at node (m, j) is αm+ j∆R, so

that the price Pm+1 of a zero-coupon bond maturing at time (m+1)∆t

is given by

Pm+1 =
nm∑

j=−nm

Qm,j exp (−(αm + j∆R)∆t) , (A)

where nm is the number of nodes on each side of the centered node

at time m∆t.

To guarantee $1 at tm+1, we purchase exp(−(αm + j∆R)∆t) units

of the (m, j)-state security, for all j. When the jth state occurs, we

deposit exp(−(αm+j∆R)∆t) dollar received over the period [tm, tm+1].

This procedure is performed for all j.
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To show the formula, we consider

Pm+1 = E
[
D(t0, tm+1)|Ft0

]
,

where D(t0, tm+1) is the discount factor from t0 to tm+1.

Recall E[X|F] =
n∑

j=1

E[X|Bj]1Bj
, where {B1, B2, . . . , Bn} is the finite

partition that generates F. Using this formula, we obtain

E[D(tm, tm+1)|Ftm]

=
∑
j

1{R(tm)=αm+j∆R}E
[
D(tm, tm+1)

∣∣∣R(tm) = α+ j∆R
]

=
∑
j

1{R(tm)=αm+j∆R} exp(−(αm + j∆R)∆t).
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Applying the tower rule, we obtain

E[D(t0, tm+1)|Ft0]

= E[E[D(t0, tm)D(tm, tm+1)|Ftm]|Ft0]

= E[D(t0, tm)E[D(tm, tm+1)|Ftm]|Ft0]

= E

D(t0, tm)
∑
j

1{R(tm)=αm+j∆R} exp (−(αm + j∆R)∆t) |Ft0


=

∑
j

Qm,j exp(−(αm + j∆R)∆t).

The solution for αm from eq.(A) is

αm =
ln
∑nm

j=−nm
Qm,je

−j∆R∆t − lnPm+1

∆t
. (B)

Once αm has been determined, Qm+1,j can be calculated using

Qm+1,j =
∑
k

Qm,kq(k, j) exp (−(αm + k∆R)∆t) , (C)

where q(k, j) is the probability of moving from node (m, k) to node

(m + 1, j) and the summation is taken over all values of k for which

this is nonzero.
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Illustration of the Second Stage

• The value of Q0,0 is 1.0. The value of α0 is chosen to give the right

price for a zero-coupon bond maturing at time ∆t. That is, α0 is

set equal to the initial ∆t-period interest rate, where α0 = R(0).

• We take ∆t = 1 in this example, α0 = 0.03824 (as derived from

the zero rates on p.53). This defines the position of the initial

node on the R-tree in Figure 3.

• The next step is to calculate the values of Q1,1, Q1,0, and Q1,−1.

There is a probability of pu = 0.1667 that the (1,1) node is

reached from the (0,0) node and the discount rate for the first

time step is 3.824%. Based on eq.(C) on P.57, the value of Q1,1

is therefore 0.1667e−0.03824 = 0.1604 since only one node (0,0)

that goes to (1,1). Similarly, based on pm = 0.6666, we have

Q1,0 = 0.6666e−0.03824 = 0.6417. By symmetry, Q1,−1 = Q1,1 =

0.1667e−0.03824 = 0.1604.
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Once Q1,1, Q1,0, and Q1,−1 have been calculated, we are in a position

to determine α1. This is chosen to give the right price for a zero-

coupon bond maturity at time 2∆t as observed at time zero. From

∆R = 0.01
√
3 = 0.01732 and ∆t = 1, the price of this discount

bond as seen at node B is e−(α1+0.01732) since one year R(1) at B is

α1 +0.01732.

Similarly, the bond price at t = 2 as seen at node C is e−α1 and the

price as seen at node D is e−(α1−0.01732). The discount bond price as

seen at the initial node A is therefore [see the right hand side of eq.(A)

on P.55]

Q1,1e
−(α1+0.01732) +Q1,0e

−α1 +Q1,−1e
−(α1−0.01732).
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From the initial term structure of spot rates, this bond price should be

P2 = e−0.04512×2 = 0.9137.

Substituting for the Q’s in the above equation, we obtain

0.1604e−(α1+0.01732) +0.6417e−α1 +0.1604e−(α1−0.01732) = 0.9137

or

e−α1(0.1604e−0.01732 +0.6417+ 0.1604e0.01732) = 0.9137.

This gives [see eq.(B)]

α1 = ln

(
0.1604e−0.01732 +0.6417+ 0.1604e0.01732

0.9317

)
= 0.05205.

This means that the central node at time ∆t in the tree for R corre-

sponds to an interest rate of 5.205% (see Figure 3).
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Figure 3. Tree for R in the Hull-White model (second stage)
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Next, we calculate the Arrow-Debreu prices Q2,2, Q2,1, Q2,0, Q2,−1, and

Q2,−2.

Consider Q2,1 as an example. This is the time-0 value of a security

that pays off $1 if node F is reached and zero otherwise. Node F can

be reached only from nodes B and C. The ∆t-rates at these nodes are

R11 = α1 +∆R = 6.937% and R10 = α1 = 5.205%, respectively. The

probabilities associated with the B-F and C-F branches are 0.6566 and

0.1667, respectivley.
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The value at node B of a security that pays $1 at node F is therefore

0.6566e−0.06937. The value at node C is 0.1667e−0.05205. These two

values contribute to Q3,1. According to eq.(C) on P.57, we have

Q2,1 = 0.6566e−0.06937Q1,1 +0.1667e−0.05205Q1,0 = 0.1998.

Similarly, since node G can be reached from the three nodes B, C and

D, we have

Q2,0 = 0.2217e−0.06937Q11 +0.6666e−0.05205Q10

+0.2217e−0.03473Q1,−1

= 0.4736.

The next step in producing the R-tree in Figure 3 is to calculate α2.

Using eq.(A), we have

Q22e
−(α2+2×0.01732) +Q21e

−(α2+0.01732) +Q20e
−α2

+ Q2,−1e
−(α2−0.01732) +Q2,−2e

−(α2−2×0.01732) = e−0.05086×3.

After that, the Q3,j’s can then be computed. We can then calculate

α3; and so on.

63



Extension to other models

The procedure that has just been outlined can be extended to more

general models of the form

df(r) = [θ(t)− af(r)] dt+ σ dZ, a > 0.

The family of models has the property that they can fit a given term

structure of discount bond prices.

Under the discrete setting, we assume that the ∆t-period rate R follows

the same process as r:

df(R) = [θ(t)− af(R)] dt+ σ dZ, a > 0.
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1. Build the tree for x∗

We start by setting x = f(R), so that

dx = [θ(t)− ax] dt+ σ dZ.

The first stage is to build a tree for a variable x∗ that follows the

same process as x except that θ(t) = 0 and the initial value is zero.

The procedure here is identical to the procedure already outlined

for building a tree like that in Figure 2.

2. Determination of αi and Qi,j by fitting the initial term structure of

discount bond prices

As in Figure 3, we then displace the nodes at time i∆t by an

amount αi to provide an exact fit to the initial term structure of

discount bond prices. The equations for determining αi and Qi,j

inductively are slightly different from those for the f(R) = R case.
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The value of Q at the first node, Q0,0, is set equal to 1. Suppose

that the Qi,j have been determined for 1 ≤ m (m ≥ 0). The next

step is to determine θm so that the tree correctly prices an (m+1)∆t

zero-coupon bond.

Define g as the inverse function of f so that R = f−1(x) = g(x). The

∆t-period interest rate at the jth node at time m∆t is g(θm + j∆x).

For example, if f(R) = lnR, then g(x) = ex.

The price of a zero-coupon bond maturing at time (m+1)∆t is given

by

Pm+1 =
nm∑

j=−nm

Qm,j exp (−g(θm + j∆x)∆t) .

Since the inverse function g is involved, we cannot pull out θm explicitly

as in eq.(B) on p.57. The above equation for θm is solved using a

numerical procedure such as the Newton-Raphson method. The value

θ0 of θ when m = 0, is x(0) = f(R(0)).

66



Once θm has been determined, the Arrow Debreu prices Qi,j for i =

m+1 can be calculated using

Qm+1,j =
∑
k

Qm,kq(k, j) exp (−g(θm + k∆x)∆t) ,

where q(k, j) is the probability of moving from node (m, k) to node

(m + 1, j) and the summation is taken over all values of k where the

probability is nonzero.

Figure 4 shows the results of applying the procedure to the lognormal

model

d ln r = [θ(t)− a ln r] dt+ σ dZ

With the choices of parameter values: a = 0.22, σ = 0.25,∆t = 0.5,

and the spot rates are as in the earlier table.
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Figure 4. Tree for lognormal model
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Various choices of f(R)

When f(r) = r, we obtain the Hull-White model.

When f(r) = ln r, we obtain the Black-Karasinski model. In most

circumstances, these two models appear to perform about equally well

in fitting market data on actively traded interest rate derivatives such

as caps and European swaptions.

The main advantage of the f(r) = r model is its analytic tractability.

We can determine αm without the root finding procedure. Its main

disadvantage is that negative interest rates are possible.
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Hull-White model versus Black-Karasinski model

In most circumstances, the probability of negative interest rates occur-

ring under the Hull-White model is very small. However, some analysts

are reluctant to use a model where there is any chance at all of nega-

tive interest rates. The chance of such occurrence becomes high when

the prevailing interest rates are low.

The f(r) = ln r model has no analytic tractability to find θm. However,

it has the advantage that interest rates are always positive. Another

advantage is that traders naturally think in terms of σ’s arising from

a lognormal model (as in the Black-Scholes model) rather than σ’s

arising from a normal model.

The choice of model that appears to work well is one where f(r) is

chosen so that rates are lognormal for r less than 1% and normal for

r greater than 1%.
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