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1. The two-level four-point explicit scheme for pricing the Black-Scholes option model is
given by
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(a) Find the restrictions on the time step ∆τ and stepwidth ∆x. [1]

(b) An implicit scheme requires the solution of a tridiagonal system of equations at every
time step. Explain in two reasons why most practitioners prefer to use an implicit
scheme even with this computational complexity. [1]

(c) Explain why the usual dynamic programming procedure cannot be applied to implicit
schemes for numerical calculations of an American option model. Outline briefly the
numerical procedure in an iterative scheme to resolve the difficulty. [4]

2. Consider the down-and-out proportional step call option whose terminal payoff is defined
by

exp(−ρτ−B )max(ST −X, 0),

where ρ is the killing rate (assuming to be constant), X is the strike price, ST is the
terminal asset price, and τ−B is the occupation time in the knock-out region that is defined
by

τ−B =

∫ T

t0

1{St≤B} dt.

Here, B is the constant down barrier and 1{ } is the indicator function, and t0 is
the inception time of the option. We assume the usual Black-Scholes model where the
dynamics of the asset price St is governed by

dSt

St

= r dt+ σ dZt,

where r is the riskfree interest rate and Zt is the standard Brownian motion. The usual
trinomial tree algorithm takes the form:
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where e−r∆τ is the discount factor over the time interval ∆τ , µ =

(
r − σ2

2

)
∆τ

∆x
and

α =
σ2∆τ

∆x2
. How do we modify the trinomial scheme so as to incorporate the “proportional

step” feature? Give an explanation to your answer. [3]

Hint Consider the damping factor being applied over one time step ∆τ when the asset
price lies below B (down region).

3. In the participating policy model, there are two state variables: A(t) and P (t). The
dynamics of the asset A(t) under a risk neutral measure Q is governed by the Geometric
Brownian motion:

dA(t) = rA(t) dt+ σA(t) dWQ(t).

The updating of the policy account P (t) is based on

P (t+) = P (t−) + max(rGP (t−), α{[A(t)− P (t−)]− γP (t−)})

across a fixing date t, where

rG : guaranteed rate of return
γ : target buffet ratio
α : distribution ratio.

Explain in details the key procedures (interpolation and extrapolation) in the incorpo-
ration of the jump condition (crediting mechanism) across a fixing date in the finite
difference scheme. [4]

Hint Write P (t+) = j̃∆P and P (t−) = j∆P . Let A = i∆A, where ∆A is the stepwidth
for A. Explain why

j̃ = j +max

{
rGj, α

[(
i
∆A

∆P
− j

)
− γj

]}
.

4. In a convertible bond, the issuer can call back the bond at call price K and the holder
can convert prematurely with payoff denoted by conv. Let cont denote the continuation
value of holding the convertible bond.

(a) Give the financial intuition in the design of the dynamic programming procedure as
given by

min(K,max(cont, conv)). [1]

(b) Suppose the three values K, cont and conv at the lattice tree node has the following
relative order of magnitude: K < cont < conv. The procedure in part (a) produces
the outcome K while another dynamic programming procedure:

min(max(cont, conv),max(K, conv))

produces conv as the outcome. Explain the occurrence of such inconsistency. Which
dynamic programming procedure is correct, or indeed such inconsistency does not
occur under the context of pricing algorithm of convertible bond? Give justification
to your answer. [3]
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5. The governing equation for pricing a defaultable coupon-paying convertible bond is given
by
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∂S
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(a) Using financial interpretation (not from the above equation directly), explain why
the hazard rate h can be visualized as negative dividend yield. [2]

(b) The discrete coupons are modeled by the coupon rate

c(t) =
n∑

i=1

ciδ(t− ti),

where ci is the discrete coupon amount paid on the coupon date ti, i = 1, 2, · · · , n.
Explain how the Dirac terms in c(t) arise? [3]

6. In the pricing model of variable annuities with guaranteed minimum withdrawal benefit,
we define the surrogate unrestricted fund value process by

dW̃t = (r − α)W̃t dt−G dt+ W̃tσ dBt, t > 0,

W̃0 = w0.

Here, α is the participating fee rate, G is the constant withdrawal rate, σ is the volatility
and Bt is a standard Brownian motion.

(a) Give the financial justification of the solution:

W̃t = Xt

(
w0 −G

∫ t

0

1

Xu

du

)
,

where

Xt = e

(
r−α+σ2

2

)
t+σBt . [3]

Hint Note that X0 = 1. The number of fund units is depleted continuously due
to withdrawal.

(b) We observe that either W̃t > 0 for t ≤ T or W̃T remains negative once Wt reaches
the negative region at some earlier time prior to T (see the figures below).
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Show mathematically that if W̃T > 0, then W̃t > 0 for any t < T . [3]

Hint If some units of fund remains at T , then the fund would not be completely
depleted before T . Give the mathematical statement of this observation.

7. Consider the scenario where we require n correlated samples from standardized (zero mean
and unit variance) normal distribution with the correlation coefficient between sample i
and sample j being ρij. We first sample 3 independent random variables x1, x2 and x3

from univariate standardized normal distribution. The required correlated samples, ϵ1, ϵ2
and ϵ3, are then computed by

ϵ1 = α11x1

ϵ2 = α21x1 + α22x2

ϵ3 = α31x1 + α32x2 + α33x3.

Write down the governing equations for the determination of the parameters α11, α21, α22,
α31, α32 and α33. DO NOT SOLVE THEM! [3]

Hint Use the following 6 relations:

var(ϵ1) = 1, var(ϵ2) = 1, var(ϵ3) = 1,

cov(ϵ1, ϵ2) = ρ12, cov(ϵ1, ϵ3) = ρ13, cov(ϵ2, ϵ3) = ρ23.

Alternatively, we may apply the Cholesky decomposition:

MMT = Σ,

where Σ is the correlation matrix andϵ1
ϵ2
ϵ3

 = M

x1

x2

x3

 .

8. (a) Let ci and c̃i denote the simulated call value in the ith simulation run in the antithetic
variates method in pricing a European call option to achieve variance reduction in
Monte Carlo simulation. Explain why

var

(
ci + c̃i

2

)
=

1

2
[var(ci) + cov(ci, c̃i)]. [1]

(b) Show that the antithetic variates method improves computational efficiency provided
that

cov(ci, c̃i) < 0.

Explain why the above negative correlation property is in general valid. [2]

9. (a) Discuss the intrinsic difficulty of applying the Monte Carlo simulation method to
pricing of American style options with the early exercise right. [2]

(b) Consider the Grant-Vora-Weeks method with regard to the numerical valuation of
American options using the Monte Carlo simulation approach. Discuss how the
method determines the optimal stopping rules at discrete time points? [4]

— End —
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