MATH 4321 - Game Theory
 Solution to Homework Three

Course Instructor: Prof. Y.K. Kwok

1. For a fixed value of $y, f(x, y)$ achieves its maximum at $x=1$ when $y \leq 0$ and at $x=-1$ when $y>0$. Therefore, we have

$$
\max _{x \in C} f(x, y)=\left\{\begin{array}{c}
(1-y)^{2}, y \leq 0 \\
(-1-y)^{2}, y>0
\end{array}\right.
$$

For $y \in[-1,1]$, minimum of $\max _{x \in C} f(x, y)$ occurs at $y=0$, so that $v^{+}=\operatorname{minmax}_{y \in D} f(x, y)=1$.
On the other hand, $f(x, y) \geq 0$ and equals zero when $x=y$, so $\min _{y \in D} f(x, y)=0$. We then have $v^{-}=\operatorname{maxmin}_{x \in C} f(x, y)=0$.
2. (a) The payoff to each player is a quadratic function in its variable that the player can control while the control variable of the other player is held fixed. By invoking the corresponding first order conditions, we obtain

$$
\begin{aligned}
& \frac{\partial u_{1}}{\partial q_{1}}=c+q_{2}-2 q_{1}=0 \Rightarrow q_{1}=B R_{1}\left(q_{2}\right)=\frac{c+q_{2}}{2}, \\
& \frac{\partial u_{2}}{\partial q_{2}}=c+q_{1}-2 q_{2}=0 \Rightarrow q_{2}=B R_{2}\left(q_{1}\right)=\frac{c+q_{1}}{2} .
\end{aligned}
$$

(b) We solve simultaneously the above best response functions

$$
q_{1}=\frac{c+q_{2}}{2} \text { and } q_{2}=\frac{c+q_{1}}{2}
$$

to obtain

$$
q_{1}^{*}=q_{2}^{*}=c .
$$

As a check, note that $u_{1}\left(q_{1}, q_{2}^{*}\right)=q_{1}\left(2 c-q_{1}\right)$ has a local maxima at $q_{1}=c$. Therefore, player 1 is worst off if he deviates from his part of the Nash pair.
3. (a) The payoff function for each player $i=1,2, \ldots, N$, is

$$
u_{i}\left(r_{1}, \ldots, r_{N}\right)=b\left(r_{i}\right)-\left[f\left(r_{i}\right)+g\left(R-r_{i}\right)\right]=\sqrt{r_{i}}-2 r_{i}^{2}-\left(R-r_{i}\right)^{2},
$$

where $R=r_{1}+r_{2}+\ldots+r_{N}$.
(b) Taking a partial derivative of u_{i} with respect to r_{i} gives

$$
\frac{\partial u_{i}}{\partial r_{i}}=\frac{1}{2} \frac{1}{\sqrt{r_{i}}}-4 r_{i}=0 .
$$

which implies $r_{i}=\frac{1}{4}$. Since $\frac{\partial^{2} u_{i}}{\partial r_{i}^{2}}<0$, we conclude that $\left(r_{1}, \ldots, r_{N}\right)=\left(\frac{1}{4}, \ldots, \frac{1}{4}\right)$ is the Nash equilibrium. The total amount of resources used by all the players is then $R=\frac{N}{4}$. When $N=12$, the total resources used will be $R=3$. The payoff to each player when $N=12$ is

$$
u_{i}\left(\frac{1}{4}, \cdots, \frac{1}{4}\right)=\frac{1}{2}-\frac{1}{8}-\left(\frac{11}{4}\right)^{2}=-7.396
$$

(c) We set

$$
F(R)=N\left(b\left(\frac{R}{N}\right)-f\left(\frac{R}{N}\right)-g\left(R-\frac{R}{N}\right)\right)=\sum_{i=1}^{N} u_{i}\left(\frac{R}{N}, \cdots, \frac{R}{N}\right)
$$

To find the maximum of F, we take a derivative with respect to R and set to zero:

$$
F^{\prime}(R)=\left(4-\frac{6}{N}-2 N\right) R+\frac{1}{2 \sqrt{\frac{R}{N}}}=0
$$

After some algebra, we get

$$
R^{s}=\frac{N}{\left(2(4+2(N-1))^{2}\right)^{2 / 3}}
$$

Since $F^{\prime \prime}(R)=4-\frac{6}{N}-2 N-\frac{\sqrt{N}}{4 R^{3 / 2}}<0$ we know that R^{s} provides a maximum.
When $N=12$, we obtain $R^{s}=0.192547$. The value of the maximum social welfare is $F\left(R^{s}\right)=1.14004$.
4. In this case, the value function of a voter with the preferred policy x^{*} in response to the policy stand x of a candidate is given by

$$
u\left(x ; x^{*}\right)= \begin{cases}-\left(x-x^{*}\right) & \text { if } x>x^{*} \\ 0 & \text { if } x=x^{*} \\ -2\left(x^{*}-x\right) & \text { if } x<x^{*}\end{cases}
$$

That is, each voter cares twice as much about the deviation to the left of x^{*} as about the deviation to the right of x^{*}. In the lecture, the value function is chosen to be $u\left(x ; x^{*}\right)=$ $-\left|x-x^{*}\right|$.
First, we identify the citizen with preferred policy \bar{x} who is indifferent between the two candidates. We then have

$$
-2\left(\bar{x}-x_{1}\right)=-\left(x_{2}-\bar{x}\right)
$$

so

$$
\bar{x}=\frac{2}{3} x_{1}+\frac{1}{3} x_{2} \text { if } x_{1}<x_{2}
$$

and

$$
\bar{x}=\frac{1}{3} x_{1}+\frac{2}{3} x_{2} \text { if } x_{1} \geq x_{2}
$$

We then proceed to derive the best response of each candidate as follows. Let m denote the median of the distribution of preferred policies of the voters, we obtain

$$
B R_{1}\left(x_{2}\right)= \begin{cases}x_{2}<x_{1}<3 m-2 x_{2} & \text { if } x_{2}<m \\ m & \text { if } x_{2}=m \\ \frac{3}{2} m-\frac{1}{2} x_{2}<x_{1}<x_{2} & \text { if } x_{2}>m\end{cases}
$$

and

$$
B R_{2}\left(x_{1}\right)=\left\{\begin{array}{ll}
x_{1}<x_{2}<3 m-2 x_{1} & \text { if } x_{1}<m \\
m & \text { if } x_{1}=m \\
\frac{3}{2} m-\frac{1}{2} x_{1}<x_{2}<x_{1} & \text { if } x_{1}>m
\end{array} .\right.
$$

Since there is only one intersection point of the two best responses, the only Nash equilibrium is $\left(x_{1}^{*}, x_{2}^{*}\right)=(m, m)$.
5. Note that $F(\gamma)$ is an increasing function of γ. When $q_{1}<q_{2}$, for a fixed value of $q_{2}, F(\gamma)$ is increasing with respect to an increase in q_{1}. Once q_{1} increases beyond q_{2}, Player II starts to gain since $u_{1}\left(q_{1}, q_{2}\right)=1-F(\gamma)$ when $q_{1}>q_{2}$.
Let γ^{*} be the median of the random variable V, where $F\left(\gamma^{*}\right)=\frac{1}{2}$.
Note that $u_{i}\left(\gamma^{*}, \gamma^{*}\right)=\frac{1}{2}, i=1,2$. We argue that $\left(\gamma^{*}, \gamma^{*}\right)$ is a Nash equilibrium. This is because

$$
\frac{1}{2}=u_{1}\left(\gamma^{*}, \gamma^{*}\right) \geq u_{1}\left(q_{1}, \gamma^{*}\right)=\left\{\begin{array}{ll}
F\left(\frac{\gamma^{*}+q_{1}}{2}\right)<F\left(\gamma^{*}\right)=\frac{1}{2} & \text { if } q_{1}<\gamma^{*} \\
\frac{1}{2} & \text { if } q_{1}=\gamma^{*} \\
1-F\left(\frac{\gamma^{*}+q_{1}}{2}\right)<F\left(\gamma^{*}\right)=\frac{1}{2} & \text { if } q_{1}>\gamma^{*}
\end{array} .\right.
$$

Similarly, we have

$$
\frac{1}{2}=u_{2}\left(\gamma^{*}, \gamma^{*}\right) \geq u_{2}\left(\gamma^{*}, q_{2}\right)
$$

6. Taking $\frac{\partial u_{1}}{\partial x_{1}}=0$ and $\frac{\partial u_{2}}{\partial x_{2}}=0$ to find the best response functions, we obtain

$$
2 x_{1}+100-4 x_{1}-2 x_{2}=0 \text { and } 2 x_{2}+100-4 x_{2}-2 x_{1}=0 .
$$

Solving simultaneously to find the Nash equilibrium, we obtain $x_{1}+x_{2}=50$. Due to symmetry of the payoff functions, each farmer should graze 25 sheep, yielding $u_{i}(25,25)=625$.
Suppose the two farmers reach an earlier agreement with $x_{1}=x_{2}$. Now, the payoff function of each player becomes

$$
u_{1}(x, x)=x^{2}+x(100-4 x)=-3 x^{2}+100 x .
$$

The maximum occurs at $x=\frac{50}{3}<25$. The payoff to each farmer if they follow the agreement is

$$
u_{1}\left(\frac{50}{3}, \frac{50}{3}\right)=\frac{2500}{3}>625 .
$$

With an earlier agreement of equal production, both farmers can gain higher profit at a lower grazing level.

The farmers do have the incentive to cheat. To see that, suppose Player 1 assumes Player 2 to stick with the agreement of $\frac{50}{3}$, the new payoff is

$$
u_{1}\left(x_{1}, \frac{50}{3}\right)=x_{1}^{2}+x_{1}\left[100-2\left(x_{1}+\frac{50}{3}\right)\right],
$$

which is maximized at $x_{1}=\frac{100}{3}$, giving a higher payoff of $\frac{10,000}{9}=1111.11$.
7. (a) The profit functions are

$$
u_{i}\left(q_{1}, q_{2}\right)=q_{i}\left(150-q_{1}-q_{2}\right)-120 q_{i}+\frac{2}{3} q_{i}^{2}, i=1,2 .
$$

(b) Applying the first order condition, we obtain

$$
q_{1}=q_{2}=18 .
$$

(c) The price is $P(18+18)=114$ and $u_{1}(18,18)=u_{2}(18,18)=108$.
(d) The best response functions are

$$
q_{1}\left(q_{2}\right)=\frac{3}{2}\left(30-q_{2}\right) \text { and } q_{2}\left(q_{1}\right)=\frac{3}{2}\left(30-q_{1}\right), 0 \leq q_{1}, q_{2} \leq 30 .
$$

Set $f\left(q_{1}\right)=u_{1}\left(q_{1}, q_{2}\left(q_{1}\right)\right)=q_{1}\left(\frac{7}{6} q_{1}-15\right)$, which is a parabola that is concave upward. The maximum of $f\left(q_{1}\right)$ occurs at the far right end point, where $q_{1}=30$. Correspondingly, $q_{2}(30)=0$. We obtain $u_{1}(30,0)=600$.
8. (a) The maximization problem for firm i is defined by

$$
\max _{p_{i} \geq 0}\left(\Gamma-p_{i}+b p_{j}\right)\left(p_{i}-c\right), i=1,2, i \neq j .
$$

Applying the first order conditions, we obtain

$$
\begin{aligned}
& \frac{\partial u_{1}}{\partial p_{1}}=\Gamma-2 p_{1}+b p_{2}+c=0 \\
& \frac{\partial u_{2}}{\partial p_{2}}=\Gamma-2 p_{2}+b p_{1}+c=0
\end{aligned}
$$

giving

$$
p_{1}^{*}=p_{2}^{*}=\frac{\Gamma+c}{2-b} .
$$

It is straightforward to check that

$$
\frac{\partial^{2} u_{1}}{\partial p_{1}^{2}}=-2<0 \text { and } \frac{\partial^{2} u_{2}}{\partial p_{2}^{2}}=-2<0 .
$$

(b) The profits of the two firms at the Nash equilibrium are

$$
u_{1}\left(p_{1}^{*}, p_{2}^{*}\right)=u_{2}\left(p_{1}^{*}, p_{2}^{*}\right)=\left[\frac{\Gamma+c(b-1)}{2-b}\right]^{2} .
$$

The two firms have the same equilibrium profit.
(c) By using the same procedure as before, we obtain the equilibrium prices as follows:

$$
\begin{aligned}
& p_{1}^{*}=\frac{2\left(\Gamma+c_{1}\right)+b_{1}\left(\Gamma+c_{2}\right)}{4-b_{1} b_{2}} \\
& p_{2}^{*}=\frac{\left(\Gamma+c_{1}\right) b_{2}+2\left(\Gamma+c_{2}\right)}{b_{1} b_{2}-4}
\end{aligned}
$$

The equilibrium profits of the two firms are

$$
\begin{aligned}
& u_{1}\left(p_{1}^{*}, p_{2}^{*}\right)=\left[\frac{\left(\Gamma+c_{1} b_{2}+c_{2}\right) b_{1}+2 \Gamma-2 c_{1}}{b_{1} b_{2}-4}\right]^{2} \\
& u_{2}\left(p_{1}^{*}, p_{2}^{*}\right)=\left[\frac{\left(\Gamma+c_{2} b_{1}+c_{1}\right) b_{2}+2 \Gamma-2 c_{2}}{b_{1} b_{2}-4}\right]^{2} .
\end{aligned}
$$

(d) Substituting these values into the solution from (c), we have

$$
p_{1}^{*}=71.86, p_{2}^{*}=77.45, u_{1}=4470.54 \text { and } u_{2}=5844.34
$$

The optimal production quantities are found to be

$$
q_{1}^{*}=\Gamma-p_{1}^{*}+b_{1} p_{2}^{*}=66.86 \text { and } q_{2}^{*}=\Gamma-p_{2}^{*}+b_{2} p_{1}^{*}=76.45 .
$$

9. Let t_{i} be the truth telling bid of player i, which ties with another bid.
(i) Suppose the random device determines player i to be the winner, he pays t_{i} for the item. Consider that he uses $v_{i}>t_{i}$, then he pays the same amount t_{i} for the item. If he uses $v_{i}<t_{i}$, he loses and ends up with the same zero payoff.
(ii) Suppose player i is the loser, the use of $v_{i}>t_{i}$ would make him to be the winner but the net gain is zero. If he uses $v_{i}<t_{i}$, he remains to lose the auction anyway.
10. The payoff function of the $i^{\text {th }}$ player is specified as follows:

$$
u_{i}\left(b_{1}, \ldots, b_{N}\right)= \begin{cases}0, & \text { if } b_{i}<M, \text { she is not a high bidders; } \\ v_{i}-b_{i}, & \text { if } b_{i}=M, \text { she is the sole high bidders; } \\ \frac{v_{i}-b_{i}}{k}, & \text { if } i \in\{k\}, \text { she is one of } k \text { high bidders; }\end{cases}
$$

and recall that $v_{1} \geq v_{2} \ldots \geq v_{N}$. We have to show that $u_{i}\left(v_{1}, \ldots, v_{N}\right)$ gives a larger payoff to player i if player i makes any other bid $b_{i} \neq v_{i}$.
We assume that $v_{1}=v_{2}$ so the two highest valuations are the same. Now for any player i if she bids less than $v_{1}=v_{2}$ she does not win the object and her payoff is zero. If she bids $b_{i}>v_{1}$ she wins the object with payoff $v_{i}-b_{i}<v_{1}=b_{i}<0$. If she bids $b_{i}=v_{1}$, her payoff is $\frac{v_{i}-b_{i}}{3}=\frac{v_{i}-v_{1}}{3}<0$. In all cases, she is worse off if she deviates from the bid $b_{i}=v_{i}$ as long as the other players stick with their valuation bids.
11. In the first case, it does not matter if she uses a first or second price auction. Either way she will sell it for $\$ 100,000$. In the second case, the winning bid for player 1 is between $95,000<b_{1}<100,000$ whether it is a first or second price auction. However, in the second price auction, the house will sell for $\$ 95,000$. Thus, a first price auction is better for the seller.
12. The expected payoff of a bidder with valuation v who makes a bid of b is given by

$$
u(b)=v P[b \text { is high bid }]-b=v\left[F\left(\beta^{-1}(b)\right)\right]^{N-1}-b=v\left[\beta^{-1}(b)\right]^{N-1}-b .
$$

Let $y(b)=\beta^{-1}(b)$ so that $u(b)=v y(b)^{N-1}-b$. Differentiating $u(b)$ with respective to b (keeping v fixed) and setting it to be zero, the first order condition is given by

$$
v(N-1) y(b)^{N-2} \frac{d y}{d b}=1, \quad y(0)=0 .
$$

Set $v=y(b)$ so that the above differential equation becomes

$$
(N-1) y(b)^{N-1} \frac{d y}{d b}=1, \quad y(0)=0
$$

Separating the variables then integrating, and observing $y(0)=0$, we obtain

$$
\begin{aligned}
(N-1) y^{N-1} d y & =d b . \\
\frac{N-1}{N} y^{N} & =b .
\end{aligned}
$$

We finally obtain

$$
\beta(v)=\frac{N-1}{N} v^{N} .
$$

Since all bidders will actually pay their own bids and each bid is $\beta(v)=\frac{N-1}{N} v^{N}$, the expected payment from each bidder is

$$
E[\beta(V)]=\frac{N-1}{N} \int_{0}^{1} v^{N} \mathrm{~d} v=\frac{N-1}{N(N+1)} .
$$

Since there are N bidders, the total expected payment to the seller is $\frac{N-1}{N+1}$.

