MATH 4321 - Game Theory
 Final Examination, 2019

Time allowed: 120 minutes
Course instructor: Prof. Y. K. Kwok
[points]

1. Two candidates are competing in a political race. Each candidate $i, i=1,2$, can spend $s_{i} \geq 0$ on ads that reach out to voters, which in turn increases the probability that candidate i wins the race. Given a pair of spending choices $\left(s_{1}, s_{2}\right)$, the probability that candidate i wins is given by $\frac{s_{i}}{s_{1}+s_{2}}$. If neither spends any resources then each wins with probability $\frac{1}{2}$. Each candidate values winning at a payoff of $v>0$, and the cost of spending s_{i} is just s_{i}.
(a) Given two spending levels $\left(s_{1}, s_{2}\right)$, find the expected payoff of a candidate i. Find candidate i 's best-response function. Be careful to consider $s_{j}=0$ and $s_{j}>0$ separately, $j \neq i$.
(b) Explain why we cannot find any Nash equilibrium that corresponds to either $s_{1}=0$ or $s_{2}=0$. Find the Nash equilibrium spending levels.
(c) What happens to the Nash equilibrium levels if player 1 still values winning at v but player 2 values winning at $k v$, where $k>1$?
2. We generalize the Cournot model to N firms, $N \geq 2$. The profit function for firm i is given by

$$
u_{i}\left(q_{1}, \cdots, q_{i}, \cdots, q_{N}\right)=q_{i}\left[\max \left(\Gamma-\sum_{j=1}^{N} q_{j}, 0\right)-c_{i}\right], \quad i=1,2, \cdots, N,
$$

where q_{i} is the quantity of product produced and c_{i} is the cost of producing one unit. Also, Γ is a sufficiently large constant that is larger than the sum of all feasible production quantities; that is $\Gamma>\sum_{j=1}^{N} q_{j}$.
(a) Find the optimal quantity produced by each firm. Find and discuss the nature of Nash equilibrium.
Hint: Given the $N \times N$ matrix

$$
A=\left(\begin{array}{ccccc}
2 & 1 & 1 & \cdots & 1 \\
1 & 2 & 1 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 1 & 1 & \cdots & 2
\end{array}\right),
$$

its inverse is given by

$$
A^{-1}=\frac{1}{N+1}\left(\begin{array}{ccccc}
N & -1 & -1 & \cdots & -1 \\
-1 & N & -1 & \cdots & -1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
-1 & -1 & -1 & \cdots & N
\end{array}\right)
$$

(b) Assuming the same cost c for all firms, find the optimal quantity produced by each firm when $N \rightarrow \infty$.
3. Let $D(v)$ denote the expected payment made by one of the bidders (say bidder 1) and $F(v)$ denote the cummulative distribution function of the random valuation of the item on sale (common to all bidders). The lecture note derives the following relation:

$$
D(v)=v F^{N-1}(v)-\int_{v_{\min }}^{v} F^{N-1}(u) \mathrm{d} u
$$

where N is the total number of bidders and $F(v)$ assumes value over the interval $\left[v_{\text {min }}, v_{\text {max }}\right]$. We consider the charity (all-pay) auction. Let $\beta(v)$ denote the optimal bidding rule of bidder 1. Suppose $F(v)$ is uniform over $\left[v_{\min }, v_{\max }\right]$.
(a) Find the optimal bidding rule under the charity auction rule.

Hint:

$$
F(v)= \begin{cases}0, & v \leq v_{\min } \\ \frac{v-v_{\min }}{v_{\max }-v_{\min }}, & v_{\min }<v<v_{\max } \\ 1, & v \geq v_{\max }\end{cases}
$$

(b) Verify that the choice of this optimal bidding rule for all bidders [under symmetric common value assumption of $F(v)$] is a Nash equilibrium.
Hint: Bidder 1's expected payoff is

$$
\Pi(x ; v)=v F^{N-1}(x)-D(x), \quad \text { where } x=\beta^{-1}(b)
$$

Recall that $x=v$ at $b=b^{*}$. Check that

$$
\left.\frac{\mathrm{d} \Pi}{\mathrm{~d} b}\right|_{b^{*}=\beta(v)}=0
$$

4. Consider the noisy duel between two duelists with accuracy functions $P_{1}(x)$ and $P_{2}(y)$ over the interval $[0, D]$. A strategy for player 1 is to fire his bullet when the two duelists are x units apart, $0 \leq x \leq D$; and similarly player 2 when they are y units apart, $0 \leq y \leq D$. Let the payoff be 1 to the surviving duelist and -1 to the non-surviving duelist.
(a) Find the expected payoff $M(x, y)$ to player 1 under (i) $x>y,(i i) x=y$ and (iii) $x<y$.
(b) Let x^{*} be the distance at which

$$
P_{1}\left(x^{*}\right)+P_{2}\left(x^{*}\right)=1
$$

and similarly,

$$
P_{1}\left(y^{*}\right)+P_{2}\left(y^{*}\right)=1 .
$$

Show that $\left(x^{*}, y^{*}\right)$ is a Nash equilibrium.

Hint: Verify that

$$
M\left(x, y^{*}\right) \leq M\left(x^{*}, y^{*}\right) \leq M\left(x^{*}, y\right)
$$

5. Consider the United Nations Security Council with 5 permanent members and 10 nonpermanent members. It takes 9 votes, the "big five" plus at least 4 others to pass a bill. First, we assume homogenity in the voting probabilities p for all 15 countries.
(a) Find the conditional probability that a non-permanent member can make a difference (pivotal) in terms of the homogeneous voting probability p.
(b) Compute the Shapley-Shubik index for a non-permanent country.

Express your answers in terms of C_{k}^{n} and factorials.
(c) Suppose one permanent member votes independently from all other 14 members. Under this new assumption, find the conditional probability that a non-permanent member can be pivotal. Compute the absolute Banzhaf index for a non-permanent country.
6. In the two-person Nash bargaining model, the objective function to be maximized is given by

$$
f\left(S, u^{*}, v^{*}\right)=\left(u-u^{*}\right)\left(v-v^{*}\right)
$$

where $\left(u^{*}, v^{*}\right)$ is the security point.
(a) Consider the threat strategies $\left(u_{0}, v_{0}\right)=\left(X_{t} A Y_{t}^{T}, X_{t} B Y_{t}^{T}\right)$, where A and B are the payoff matrices of player 1 and 2, respectively, and $\left(X_{t}, Y_{t}\right)$ is the pair of threat strategies. Let m_{p} denote the slope of the Pareto-optimal boundary line. Show that X_{t} and Y_{t} are the optimal strategies of the two players of the zero-sum game with matrix $-m_{p} A-B$.
(b) Find the Nash bargaining solution and the threat solution to the battle of sexes game with matrix

$$
\left(\begin{array}{cc}
(4,2) & (2,-1) \\
(-1,2) & (2,4)
\end{array}\right)
$$

Hint: Here, the payoff matrices are

$$
A=\left(\begin{array}{cc}
4 & 2 \\
-1 & 2
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
2 & -1 \\
2 & 4
\end{array}\right)
$$

The security point can be easily identified by finding the saddlepoints of the game matrices A and B. It is easy to identify the threat strategy of the row player to be row 1 .

