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[points]

1. The inherent difficulty to include discrete dividends in the binomial tree is that the
number of nodes at maturity in the binomial tree increases as power of number of discrete
dividends plus one. Suppose there is no discrete dividend, then the number of nodes at
maturity is linear in n, where n is the number of time steps. Now, suppose a discrete
dividend is paid between the (k − 1)th and kth time step. Explain why at the (k +m)th

time step, the number of nodes would be (m+1)(k+1) instead of k+m+1 nodes as in
the usual recombining binomial tree. [3]

2. Consider the dynamic programming procedure for pricing a callable American call option,
whereK is the fixed call price and the exercise payoff is S−X. Recall that the continuation
value at the (n, j) node is given by
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where Cn
j is the American call value at the (n, j) node, R is the one-period discount factor

and p is the probability of upward jump.

(a) Explain why the callable American call value must be bounded between the call
price K and the exercise payoff S −X. [1]

(b) Explain why the most simplified dynamic programming procedure is given by
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.

Give your financial interpretation of the above procedure. [3]

Hint In the lecture note, we derive the dynamic programming procedure based on the
argument that the issuer chooses to call or restrain from calling so as to minimize
the option value with reference to the two possible actions of the holder. Simplify
this dynamic programming procedure using the result in part (a).

3. In the Cheuk-Vorst algorithm of pricing a European fixed strike lookback call option, we
define the adjusted exercise price K ′(tj), where

K ′(tj) = max(M(tj), K).

Here, K is the strike price and M(tj) is the realized maximum up to time tj (known
quantity at tj). Show that the terminal payoff at tN can be decomposed into

max(M(tj)−K, 0) + max(M(tN ; tj+1)−K ′(tj), 0).

Here, M(tN ; tj+1) is the future realized maximum between tj+1 and tN . What is the
interpretation of the decomposition, in particular, distinguish the two cases (i) M(tj) ≤
K, and (ii) M(tj) > K? [4]
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4. We design the forward shooting grid algorithm for pricing a call option with the strike reset
feature. There are M reset dates, where on each of these reset dates ti, i = 1, 2, . . . ,M ,
the call option’s strike price is reset to the prevailing asset price Sti at ti if the option is
out-of-the-money at ti.

(a) Let X0 denote the strike price set at initiation of the contract and Xi be the strike
price set at ti, i = 1, 2, . . . ,M . Explain how to incorporate this strike reset feature
in the design of the forward shooting grid algorithm. Provide details on how to set
X0 as one of the nodal asset values in the trinomial tree and the design of the grid
function for updating the strike price. [3]

(b) Under certain condition, we can show that this strike reset call option resembles the
discretely monitored floating strike lookback call option. Find the relation between
these two call options. Give an explanation to your answer. [2]

5. For a given percentile α, 0 ≤ α ≤ 1, the α-quantile of {St}t∈[0,T ] is defined by

Binf(T ;α) = inf

{
B :

1

T

∫ T

0

1{St≤B}dt ≥ α

}
.

Suppose a binary option that pays $1 at maturity T if the cumulative time staying at or
below the down-barrier B is less than α portion of the total life of the option, 0 ≤ α ≤ 1;
otherwise the terminal payoff of the option is zero.

Explain how to use the forward shooting grid algorithm to price this binary option.
Specify the terminal payoff of this binary option in terms of α and the index in the grid
function that counts the cumulative time. [4]

6. In the Derman-Kani algorithm for constructing the implied volatility tree, we define λi
n

by
λi
n = e−rn∆tE

[
1{S(n∆t)=Si

n}
∣∣S(0) = S0

]
.

(a) Starting with λ0
0 = 1, explain why the successive iterates can be generated by

λ0
n+1 = e−r∆t

[
λ0
n(1− P n

1 )
]

λi+1
n+1 = e−r∆t

[
λi
nP

n
i+1 + λi+1

n (1− P n
i+2)

]
λn+1
n+1 = e−r∆tλn

nP
n
n+1,

where P n
i+1 is the risk neutral transition probability of making the transition from

node (n, i) to (n+ 1, i+ 1). [3]

(b) Let F i
n be the forward price maturity at level n + 1 of the nodal asset value Si

n at
the current level n. Find F i

n in terms of Si
n. Explain why F i

n and P n
i+1 are related by

P n
i+1 =

F i
n − Si

n+1

Si+1
n+1 − Si

n+1

.

Explain why F i
n > Si+1

n+1 must be ruled out by arbitrage argument. [2]

7. In the Hull-White implied interest rate tree, the ∆t-period rate R at the node (m, j)
is αm + j∆R. Define Qij to be the discrete Arrow-Debreu price of the node (i, j). Let
D(t0, tm+1) be the discount factor from t0 to tm+1.

(a) Explain why
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(i) E
[
D(t0, tm)1{R(tm)=αm+j∆R}

∣∣Ft0

]
= Qm,j;

(ii) E [D(tm, tm+1|R(tm) = αm + j∆R] = exp(−(αm + j∆R)∆t). [2]

(b) Recall the following relation:

Pm+1 = E[D(t0, tm+1|Ft0)]

= E[E[D(t0, tm)D(tm, tm+1)|Ftm ]|Ft0 ],

where Pm+1 is the price of a zero-coupon bond maturing at time (m + 1)∆t. Find
Pm+1 in terms of Qm,j and αm + j∆R, j = −nm,−nm + 1, . . . , nm, where nm is the
number of nodes on each side of the centered node at time m∆t. Show details of all
the steps of derivation. [3]

— End —
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