
MAFS5250 – Computational Methods for Pricing Structured

Products

Topic 3 – Finite difference methods

3.1 Discretization of the Black-Scholes equation

• Explicit schemes

- Domain of dependence

- Incorporation of boundary conditions

- Skew computational stencil

• Crank-Nicolson scheme

- Thomas algorithm

• Iterated method for pricing American options

• Two-asset models
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3.2 Numerical approximation of auxiliary conditions

• Initial conditions and terminal payoffs

• Lookback options - Neumann boundary condition

• Discretely monitored lookback and barrier options

• Down-barrier proportional step call option

3.3 Properties of numerical solutions

• Truncation errors and order of convergence

• Numerical stability

• Spurious oscillations
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3.1 Discretization of the Black-Scholes equation

Black-Scholes equation:
∂V

∂t
+ rS

∂V

∂S
+

σ2

2
S2∂

2V

∂S2
− rV = 0.

Use the transformed variables: τ = T − t, x = lnS,

∂

∂t
= −

∂

∂τ
,

∂

∂S
=

1

S

∂

∂x
or S

∂

∂S
=

∂

∂x
∂2

∂x2
= S

∂

∂S

(
S

∂

∂S

)
= S2 ∂2

∂S2
+ S

∂

∂S
so that S2 ∂2

∂S2
=

∂2

∂x2
−

∂

∂x
.

The transformed Black-Scholes equation now has constant coeffi-

cients:

∂V

∂τ
=

σ2

2

∂2V

∂x2
+

(
r −

σ2

2

)
∂V

∂x
− rV, τ > 0,−∞ < x < ∞.

To absorb the discount term, we let W = erτV , then

∂W

∂τ
=

σ2

2

∂2W

∂x2
+

(
r −

σ2

2

)
∂W

∂x
, τ > 0,−∞ < x < ∞.
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Remark

There has always been a debate on the choice of either S or x = lnS

as the independent state variable.

• If S is used, then the diffusion coefficient
σ2

2
S2 is state dependent.

Its value may become very small when S is close to zero. Small

value of diffusion coefficient may force the use of small step width

in explicit schemes due to numerical stability consideration.

• One may prefer uniform step width in the actual asset price S,

like increment ∆S of $1 rather than uniform step width in lnS.

The increment ∆x corresponds to the proportional jump e∆x in

the asset price since ∆x + lnS = ln e∆x + lnS = lnSe∆x. Note

that proportional jumps on the asset price are adopted in the

binomial/trinomial tree calculations.
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Discretization of the domain

Transform the domain of definition of the continuous problem

{(x, τ) : −∞ < x < ∞, τ ≥ 0}

into a discretized domain.

Infinite domain of x = lnS is approximated by a finite truncated

interval [−M1,M2],M1 and M2 are sufficiently large. The discretized

domain is overlaid with a uniform system of meshes (j∆x, n∆τ), j =

0,1, · · · , N +1, n = 0,1,2, · · · with (N +1)∆x = M1 +M2.

Step width ∆x and time step ∆τ are in general independent. Option

values are computed only at the grid points. To reflect the Brownian

nature of the asset price process, it is common to choose ∆τ =

O(∆x2).

While we perform backward induction in trinomial calculations (go-

ing backwards in calendar time), we march forward in the temporal

variable τ (time to expiry) in the finite difference calculations.
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x
n = 0

n = 1

n = 2

-M1

j = 0

),( nxj

x

M2

j = N + 1

Finite difference mesh with uniform stepwidth ∆x and time step ∆τ .

Numerical option values are computed at the node points (j∆x, n∆τ), j =

1,2, · · · , N , n = 1,2, · · · . Option values along the boundaries: j = 0

and j = N+1 are prescribed by the boundary conditions of the option

model. The “initial” values V 0
j along the zeroth time level, n = 0,

are given by the terminal payoff function.
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Respective forward difference, backward difference and centered dif-

ference formula at the (j∆S, n∆τ) node:

V n
j+1 − V n

j

∆S
,
V n
j − V n

j−1

∆S
and

V n
j+1 − V n

j−1

2∆S
.

Approximations to the delta or
∂V

∂S
.
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Why does centered difference achieve higher order of accuracy com-

pared to forward difference or backward difference?

Consider the centered difference approximation

f ′(x) ≈
f(x+∆x)− f(x−∆x)

2∆x
,

by performing the Taylor expansion of f(x+∆x) and f(x−∆x), we
obtain

f(x+∆x)− f(x−∆x)

2∆x

=

{[
f(x) + f ′(x)∆x+

f ′′(x)

2!
∆x2 +

f ′′′(x)

3!
∆x3 +

f ′′′′(x)

4!
∆x4 + · · ·

]
−
[
f(x)− f ′(x)∆x+

f ′′(x)

2!
∆x2 −

f ′′′(x)

3!
∆x3 +

f ′′′′(x)

4!
∆x4 + · · ·

]}/
(2∆x)

= f ′(x) +
f ′′′(x)

6
∆x2 + · · ·

so that

f(x+∆x)− f(x−∆x)

2∆x
= f ′(x) +

f ′′′(x)

6
∆x2 +O(∆x4).
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For the forward difference approximation:

f(x+∆x)− f(x)

∆x
= f ′(x) +

f ′′(x)

2
∆x+O(∆x)2

so that it approximates f ′(x) only up to O(∆x) accuracy.

In order to achieve O(∆x2) using forward difference, it is necessary

to include 3 points, where

f ′(x) ≈
−f(x+2∆x) + 4f(x+∆x)− 3f(x)

2∆x
+O(∆x2).

The corresponding 3-point backward difference formula can be de-

duced to be

f ′(x) ≈
f(x− 2∆x)− 4f(x−∆x) + 3f(x)

2∆x
+O(∆x2).
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Centered difference formula for the second order derivative

f ′′(x) ≈
f ′
(
x+ ∆x

2

)
− f ′

(
x− ∆x

2

)
∆x

≈ [f(x+∆x)− f(x)]− [f(x)− f(x−∆x)]

∆x2

=
f(x+∆x)− 2f(x) + f(x−∆x)

∆x2
.

With symmetry in the centered difference scheme, we are able to

achieve O(∆x2) accuracy using only 3 points.
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Forward difference formula for the second order derivative

To achieve second order accuracy, we need to use 4 points:

f ′′(x) = α0f(x)+α1f(x+∆x)+α2f(x+2∆x)+α3f(x+3∆x)+O(∆x2).

We expand f(x + j∆x), j = 1,2,3, at x, and equate the coefficient

of f(x), f ′(x) and f ′′′(x) to be zero and the coefficient of f ′′(x) to be

one. The leading error term would be O(∆x2) and involving f ′′′′(x).

α0 + α1 + α2 + α3 = 0

α1 +2α2 +3α3 = 0

(α1 +4α2 +9α3)(∆x2/2) = 1

α1 +8α2 +27α3 = 0.

We obtain the forward difference formula:

f ′′(x) ≈
2f(x)− 5f(x+∆x) + 4f(x+2∆x)− f(x+3∆x)

∆x2
+O(∆x2).

Similarly, the backward difference formula is given by

f ′′(x) ≈
2f(x)− 5f(x−∆x) + 4f(x− 2∆x)− f(x− 3∆x)

∆x2
+O(∆x2).
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Explicit schemes

Let V n
j denote the numerical approximation of V (j△x, n△τ). The

continuous temporal and spatial derivatives are approximated by the

following finite difference operators

∂V

∂τ
(j△x, n△τ) ≈

V n+1
j − V n

j

△τ
(forward difference)

∂V

∂x
(j△x, n△τ) ≈

V n
j+1 − V n

j−1

2△x
(centered difference)

∂2V

∂x2
(j△x, n△τ) ≈

V n
j+1 − 2V n

j + V n
j−1

△x2
(centered difference)

In terms of Wn
j , by substituting the corresponding difference approx-

imations into the differential equation for W , we have

Wn+1
j −Wn

j

∆τ
=

σ2

2

Wn
j+1 − 2Wn

j +Wn
j−1

∆x2
+

(
r −

σ2

2

)
Wn

j+1 −Wn
j−1

2∆x
.
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By observing

Wn+1
j = er(n+1)∆τV n+1

j and Wn
j = ern∆τV n

j ,

then canceling ern∆τ , we obtain the following explicit Forward-Time-

Centered-Space (FTCS) finite difference scheme:

V n+1
j =

[
V n
j +

σ2

2

△τ

△x2

(
V n
j+1 − 2V n

j + V n
j−1

)
+

(
r −

σ2

2

)
△τ

2△x

(
V n
j+1 − V n

j−1

)]
e−r△τ .

• Suppose we are given the “initial” values V 0
j , j = 0,1, · · · , N + 1,

along the zeroth time level, we can use the explicit scheme to

find values V 1
j , j = 1,2, · · · , N along the first time level at τ =

△τ . Forward difference instead of centered difference is used in

approximating
∂V

∂τ
since we prefer two-level scheme to three-level

scheme.

• The values at the two ends V 1
0 and V 1

N+1 are given by the nu-

merical boundary conditions specified for the option model.
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Two-level four-point explicit schemes

V n+1
j = b1V

n
j+1 + b0V

n
j + b−1V

n
j−1, j = 1,2, · · · , N, n = 0,1,2, · · · .

The above FTCS scheme corresponds to

b1 =

[
σ2

2

△τ

△x2
+

(
r −

σ2

2

)
△τ

2△x

]
e−r∆τ ,

b0 =

(
1− σ2

△τ

△x2

)
e−r∆τ ,

b−1 =

[
σ2

2

△τ

△x2
−
(
r −

σ2

2

)
△τ

2△x

]
e−r∆τ .

This resembles the trinomial scheme by observing

1

λ2
=

σ2∆τ

∆x2
.

For example, b1 becomes 1
2λ2

+
(r−σ2

2 )
√
∆τ

2λσ , which equals the probability

of up-jump p1 in the trinomial scheme.
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In order to avoid the occurrence of negative values in the coefficients,

we must observe

(i) σ2 ∆τ
∆x2

< 1

Accordingly, the time step ∆τ must be chosen such that ∆τ <

∆x2/σ2.

(ii) σ2

2
∆τ
∆x2

>

(
r − σ2

2

)
∆τ
2∆x ⇔ ∆x <

σ2/2
r−σ2/2

When σ2

2 is small or r − σ2

2 is significant (convection dominated),

this condition places a stringent constraint on ∆x.

The coefficients b−1, b0 and b1 have the interpretation of probabili-

ties in the trinomial schemes. Numerical oscillations with unbounded

growth will be resulted in the finite difference calculations when some

of the probability values are negative.
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Both the binomial and trinomial schemes are members of the above

family when the tree symmetry condition ud = 1 holds.

The up-jump in x = lnS is given by lnu in the binomial scheme while

the corresponding up-jump in x in the finite difference scheme is ∆x,

so that △x = lnu. Similarly, ln d = −△x. Note that x + ∆x =

lnS + lnu = lnuS and x −∆x = ln dS. The binomial scheme can be

expressed as

V n+1(x) =
pV n(x+△x) + (1− p)V n(x−△x)

R
, x = lnS and R = er△τ ,

where V n+1(x), V n(x + △x) and V n(x − △x) are analogous to c, c∆t
u

and c∆t
d , respectively. This corresponds to

b1 = p/R, b0 = 0 and b−1 = (1− p)/R.

In the Cox-Ross-Rubinstein scheme, we have ∆x = lnu = σ
√
∆τ

or σ2∆τ = ∆x2. In the trinomial scheme, their relation is given by

λ2σ2∆τ = ∆x2, where the free parameter λ can be chosen arbitrarily,

provided λ ≥ 1.
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Domain of dependence

The lattice tree calculations confine computation of option values

within a triangular domain of dependence. This may be seen to be

more efficient when single option value at given values of S and τ is

required.

The domain of dependence of a binomial scheme with n time steps to expiry.
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• The width of the domain of dependence = 2n∆x = 2n lnu =

2nσ
√
∆τ = 2σ

√
T
√
n, where T = n∆τ .

• With respect to x = lnS, the width of the domain of dependence

of a binomial scheme can be shown to be O(
√
n), where n is the

total number of time steps. That is, the width is doubled when

the number of time steps is increased by 4-fold. Theoretically, the

domain of dependence covers the whole infinite domain (−∞,∞)

when n → ∞.

• The width of the domain of definition of the continuous European

vanilla option model is infinite while that of a barrier option is

semi-infinite (one-sided barrier) or finite (two-sided barriers).
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Incorporation of boundary conditions by finite difference schemes

• The values at the boundary nodes are dictated by the boundary

conditions of the option model. Suppose boundary nodes are not

included in the domain of dependence, then the boundary condi-

tions of the option model do not have any effect on the numerical

solution of the discrete model. This negligence of the boundary

conditions does not significantly affect accuracy of calculation-

s when the boundary points are at infinity, as in vanilla option

models where the domain of definition for x = lnS is infinite.

• This is no longer true when the domain of definition for x is

truncated, as in the barrier option models. To achieve sufficient

numerical accuracy, it is important that the numerical scheme

takes into account the effect of boundary conditions.
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• An up-and-out put option with an upstream knock-out barrier B

that is continuously monitored would have its domain of definition

defined for −∞ < x < lnB. In general, a rebate is paid upon

knock-out so that the barrier put option value equals the rebate

value upon knock-out. That is,

pbarrier(lnB, τ) = R(τ),

where R(τ) is the time dependent rebate function.

We must specify the option value along the two boundaries of the

computational domain. The boundary conditions specified would de-

pend on the type of option we are solving.
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Here, we use S as the independent state variable.

1. To price a call option; at S = 0, V n
0 = 0.

For large S, the call value tends to S −Xe−r(T−t).

V n
N+1 = (N +1)∆S −Xe−rn∆τ .

2. For a put option, at S = 0, V = Xe−r(T−t) so that

V n
0 = Xe−rn∆τ .

The put option becomes worthless for large S so that

V n
N+1 = 0.
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3. When the option has a payoff that is almost linear in the under-

lying for large values of S, then you can use the upper boundary

condition

∂2V

∂S2
(S, t) → 0 as S → ∞.

Almost all common derivative contracts have this property. This

is particularly useful because it is independent of the type of a

contract being valued. We set
∂2V

∂S2
along the nodes at j = N +1

to be zero. Using the backward difference formula:

∂2V

∂S2

∣∣∣∣∣
(N+1,n)

≈
2V n

N+1 − 5V n
N +4V n

N−1 − V n
N−2

∆S2
= 0

so that

V n
N+1 =

5V n
N − 4V n

N−1 + V n
N−2

2
.

We obtain the boundary value V n
N+1 in terms of the interior values

V n
N , V n

N−1 and V n
N−2.
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Skew computational scheme with one-sided difference formulas

Computational domain = {(xj, τn) : j = 0,1, · · · , N+1, n = 0,1,2, · · · }.

Domain of definition of the continuous European vanilla option model

= {(x, τ) : −∞ < x < ∞,0 ≤ τ ≤ T}

1

1

n

N
V

n

N
V

1

n

N
V

n

N
V

1

n

N
V

2

j = N + 1 cor-

responds to the

boundary nodes

along the right

boundary of the

computational

domain.
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Approximation of the Black-Scholes equation at boundary nodes

The option values at j = N + 1 should not be prescribed by any

boundary conditions arising from the continuous European vanilla

option model. If otherwise, it would create undesirable numerical

errors if we arbitrarily set inappropriate numerical boundary values.

Rather, we take the notion that the option values at j = N+1 should

remain to be governed by the Black-Scholes equation.

Recall that we cannot approximate ∂2V
∂x2

|j=N+1 using VN , VN+1 and

VN+2 based on the centered difference formula since node VN+2 does

not exist (outside the computational domain).
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We discretize the Black-Scholes equation using the one-sided back-

ward difference formula at the (N +1)th node along the right bound-

ary:

∂V

∂x

∣∣∣∣∣
j=N+1

≈
VN−1 − 4VN +3VN+1

2∆x
;

∂2V

∂x2

∣∣∣∣∣
j=N+1

≈
VN+1 − 5VN +4VN−1 − VN−2

∆x2

so that

V n+1
N+1 − V n

N+1

∆τ
=

(
r −

σ2

2

)
V n
N−1 − 4V n

N +3V n
N+1

2∆x

+
σ2

2

2V n
N+1 − 5V n

N +4V n
N−1 − V n

N−2

∆x2
− rV n

N+1.

V n+1
N+1 can be determined from known values of V n

N−2, V
n
N−1, V

n
N and

V n
N+1 at the nth time level.
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Advantages of explicit schemes

• It is easier to program and less likely to make mistakes.

• When it does go unstable it is usually obvious.

• It is easy to incorporate accurate one-sided differences.

Disadvantages of explicit schemes

• There are restrictions on the time step due to numerical stabil-

ity consideration so the method would be less efficient than the

implicit schemes (to be discussed later).

• The information of the boundary conditions takes a finite number

of time steps to take effect into option valuation at nodes that

are far from the boundary.
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Crank-Nicolson scheme

Suppose the discount term −rV and the spatial derivatives are ap-

proximated by the average of the centered difference operators at the

nth and (n+1)th time levels

−rV

(
j∆x,

(
n+

1

2

)
∆τ

)
≈ −

r

2

(
V n
j + V n+1

j

)
∂V

∂x

(
j∆x,

(
n+

1

2

)
∆τ

)
≈

1

2

V n
j+1 − V n

j−1

2∆x
+

V n+1
j+1 − V n+1

j−1

2∆x


∂2V

∂x2

(
j∆x,

(
n+

1

2

)
∆τ

)
≈

1

2

(
V n
j+1 − 2V n

j + V n
j−1

∆x2

+
V n+1
j+1 − 2V n+1

j + V n+1
j−1

∆x2

 .

and the temporal derivative by the centered difference

∂V

∂τ

(
j∆x,

(
n+

1

2

)
∆τ

)
≈

V n+1
j − V n

j

∆τ
,
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we then obtain the following two-level implicit finite difference scheme

V n+1
j = V n

j +
σ2

2

∆τ

∆x2

V n
j+1 − 2V n

j + V n
j−1 + V n+1

j+1 − 2V n+1
j + V n+1

j−1

2


+

(
r −

σ2

2

)
∆τ

2∆x

V n
j+1 − V n

j−1 + V n+1
j+1 − V n+1

j−1

2


− r∆τ

V n
j + V n+1

j

2

 ,

which is commonly known as the Crank-Nicolson scheme.

The above Crank-Nicolson scheme is seen to be a member of the

general class of two-level six-point schemes that take the form

a1V
n+1
j+1 + a0V

n+1
j + a−1V

n+1
j−1 = b1V

n
j+1 + b0V

n
j + b−1V

n
j−1,

j = 1,2, · · · , N, n = 0,1, · · · .
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n+1

n

x
xj 1 xj 1xj

x
2

1
, nj

(n + 1)th time level

nth time level

The Crank-Nicolson scheme involves 3 option values at both the nth

and (n+1)th time level.
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In order to achieve O(∆τ2) accuracy, we approximate V,
∂V

∂τ
,
∂V

∂x
,
∂2V

∂x2

at the fictitious intermediate
(
n+

1

2

)th

time level.

∂2V

∂x2

)
j,n+1

2

≈
1

2

∂2V
∂x2

∣∣∣∣∣
j,n+1

+
∂2V

∂x2

∣∣∣∣∣
j,n


∂V

∂τ

)
j,n+1

2

≈
V

n+1
2+

1
2

j − V
n+1

2−
1
2

j

2
(
∆τ
2

) =
V n+1
j − V n

j

∆τ
.

Relate V n+1
j+1 , V n+1

j and V n+1
j−1 (to be computed at the new time level)

with V n
j+1, V

n
j and V n

j−1 (known values at the old time level).
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Suppose the values for V n
j are all known along the nth time level,

the solution for V n+1
j requires the inversion of a tridiagonal system

of equations. For the simple cases, we may assume V n+1
0 and V n+1

N+1
to be known values directly available from the boundary conditions.

The two-level six-point scheme can be represented as

a0 a1 0 · · · · · ·0
a−1 a0 a1 0 · · · 0

· · ·
· · ·

· · ·
0 · · · · · · 0 a−1 a0





V n+1
1

V n+1
2
·
·
·

V n+1
N


=



c1
c2
·
·
·
cN


,

where

c1 = b1V
n
2 + b0V

n
1 + b−1V

n
0 − a−1V

n+1
0 ,

cN = b1V
n
N+1 + b0V

n
N + b−1V

n
N−1 − a1V

n+1
N+1,

cj = b1V
n
j+1 + b0V

n
j + b−1V

n
j−1, j = 2, · · · , N − 1.
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Thomas algorithm – solution of the tridiagonal system

Consider the solution of the following tridiagonal system of the form

−ajVj−1 + bjVj − cjVj+1 = dj, j = 1,2, · · · , N,

with V0 = VN+1 = 0. For the more general consideration, we allow

the coefficients to differ among equations. The imposition of V0 =

VN+1 = 0 dictates that the first and the last equations have only 2

unknowns.

• In the first step of elimination, we reduce the system to the

upper triangular form by eliminating Vj−1 in the jth equation,

j = 2,3, . . . , N .

• Starting from the first equation, we can express V1 in terms of

V2 and other known quantities. This relation is then substituted

into the second equation giving a new equation involving V2 and

V3 only.
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• We express V2 in terms of V3 and some known quantities. We

then substitute into the third equation, . . ., and so on.

• At the end of the elimination procedure, the last but one equation

and the last equation both have only 2 unknowns. They can be

solved easily to obtain VN−1 and VN .

• Once VN−1 is available, since the last but two equation has been

reduced to contain VN−2, VN−1 only, the solution to VN−2 can then

be obtained directly. We proceed to obtain VN−3, VN−4, · · · , V2, V1
by successive backward substitution.

Suppose the first k equations have been reduced to the form

Vj − ejVj+1 = fj j = 1,2, · · · , k.

We use the kth reduced equation to transform the original (k + 1)th

equation to the same form.
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Gaussian elimination procedure at work

We use the reduced form of the kth equation

Vk − ekVk+1 = fk

and the original (k +1)th equation

−ak+1Vk + bk+1Vk+1 − ck+1Vk+2 = dk+1

to obtain the new (k +1)th reduced equation

Vk+1 − ek+1Vk+2 = fk+1.

The elimination of Vk from these two equations gives a new equation

involving only two unknowns Vk+1 and Vk+2, namely,

−ak+1(ekVk+1 + fk) + bk+1Vk+1 − ck+1Vk+2 = dk+1

⇔ Vk+1 −
ck+1

bk+1 − ak+1ek
Vk+2 =

dk+1 + ak+1fk
bk+1 − ak+1ek

.
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We then deduce the following recurrence relations for ej and fj:

ej =
cj

bj − ajej−1
, fj =

dj + ajfj−1

bj − ajej−1
, j = 1,2, · · · , N.

The first equation is

b1V1 − c1V2 = d1 or V1 −
c1
b1

V2 =
d1
b1

so that e1 = c1/b1 and f1 = d1/b1. Apparently, we may start with

e0 = f0 = 0 in the recurrence relation and obtain the same set of

values for e1 and f1. The tridiagonal system is now effectively reduced

to a bidiagonal (upper diagonal) form.

Starting from the above initial values, the recurrence relations can

be used to find all values ej and fj, j = 1,2, · · · , N . Once the system

is in an upper triangular form, we can solve for VN , VN−1, · · ·V1, suc-

cessively by backward substitution, starting from VN+1 = 0. That is,

VN = fN , and VN−1 = eN−1VN + fN−1, etc.
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Summary

1. Compute ej and fj, j = 1,2, · · · , N , using the following recursive

relations:

ej =
cj

bj−ajej−1
, e0 = 0;

fj =
dj+ajfj−1
bj−ajej−1

, f0 = 0.

2. Solve backward for VN , VN−1,· · · ,V1, where

Vk − ekVk+1 = fk, k = N − 1, N − 2, · · · ,1 with VN = fN .

• On the control of the growth of roundoff errors, the calculations

would be numerically stable provided that |ej| < 1 so that error in

Vj+1 will not be magnified and propagated to Vj. This condition

would pose certain constraint on the choice of ∆τ and ∆x in the

Crank-Nicolson scheme.
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Computational efficiency

• The Thomas algorithm is a very efficient algorithm where the

tridiagonal system can be solved with 4 (add/subtract) and 6

(multiply/divide) operations per node point.

• More precisely, we need 2 multiply/divide and 1 add/subtract in

calculating ej, 3 multiple/divide and 2 add/subtract in calculating

fj, 1 multiply/divide and 1 add/subtract in calculating Vj.

• Compared with the explicit schemes (which requires 3 multi-

ply/divide and 2 add/subtract), it takes about twice the number

of operations per time step.
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Incorporation of boundary conditions

If the option values are not prescribed on the boundaries of the com-

putational domain, then the first and the last equation may contain

4 unknowns due to the choice of skew computational stencil at the

boundary nodes. Consider the left boundary node at j = 0, we have

the equation that involves V0, V1, V2 and V3, where

a0V0 + b0V1 + c0V2 + d0V3 = f0.

For the next node, j = 1, 3 unknowns are involved where

a1V0 + b1V1 + c1V2 = f1.

For j = 2, we have

a2V1 + b2V2 + c2V3 = f2.

From the above 3 equations, we can eliminate V0 and V1 to obtain

an equation that involves V2 and V3.

One can then proceed with the Thomas algorithm as usual.
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Fully implicit scheme

Suppose we approximate V (j∆x, (n + 1)∆τ) using backward differ-

ence in
∂V

∂τ
and centered difference in

∂V

∂x
and

∂2V

∂x2
, we obtain the

following implicit scheme:

V n+1
j − V n

j

∆τ
=

σ2

2

V n+1
j+1 − 2V n+1

j + V n+1
j−1

∆x2
+

(
r −

σ2

2

)
V n+1
j+1 − V n+1

j−1

2∆x
−rV n+1

j .

This leads to the following two-level-four-point scheme

a1V
n+1
j+1 + a0V

n+1
j + a−1V

n+1
j−1 = V n

j

where

a1 = −
[
σ2

2

∆τ

∆x2
+

(
r −

σ2

2

)
∆τ

2∆x

]

a0 = 1+ σ2
∆τ

∆x2
+ r

a−1 = −
[
σ2

2

∆τ

∆x2
−
(
r −

σ2

2

)
∆τ

2∆x

]
.
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Advantages

1. Retain all the advantages of implicit schemes, like numerical sta-

bility, immediate response to boundary conditions (through solu-

tion of a tridiagonal system of equations at every time step).

2. Avoidance of potential numerical oscillations commonly called the

Crank-Nicolson noises.

3. The adoption of backward difference in
∂V

∂τ
would lead to O(∆τ)

accuracy. However, since we typically keep ∆τ = O(∆x2), so

the overall O(∆x2) accuracy is maintained. Recall that we take

σ2∆τ = λ2∆x2 in the trinomial scheme and ∆x = lnu = σ
√
∆τ

in the binomial scheme.
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Iterated method for pricing American options

The naive approach of computing V n+1
j from the tridiagonal system

of equations derived from an implicit scheme, then followed by com-

paring V n+1
j with the intrinsic value is NOT acceptable since we do

not know in advance whether the neighboring nodal values V n+1
j−1 and

V n+1
j+1 assume the intrinsic value or the corresponding continuation

value.

In other words, the original tridiagonal system of equations for V n+1 =

(V n+1
1 · · ·V n+1

N ) is not the appropriate system of equations for the

computation of the continuation values. This is because the system

of equations have not incorporated the information on whether the

option values at neighboring nodes assume the continuation value or

exercise value.
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Plot of the exercise region and continuation region of an America call

option

At a given time level τ = n∆τ , some nodes lie in the continuation

region while others lie in the exercise region, so we should not use

the same tridiagonal system for solving V n as in the case of pricing

European options.
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Gauss-Siedel iterative scheme for numerical solution of linear

system of equations

Consider an algebraic system of equations

Ax = b,

we write A = D + L+ U , where L is the lower triangular part and U

is the upper triangular part of A, respectively.

We start with (L+D)x = −Ux+b, and construct the iterative scheme:

(L+D)x(k) = −Ux(k−1) + b

or x(k) = D−1(b− Lx(k) − Ux(k−1)).

For the ith component of x(k), the Gauss-Seidel scheme is

x
(k)
i =

1

aii

bi − i−1∑
j=1

Aijx
(k)
j −

n∑
j=i+1

Aijx
(k−1)
j

 .

The computational of x
(k)
i uses x

(k)
j , j = 1,2, . . . , i − 1, that have

already been computed. For xj, j = i + 1, . . . , n, only the (k − 1)th

iterates are known.
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Conversion of an implicit evaluation into explicit calculations via an

iterative procedure

Consider an implicit finite difference scheme of the form

a−1Vj−1 + a0Vj + a1Vj+1 = dj, j = 1,2, · · · , N,

where the superscript “n+1” is omitted for brevity, and dj represents

the known quantities. We express Vj in terms of other quantities as

follows:

Vj =
1

a0

(
dj − a−1Vj−1 − a1Vj+1

)
.

The Gauss-Seidel iteration produces the kth iterate of Vj by

V
(k)
j =

1

a0

(
dj − a−1V

(k)
j−1 − a1V

(k−1)
j+1

)
= V

(k−1)
j +

1

a0

(
dj − a−1V

(k)
j−1 − a0V

(k−1)
j − a1V

(k−1)
j+1

)
,

where the last term in the above equation represents the correction

made on the (k − 1)th iterate of Vj.
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We start from j = 1 and proceed sequentially with increasing value

of j. When we compute V
(k)
j in the kth iteration, the new kth iterate

V
(k)
j−1 is already available while only the old (k − 1)th iterate V

(k−1)
j+1 is

known.

By proceeding sequentially node by node, the dynamic programming

procedure of maximizing the option value by the choice of either

continuation or early exercise can be updated immediately based on

the most recent iterates.
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Applying the dynamic programming procedure at each iteration step

Let hj denote the intrinsic value of the American option at the jth

node. To incorporate the constraint that the option value must be

above the intrinsic value, the dynamic programming procedure in

combination with the above relaxation procedure is given by

V
(k)
j

= max

(
V

(k−1)
j +

1

a0

(
dj − a−1V

(k)
j−1 − a0V

(k−1)
j − a1V

(k−1)
j+1

)
, hj

)
.

When the jth node is in the exercise region, Vj takes up hj. When

the jth node is in the continuation region, Vj satisfies the difference

scheme at the jth node and will not take up hj. In summary, the

successive iterates of the estimated option values take advantage of

the updated information on whether the continuation value or exercise

value is adopted by the neighboring nodal option values.
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Choices of the starting iterates

For nodal option values at the (n+1)th time level, based on the crude

approximation that V n+1
j −V n

j ≈ V n
j −V n−1

j , it is convenient to choose

the zeroth iterate to be
(
V n+1
j

)(0)
= V n

j +(V n
j −V n−1

j ) = 2V n
j −V n−1

j ,

n ≥ 1. For n = 0, we may use the Black Scholes pricing formula to

approximate the American option values along the first time level.

Termination criterion

A sufficient number of iterations are performed until the following

termination criterion is met:√√√√√ N∑
j=1

(
V

(k)
j − V

(k−1)
j

)2
< ϵ, ϵ is some small tolerance value.

The convergent value V
(k)
j is taken to be the numerical approximate

solution for Vj.
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Discretization of the two-asset Black-Scholes equation

Let x1 = lnS1 and x2 = lnS2, the option price function V (x1, x2, τ)

is governed by

∂V

∂τ
=

σ21
2

∂2V

∂x21
+ ρσ1σ2

∂2V

∂x1∂x2
+

σ22
2

∂2V

∂x22
+

(
r −

σ21
2

)
∂V

∂x1
+

(
r −

σ22
2

)
∂V

∂x2
− rV,

−∞ < x1 < ∞, −∞ < x2 < ∞, τ > 0.

How to discretize the second order derivative terms?

∂2V

∂x21

∣∣∣∣∣
(i1,i2,n)

≈
V n
i1+1,i2

− 2V n
i1,i2

+ V n
i1−1,i2

∆x21

(i1 − 1, i2) (i1, i2) (i1 +1, i2)• • •

∂2V

∂x22

∣∣∣∣∣
(i1,i2,n)

≈
V n
i1,i2+1 − 2V n

i1,i2
+ V n

i1,i2−1

∆x22

•(i1, i2 +1)

•(i1, i2)
•(i1, i2 − 1)

The combination of these two discretized forms involve 5 points in

the computational stencil.
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We define the centered difference operators ξx1 and ξx2 that approx-

imate
∂

∂x1
and

∂

∂x2
as follows:

ξx1V
n
i1,i2

=
V n
i1+1,i2

− V n
i1−1,i2

2∆x1
,

ξx2V
n
i1,i2

=
V n
i1,i2+1 − V n

i1,i2−1

2∆x2
.

We approximate the cross-derivative term at (i1, i2, n) by

∂2V

∂x1∂x2

∣∣∣∣∣
(i1,i2,n)

≈ ξx2(∆x1 V n
i1,i2

) (i1 − 1, i2 +1) (i1 +1, i2 +1)
• •

= ξx2
V n
i1+1,i2

− V n
i1−1,i2

2∆x1

=
(V n

i1+1,i2+1 − V n
i1+1,i2−1)− (V n

i1−1,i2+1 − V n
i1−1,i2−1)

4∆x1∆x2

(i1 − 1, i2 − 1) (i1 +1, i2 − 1)
• •
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The above discretization of the cross-derivative term adds another 4

points in the computational stencil. The Kamrad-Ritchken’s trinomi-

al scheme involves only 5 points. Since the finite difference discretiza-

tion suffers from higher computational complexity when compared

with the probabilistic approach in deriving the trinomial scheme, so

we adopt the 5-point trinomial scheme instead of the 9-point finite

difference scheme.

The 5-point trinomial scheme works well when σ is not state depen-

dent. When σi is a function of Si and t, i = 1,2, the probability values

cannot be found easily.
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How to derive the skew computational stencil along a boundary of

the computational domain?

Due to loss of symmetry in a skew stencil, we abandon the 5-point

scheme and use the 6-point scheme that involves 6 probability values.

We obtain 6 equations for the 6 probability values by

(i) equating two means,

(ii) equating two variances and one covariance,

(iii) sum of probability values equals one.
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One natural choice of 6-point stencil involves (0, i2+1), (0, i2), (0, i2−
1), (1, i2), (2, i2), (3, i2), that is, taking 4 points along the horizontal

row i2. A more preferable choice is presented below:

We write the discretized scheme in the form

V n+1
0,i2

=
(
p0,0V

n
0,i2 + p0,−1V

n
0,i2−1 + p0,1V

n
0,i2+1

+ p1,−1V
n
1,i2−1 + p1,1V

n
1,i2+1 + p2,0V

n
2,i2

)
e−r∆t.
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We use the approximation: var(X) ≈ E(X2) since E(X)2 is O(∆τ2);

the same for cov(XY ) ≈ E(XY ) since E(X)E(Y ) is O(∆τ2). The 6

equations for the probability values are given by

∆x1(2p2,0 + p1,−1 + p1,1) = (r −
σ21
2
)∆τ

∆x2(p0,1 − p0,−1 + p1,1 − p1,−1) = (r −
σ22
2
)∆τ

∆x21(4p2,0 + p1,−1 + p1,1) = σ21∆τ

∆x22(p0,1 + p0,−1 + p1,1 + p1,−1) = σ22∆τ

∆x1∆x2(−p1,−1 + p1,1) = ρσ1σ2∆τ

p0,0 + p0,−1 + p0,1 + p1,−1 + p1,1 + p2,0 = 1.

Note that O(∆τ)2 terms are neglected in the calculations of the two

variances and one covariance.
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How about the choice of stencil of a node at a corner of the compu-

tational domain?

Which of the above 6-point scheme would be the better choice?

One criterion is to examine which scheme has less stringent conditions

on ∆x1, ∆x2 and ∆t with regard to avoidance of negative probability

values.
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3.2 Numerical approximation of auxiliary conditions

Auxiliary conditions refer to the terminal payoff function plus addi-

tional boundary conditions due to the knock-out feature or embedded

path dependent features in the option contract.

“Initial” condition is prescribed by the terminal payoff

At expiry, the option value is just the terminal payoff function. We

have

V (S, T ) = Payoff(S),

or in the finite difference setting,

V 0
j = Payoff(j∆S).

For example, when pricing a call option, we set

V 0
j = max (j∆S −K,0) .
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Smoothing of discontinuities in the terminal payoff functions

• Most terminal payoff functions of options have some form of

discontinuity (like the binary payoff) or non-differentiability (like

the call or put payoff). Quantization error arises since the payoff

function is sampled at discrete node points.

• Let VT (S) denote the terminal payoff function. Instead of simply

taking the value VT (Sj), the payoff value at node Sj is given by

averaging over the node cell, where

V 0
j =

1

∆S

∫ Sj+
∆S
2

Sj−∆S
2

VT (S) dS.
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Take the call payoff max(S − K,0) as an example. Suppose we set

the strike price K fall exactly on a node point, then VT (Sj) = 0 while

the cell-averaged value over
[
Sj −

∆S

2
, Sj +

∆S

2

]
is

1

2

(
∆S

2

)2/
∆S =

∆S/8.
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Averaging the terminal payoff for the vanilla European and American

calls can provide a smoother convergence. The smoothed numerical

solutions then allow the application of extrapolation for convergence

enhancement.

The idea of extrapolation is to find the extrapolated numerical value

V (0) at vanishing time step (continuous solution). Suppose the nu-

merical error is reduced by half when the time step is reduced by half

(linear rate of convergence), then

V (0) ≈ V

(
∆t

2

)
+
[
V

(
∆t

2

)
− V (∆t)

]
.

The extrapolation procedure works well only if convergence of numer-

ical solution value is not erratic (caused by discontinuity of “initial”

condition).
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If the linear rate of convergence with respect to ∆t is almost observed,

we may assume

V (0)− V (
∆t

2
) ≈ V (

∆t

2
)− V (∆t)

so that

V (0) ≈ 2V (
∆t

2
)− V (∆t).
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Black-Scholes approximation

Useful for pricing American options and exotic options for which the

Black-Scholes solution is a good approximation at time close to ex-

piry. Use the Black-Scholes values along the first time level and

proceed with the usual finite difference calculations at subsequent

time levels. Since the Black-Scholes pricing formula involves the cu-

mulative normal distribution functions, smoothing of the first level

nodal option values is resulted.
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Numerical examples

Consider the valuation of a European call option on a stock whose

price is 100. The strike is 100, time to maturity is one year, volatility

is 40%, and the continuously compounded annual interest is 6%.

We compare the error ratios when the number of time steps (n) is

doubled. Three sets of calculations were performed.

• Binomial calculations

• Finite difference calculations with smoothing of the terminal call

payoff

• Finite difference calculations with the Black-Scholes adjustment.
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1. Without smoothing of “initial condition” nor Black-Scholes ad-

justment

The columns under “binomial” and “extrapolated” show the numer-

ical errors at the given number of time steps n. Numerical error is

defined by numerical approximate value - exact value.

The error ratio at n = 20 is calculated by the error at n = 10 divided

by the error at n = 20.
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2. Smoothing of the terminal call payoff

Let V (∞) denote the exact solution (with infinite number of time

steps) and V (n) denote the numerical approximate value using n time

steps. The error ratio
V (n)− V (∞)

V (2n)− V (∞)
is close to 2 for most values of

n. Under such scenario, the extrapolation procedure works very well

to achieve highly accurate numerical approximate solution.
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3. Black-Scholes adjustment at the first time level

The Black-Scholes adjustment performs better than the smoothing

terminal payoff procedure at low values of n.

64



Lookback options - Neumann boundary condition

For the floating strike lookback option, by applying appropriate choic-

es of similarity variables, the pricing formulation reduces to the form

similar to that of usual one-asset option models, except that the Neu-

mann boundary condition appears at the boundary of the semi-infinite

domain of the lookback option model.

Let c(S,m, t) denote the price of a continuously monitored European

floating strike lookback call option, where m is the realized minimum

asset price from T0 to t, T0 < t. The terminal payoff at time T of the

lookback call is given by

c(S,m, T ) = S −m.

Note that S ≥ m, so there is no optionality in the terminal payoff.

The boundary condition at S = m will be shown to be

∂c

∂m
= 0 at S = m.
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Realization of the continuously monitored minimum value of the stock

price as the calendar time evolves.
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At time t1, the future distribution of mt
t1
, t > t1, depends on St1 and

m
t1
0 . One has to ensure that the stock price goes below m

t1
0 in order

that an updated realized minimum value of stock price for t > t1 is

recorded.

However, at time t2 at which St2 = m
t2
0 , the future distribution of

mt
t2
, t > t2, depends on St2 only. This is somewhat like the situation

at time zero where the recorded minimum value is simply S0 so that

mt
0, t > 0, depends on S0 only.

It is necessary to prescribe the boundary condition of the pricing

model along S = m.
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1. How to justify the boundary condition at S = m, where

∂c

∂m

∣∣∣∣∣
S=m

= 0?

Recall the terminal payoff depends on mT
0 , where mT

0 = min(mt
0,m

T
t ),

t < T . When St = mt
0, the future updating of the realized mini-

mum value does not require the information of the current realized

minimum value mt
0 (knowledge of St is sufficient). Hence, the call

value c(St,m
t
0, t) is independent of the current realized minimum

value mt
0.
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2. Why the partial differential equation for the call value does not

contain terms involving m?

The contribution to the differential change in call value due to

differential change in m is given by
∂c

∂m
dm. We expect that this

term should be added in the differential equation. However, we

argue that either dm = 0 or
∂c

∂m
= 0 under two scenarios.

(i) When S > m, dm = 0. This is because the differential change

of m would not occur in the next differential time interval dt

since S is above m by a finite amount.

(ii) When S = m,
∂c

∂m
= 0 (as explained in the above).

Combining the above results, we conclude that
∂c

∂m
dm = 0.
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For the floating strike lookback call option, the terminal payoff takes

the form: c(S,m,0) = Sf

(
m

S

)
.

Governing differential equation:

∂c

∂τ
=

σ2

2
S2 ∂

2c

∂S2
+ (r − q)S

∂c

∂S
− rc, S ≥ m, τ > 0, τ = T − t

with auxiliary conditions:

∂c

∂m

∣∣∣∣∣
S=m

= 0 and c(S,m,0) = S −m.

Here, m is a parameter that appears in the auxiliary conditions only.

Note that c(S,m,0) = S

(
1−

m

S

)
. This motivates us to choose the

following set of similarity variables:

x = ln
S

m
and V (x, τ) =

c(S,m, t)

S
eqτ ,

where τ = T − t. The reduction of dimensionality of the option model

can be achieved via the use of S as the numeraire.
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These choices of transformation of variables are related to the use of

share measure and the absorption of the discount term (the discount

rate becomes q since stock price instead of money market account is

used as the numerarie) together with the use of lnS as the indepen-

dent state variable.

The drift rate of lnS under the share measure is r − q −
σ2

2
+ σ2 =

r − q +
σ2

2
. Putting all these relations together, the Black-Scholes

equation for c(S,m, t) is transformed into the following equation for

V :

∂V

∂τ
=

σ2

2

∂2V

∂x2
+

(
r − q +

σ2

2

)
∂V

∂x
, x > 0, τ > 0.

Note that S > m corresponds to x > 0. The discount term disap-

pears since we define V as the undiscounted normalized call price via

multiplying by the growth factor eqτ .

The terminal payoff condition becomes the following initial condition:

V (x,0) = 1− e−x, x > 0.
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Neumann (reflecting) boundary condition at x = 0

Recall the boundary condition for c(S,m, t) at S = m, where
∂c

∂m

∣∣∣∣
S=m

=

0. Note that
∂

∂m
= −

1

m

∂

∂x
so that

∂

∂m

(
e−qτV S

)
= e−qτS

∂V

∂m
= −e−qτ S

m

∂V

∂x
= −e−qτex

∂V

∂x
.

The boundary condition at S = m or x = 0 becomes the Neumann

(reflecting) condition:

∂V

∂x
(0, τ) = 0.

72



Continuously monitored floating strike lookback call option

Using the explicit FTCS scheme, we obtain

V n+1
j − V n

j

∆τ
=

σ2

2

V n
j+1 − 2V n

j + V n
j−1

∆x2
+

(
r − q +

σ2

2

)
V n
j+1 − V n

j−1

2∆x

V n+1
j =

α+ µ

2
V n
j+1 + (1− α)V n

j +
α− µ

2
V n
j−1, j = 1,2, · · · ,

where µ =

(
r − q +

σ2

2

)
∆τ

∆x
and α = σ2

∆τ

∆x2
.

For the continuously monitored lookback option model, we place the

reflecting boundary x = 0 (corresponding to the Neumann boundary

condition) along a layer of nodes, where the node j = 0 corresponds

to x = 0.
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To approximate the Neumann boundary condition at x = 0, we use

the centered difference

∂V

∂x

∣∣∣∣∣
x=0

≈
V n
1 − V n

−1

2∆x
,

where V n
−1 is the option value at a fictitious node one cell to the left

of node j = 0.

By setting j = 0 and applying the approximation of the Neumann

condition: V n
1 = V n

−1, we obtain

V n+1
0 = αV n

1 + (1− α)V n
0 .

Numerical results obtained from the above FTCS scheme demon-

strate O(∆t) rate of convergence.

Remark

The Cheuk-Vorst scheme achieves only O(
√
∆t) convergence. This is

due to the improper treatment of the numerical boundary condition

at S = m using pure probabilistic argument.
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The convergence trend of the numerical continuously monitored lookback call
option values obtained using the Babbs scheme depends sensibly on the position-
ing of the reflecting boundary. Linear rate of convergence is exhibited only when
the reflecting boundary is placed on a layer of nodes. The parameter values used
in the lookback option model are: S = 100,mt

T0
= 100e−0.1, r = 4%, q = 2%, σ =

10%, τ = 1.0.
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Discretely monitored floating strike lookback call option

The realized minimum of the asset price is updated only on a discrete

set of monitoring instants.

The Black-Scholes equation remains valid between two successive

monitoring dates. It is possible to have S < m since no updating of

m is recorded at time not falling on a monitoring date. The Neu-

mann boundary condition
∂V

∂x

∣∣∣∣
x=0

= 0 should not be applied at time

steps that do not correspond to a monitoring instant. For numerical

calculations, the usual finite difference calculations are performed as

that of a vanilla option at those time levels not corresponding to a

monitoring instant. The domain of x would be (−∞,∞) instead of

(0,∞).
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Suppose the nth time level happens to be a monitoring instant, we

set the numerical option values to the left of x = 0 to be

V n
j = V n

0 , j = −1,−2, · · · .

Effectively, we can save the effort to compute V n
j , j = −1,−2, . . ..

To explain the above property by intuitive argument, we consider the

time right before a monitoring instant. Provided that S < m, the

lookback option value is the same as that of S = m since an updated

minimum value will be recorded immediately after the monitoring

instant; so
∂V

∂x
(x, τ) = 0, x ≤ 0.
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Positioning of x = 0

We may either place the boundary x = 0 at x0 or between the two

nodes x0 and x1. Suppose x = 0 is placed between x0 and x1 at

the nth time step which coincides with a monitoring instant, we then

have

V n
1 = V n

0 = V n
−1 = V n

−2 = ...

By substituting V n
1 = V n

0 in the explicit FTCS scheme at j = 1 on a

monitoring instant, we obtain an alternative form for the scheme at

the boundary node x1 as follows:

V n+1
1 =

α+ µ

2
V n
2 +

(
1−

α+ µ

2

)
V n
1 .
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At a time step that corresponds to a monitoring instant, x1 is a

boundary node along the boundary of the computational domain while

x0 is a fictitious node outside the computational domain. The domain

of definition is x ≥ 0. The left boundary of the computational domain

is placed at x =
∆x

2
, which is not overlapping exactly with x = 0 as

in the continuously monitored case.
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Discretely monitored barrier options

For an one-sided up-and-out discretely monitored barrier option, the

option values are set to be the rebate value at nodes that lie in the

knock-out region at those time steps that correspond to monitoring

instants.
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Remarks

• The computational domain is taken to be the same as that of a

vanilla option. We enforce the knock-out condition only on those

time instants that correspond to the discrete monitoring instants

in the option contract.

• Perform the usual explicit scheme calculations at all nodes, noting

that the numerical option values at the “knock-out” nodes are

set to be the rebate value.

• The barrier is placed mid-way between two vertical layers of nodes.

This is in contrast to the continuously monitored barrier option

model where the knock-out barrier is placed along a vertical layer

of nodes.
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Down-barrier proportional step call option

The terminal payoff of the down-barrier proportional-step call option

is defined to be

exp(−ρτ−B )max(ST −K,0),

where ρ is called the penalty rate and τ−B is the occupational time in

the down knock-out region defined by

τ−B =
∫ T

t0
H(B − St) dt,

where the step function is defined by

H(B − St) =

{
1 St ≤ B
0 otherwise

.

To capture this penalty rate feature in the discrete numerical scheme,

we define the damping factor over one time step to be

dj =

e−ρ∆t if xj ≤ lnB

1 otherwise
.
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We accumulate the additional discounting effect on the terminal pay-

off over successive time steps whenever the stock price stays below

the down-barrier B, and no damping effect if otherwise. The explicit

FTCS scheme is given by

V n+1
j =

[
α+ µ

2
V n
j+1dj+1 + (1− α)V n

j dj +
α− µ

2
V n
j−1dj−1

]
e−r∆t,

where µ =
(
r − q − σ2

2

)
∆τ
∆x and α = σ2 ∆τ

∆x2
. Note that the penalty

discount factor should be applied based on the positions xj+1, xj and

xj−1 in the next time instant (nth time level). Therefore, we multiply

the nodal values by the respective penalty discount factor.

How do we incorporate the damping effect in the knock-out region

into the implicit Crank-Nicolson scheme and fully implicit scheme?

The discount term in the governing partial differential equation be-

comes −[r + ρH(B − S)]V instead of −rV . We simply discretize the

new discount term accordingly.
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Summary of the optimal choices of the positioning of the nodes rela-

tive to the barrier to achieve smooth linear rate of convergence of the

numerical solutions at asymptotically zero value of the time step for

different types of the path-dependent options and monitoring features

Barrier placed

between two

layers of nodes

Barrier on a layer

of nodes

Barrier

options

continuously

monitored

X

discretely

monitored

X

Lookback

options

continuously

monitored

X

discretely

monitored

X X

Proportional-

step options

continuously

monitored

X
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3.3 Properties of numerical finite difference solutions

Truncation errors and order of convergence

The local truncation error of a given finite difference scheme is ob-

tained by substituting the exact solution of the continuous problem

into the numerical scheme. Let V (j∆x, n∆τ) denote the exact solu-

tion of the continuous Black-Scholes equation. The local truncation

error at the node point (j∆x, n∆τ) of the explict FTCS scheme is

given by substituting the exact solution into the explicit scheme:

T (j∆x, n∆τ)

=
V (j∆x, (n+1)∆τ)− V (j∆x, n∆τ)

∆τ

−
σ2

2

V ((j +1)∆x, n∆τ)− 2V (j∆x, n∆τ) + V ((j − 1)∆x, n∆τ)

∆x2

−
(
r −

σ2

2

)
V ((j +1)∆x, n∆τ)− V ((j − 1)∆x, n∆τ)

2∆x
+ rV (j∆x, n∆τ).
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We then expand each term by performing the Taylor expansion at

the node point (j∆x, n∆τ).

T (j∆x, n∆τ)

=
∂V

∂τ
(j∆x, n∆τ) +

∆τ

2

∂2V

∂τ2
(j∆x, n∆τ) +O

(
∆τ2

)
−

σ2

2

[
∂2V

∂x2
(j∆x, n∆τ) +

∆x2

12

∂4V

∂x4
(j∆x, n∆τ) +O(∆x4)

]

−
(
r −

σ2

2

)[
∂V

∂x
(j∆x, n∆τ) +

∆x2

3

∂3V

∂x3
(j∆x, n∆τ) +O(∆x4)

]
+ rV (j∆x, n∆τ).

Since V (j∆x, n∆τ) satisfies the Black-Scholes equation, this leads to

T (j∆x, n∆τ) =
∆τ

2

∂2V

∂τ2
(j∆x, n∆τ)−

σ2

24
∆x2

∂4V

∂x4
(j∆x, n∆τ)

−
(
r −

σ2

2

)
∆x2

3

∂3V

∂x3
(j∆x, n∆τ) +O(∆τ2)

+ O(∆x4).

The leading terms in T (j∆x, n∆τ) are O(∆τ) and O(∆x2).
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• A necessary condition for the convergence of the numerical solu-

tion to the continuous solution is that the local truncation error of

the numerical scheme must tend to zero for vanishing stepwidth

and time step. In this case, the numerical scheme is said to be

consistent.

• The order of accuracy of a scheme is the order in powers of ∆x

and ∆τ in the leading truncation error terms. Suppose the leading

truncation terms are O(∆τk,∆xm), then the numerical scheme is

said to be kth order time accurate and mth order space accurate.

• The explicit FTCS scheme is first order time accurate and second

order space accurate. Suppose we choose ∆τ to be the same

order as ∆x2, that is, ∆x2 = λ2∆τ for some finite constant λ,

then the leading truncation error terms become O(∆τ).
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• Using a similar technique of performing Taylor expansion, one

can show that all versions of the binomial scheme are first order

time accurate (recall that ∆τ and ∆x are dependent in binomial

schemes). This is expected since the CRR binomial scheme is a

special case of the FTCS scheme, and all binomial schemes have

the same order of accuracy.

• For the implicit Crank-Nicolson scheme, it is second order time

accurate and second order space accurate. However, if we choose

∆τ ∼ ∆x2, then the advantage of being second order time ac-

curate disappears since the scheme becomes essentially second

order space accurate [which is O(∆τ)].

• The highest order of accuracy that can be achieved for a two-level

six-point scheme is known to be O(∆τ2,∆x4) (see Problem 6.20

in Kwok’s text).
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Extrapolation techniques

The numerical solution V n
j (∆τ) using time step ∆τ has the asymp-

totic expansion of the form

V n
j (∆τ) = V n

j (0) +K∆τm +O(∆τm+1),

where V n
j (0) is visualized as the exact solution of the continuous

model obtained in the limit ∆τ → 0, and K is some constant in-

dependent of ∆τ . Suppose we perform two numerical calculations

using time step ∆τ and
∆τ

2
successively,

V n
j (0)− V n

j (∆τ) ≈ 2m
[
V n
j (0)− V n

j

(
∆τ

2

)]
.

Hence, V n
j (0) can be estimated using V n

j (∆τ) and V n
j

(
∆τ

2

)
via

V n
j (0) ≈

2mV n
j

(
∆τ
2

)
− V n

j (∆τ)

2m − 1
.

When m = 1, V n
j (0) can be estimated from extrapolation as

V n
j

(
∆τ

2

)
+
[
V n
j

(
∆τ

2

)
− V n

j (∆τ)
]
.
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Numerical stability of finite difference schemes

• Consistency is only a necessary but not sufficient condition for

convergence of the numerical solution to the solution of the con-

tinuous model.

• The roundoff errors incurred during numerical calculations may

lead to the blow up of the solution and erode the whole compu-

tation.

• A scheme is said to be stable if roundoff errors are not amplified

in numerical computation. For a linear evolutionary differential

equation, like the Black-Scholes equation, the Lax Equivalence

Theorem states that numerical stability is the necessary and suf-

ficient condition for the convergence of a consistent finite differ-

ence scheme.
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Example – Erosion of numerical calculations by roundoff errors

Consider the evaluation of In =
∫ 1

0

xn

x+5
dx, n = 0,1,2, · · · ,20; using

the property: In+5In−1 =
∫ 1

0

xn +5xn−1

x+5
dx =

∫ 1

0
xn−1 dx =

xn

n

]1
0
=

1

n
,

and
∫ 1

0

1

x+5
dx = ln |x+5|

∣∣∣∣∣
1

0
= ln

6

5
, we deduce the following relation:

In +5In−1 =
1

n
, n = 1, · · · ,20; I0 = ln

6

5
.

Since In < In−1 and In > 0, so 5In−1 < In +5In−1︸ ︷︷ ︸
1
n

< 6In−1. We then

have
1

6n
< In−1 <

1

5n
.

Forward Iteration: Starting with I0 = ln
6

5
, compute

I1 =
1

1
− 5I0, I2 =

1

2
− 5I1, etc.
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Implementation of the Forward Iteration Calculations on a computer

with 8 significant figures leads to the results tabulated in Column

A. The successive numerical values alternate sign and increase in

magnitude.
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Propagation of roundoff error

Exact relation: I1 = −5I0 + 1. Taking an approximate initial value

Î0, the calculated value of the first iterate Î1 = −5Î0 +1.

Here, we assume no further errors subsequent calculations except

that I0 = ln6/5 cannot be represented exactly on a computer. Note

that

I1 − Î1 = (−5)(I0 − Î0),

so that the initial error I0 − Î0 is magnified by a factor of −5 after

each iteration. Deductively,

In − În = (−5)n(I0 − Î0).

Backward iteration: Taking I20 ≈
1

2

(
1

6× 21
+

1

5× 21

)
= 0.0087301587.

Implementation: In−1 = −
In

5
+

1

5n
, n = 20,19, · · · ,1; I20 = 0.0087301587.

We obtain I0− Î0 =
(
−
1

5

)n
(In− În) (see the results shown in column

B).
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Fourier method of stability analysis

The Fourier method is based on the assumption that the numerical

scheme admits a solution of the form

V n
j = An(k)eikj∆x,

where k is the wavenumber and i =
√
−1. This resembles the method

of separation of variables in solving partial differential equations,

where V is decomposed as V (x, t) = X(x)T (t).

• Here, eikj∆x = eikx
∣∣∣∣∣
x=j∆x

represents the Fourier mode with wavenum-

ber k, An(k) represents the amplitude of the kth mode at the nth

time level.

The nodal values are related by

V n+1
j+1 =

An+1(k)

An(k)
eik∆xAn(k)eikj∆x =

An+1(k)

An(k)
eik∆xV n

j ,

V n+1
j−1 =

An+1(k)

An(k)
e−ik∆xV n

j , V n
j+1 = eik∆xV n

j , etc.
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• The von Neumann stability criterion examines the growth of the

above Fourier component.

Substituting the Fourier representation of the solution into the two-

level six-point scheme:

a1V
n+1
j+1 + a0V

n+1
j + a−1V

n+1
j−1 = b1V

n
j+1 + b0V

n
j + b−1V

n
j−1,

we obtain

G(k) =
An+1(k)

An(k)
=

b1e
ik∆x + b0 + b−1e

−ik∆x

a1eik∆x + a0 + a−1e−ik∆x
,

where G(k) is the amplification factor which governs the growth of the

Fourier component over one time period. The strict von Neumann

stability condition is given by

|G(k)| ≤ 1,

for 0 ≤ k∆x ≤ π. This is because the larger wavenumber of the

sinusoidal wave that can be resolved by the grids is limited by π/∆x.

Henceforth, we write β = k∆x.
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Stability of the Cox-Ross-Rubinstein binomial scheme

Consider the binomial scheme

V n+1
j = [pV n

j+1 + (1− p)V n
j−1]e

−r∆τ ,

the corresponding amplification factor of the Cox-Ross-Rubinstein

binomial scheme is

G(β) = [peiβ + (1− p)e−iβ]e−r∆τ

= [p(cosβ + i sinβ) + (1− p)(cosβ − i sinβ)]e−r∆τ

= (cosβ + iq sinβ)e−r∆τ , q = 2p− 1.

The von Neumann stability condition requires

|G(β)|2 =
[
1+ (q2 − 1) sin2β

]
e−2r∆τ ≤ 1, 0 ≤ β ≤ π.
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When 0 ≤ p ≤ 1, we have |q| ≤ 1 so that |G(β)| ≤ 1 for all β. Under

this reasonable condition on the probability of up-move, the scheme

is guaranteed to be stable in the von Neumann sense.

• Sufficient condition for von Neumann stability of the Cox-Ross-

Rubinstein scheme: non-occurrence of negative probability val-

ues in the binomial scheme. This condition coincides with the

intuition that probabilities of up-jump and down-jump cannot be

negative.

• Later, we will show that non-negativity of coefficients in the nu-

merical scheme is also necessary to avoid spurious oscillations in

numerical calculations.
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Stability of the Crank-Nicolson scheme

The corresponding amplification factor of the Crank-Nicolson scheme

is

G(β) =
1− σ2 ∆τ

∆x2
sin2 β

2 +
(
r − σ2

2

)
∆τ
2∆xi sinβ − r

2∆τ

1+ σ2 ∆τ
∆x2

sin2 β
2 −

(
r − σ2

2

)
∆τ
2∆xi sinβ + r

2∆τ
.

The von Neumann stability condition requires

|G(β)|2 =

(
1− σ2 ∆τ

∆x2
sin2 β

2 − r
2∆τ

)2
+
(
r − σ2

2

)2
∆τ2

4∆x2
sin2 β(

1+ σ2 ∆τ
∆x2

sin2 β
2 + r

2∆τ
)2

+
(
r − σ2

2

)2 ∆τ2

4∆x2
sin2 β

≤ 1,

0 ≤ β ≤ π.

The above condition is satisfied for any choices of ∆τ and ∆x. Hence,

the Crank-Nicolson scheme is unconditionally stable.
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Order of accuracy and stability of the Crank-Nicolson scheme

• The implicit Crank-Nicolson scheme is observed to have second

order temporal accuracy and unconditional stability. Also, the im-

plementation of the numerical computation can be quite efficient

with the use of the Thomas algorithm.

• Apparently, practitioners should favor the Crank-Nicolson scheme

over other conditionally stable and first order time accurate ex-

plicit schemes.

• Unfortunately, the numerical accuracy of the Crank-Nicholson so-

lution can be much deteriorated due to non-smooth property of

the terminal payoff function in most option models. Also, if

we maintain O(∆τ) = O(∆x2), then the overall accuracy is still

O(∆x2), same as that of the FTCS scheme.
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Spurious oscillations

Spurious oscillations in numerical solution of an option price.

Another undesirable feature in the behavior of the finite difference

solution is the occurrence of spurious oscillations. It is possible to

generate negative option values even if the scheme is stable.
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Boundedness of numerical solution and non-negative coeffi-

cients

Suppose the coefficients in the two-level explicit scheme are all non-

negative, and the initial values are bounded, that is, max
j

|V 0
j | ≤ M

for some constant M ; then

max
j

|V n
j | ≤ M for all n ≥ 1.

Proof

Consider the two-level explicit scheme

V n+1
j = b−1V

n
j−1 + b0V

n
j + b1V

n
j+1,

we deduce that

|V n+1
j | ≤ |b−1| |V n

j−1|+ |b0| |V n
j |+ |b1| |V n

j+1|,

Since b−1, b0 and b1 are non-negative, the inequality persists when we

take maximum among nodal values at the same time level, so

max
j

|V n+1
j | ≤ b−1max

j
|V n

j−1|+ b0max
j

|V n
j |+ b1max

j
|V n

j+1|.
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Let En denote max
j

|V n
j |, the above inequality can be expressed as

En+1 ≤ b−1E
n + b0E

n + b1E
n = En

since b−1 + b0 + b1 = 1. Deductively, we obtain

En ≤ En−1 ≤ · · · ≤ E0 = max
j

|V 0
j | = M.

What happens when one or more of the coefficients of the explicit

scheme become negative? For example, we take b0 < 0, b−1 > 0 and

b1 > 0, and let V 0
0 = ε > 0 and V 0

j = 0, j ̸= 0. At the next time level,

V 1
−1 = b1ε, V

1
0 = b0ε and V 1

1 = b−1ε, where the sign of V 1
j alternates

with j. Note that |V 1
−1|+ |V 1

0 |+ |V 1
1 | = (b−1 − b0 + b1)ϵ = (1− 2b0)ϵ.

This alternating sign property can be shown to persist at all later

time levels. Sum of moduli of solution values = (|b1|+ |b0|+ |b−1|)ϵ =
(1 − 2b0)ϵ > ϵ. The solution values oscillate in signs at neighboring

nodes. The oscillation amplitudes grow with an increasing number of

time steps. Let Sn =
∑

j |V n
j |, then Sn = (1− 2b0)

nS0 = (1− 2b0)
nϵ.
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Summary - Considerations in the construction of finite differ-

ence schemes for pricing options

• Derivation of the model formulation – governing partial differen-

tial equation plus auxiliary conditions.

• Discretization of the equation – approximate the continuous dif-

ferential / integral operators by appropriate difference operators.

• Choice of the computational domain

– truncation of the infinite / semi-infinite domain of the contin-

uous model

– placement of the knock-out barrier (different choices of the

boundary of the computational domain with respect to con-

tinuous versus discrete monitoring)
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• Approximation of the auxiliary conditions

– Initial conditions are derived from the terminal payoff function.

– Boundary conditions are derived either from the contractual

specification (say, rebate value after knock-out) or properties

of the price function (says, zero gamma at high stock price

level).

– When the boundary of the computational domain is still within

the domain of definition of the continuous model, one may

adopt a skew computational stencil (avoidance of nodal points

outside the computational domain) at the boundary nodes on

the assumption that the option values at the boundary nodes

remain to satisfy the governing equation.

• Sources of discretization errors

– Difference approximation to the differential operators.

– Numerical approximation of the auxiliary conditions in the op-

tion models.
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• To avoid spurious oscillations in the numerical solution values,

the coefficients in the explicit finite difference schemes must be

all positive.

• Numerical stability considerations – accuracy of numerical cal-

culations should not be eroded by the accumulation of roundoff

errors.

• Implicit schemes versus explicit schemes

– Most implicit schemes are unconditionally stable while explicit

schemes normally require some stringent time step restriction

in order to maintain numerical stability.

– Implementation of implicit schemes can be performed effec-

tively by the Thomas algorithm (solution by Gaussian elimina-

tion of the associated tridiagonal system of equations).

– For pricing an American option with the early exercise feature,

the explicit scheme uses the straightforward dynamic program-

ming procedure while the implicit scheme has to adopt the

projected successive-over-relaxation method.
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