MATH 4321 - Game Theory

Final Exam Solution, 2019

1. (a) Candidate i 's expected payoff is given by

$$
f_{i}\left(s_{i}, s_{-i}\right)= \begin{cases}\frac{1}{2} v, & s_{1}=s_{2}=0 \\ \frac{s_{i}}{s_{1}+s_{2}} v-s_{i}=\left(\frac{v}{s_{1}+s_{2}}-1\right) s_{i}, & \text { otherwise }\end{cases}
$$

specifically,

$$
f_{1}\left(s_{1}, s_{2}\right)= \begin{cases}\frac{1}{2} v, & s_{1}=s_{2}=0 \\ \left(\frac{v}{s_{1}+s_{2}}-1\right) s_{1}, & \text { otherwise }\end{cases}
$$

and

$$
f_{2}\left(s_{1}, s_{2}\right)=\left\{\begin{array}{ll}
\frac{1}{2} v, & s_{1}=s_{2}=0 \\
\left(\frac{v}{s_{1}+s_{2}}-1\right) s_{2}, & \text { otherwise }
\end{array} .\right.
$$

- For a given $s_{2}=0$,

$$
f_{1}\left(s_{1}\right)= \begin{cases}\frac{1}{2} v, & s_{1}=0 \\ v-s_{1}, & s_{1}>0\end{cases}
$$

which does not have maximum value. Therefore, the best-response function for player 1 given $s_{2}=0$ is $s_{1}(0)=0^{+}$. Intuitively, player 1 spends slightly larger than zero and still wins. The similar fact also holds for player 2 .
Alternatively: Or you can say the best-response functions for both players do not exist when the other player's spending level is zero.

- For a given $s_{2}>0$, taking the first-order derivative and setting it to zero, we get the best-response function of player 1 :

$$
\frac{\partial f_{1}}{\partial s_{1}}=\frac{v s_{2}}{\left(s_{1}+s_{2}\right)^{2}}-1=0 \Longrightarrow s_{1}\left(s_{2}\right)=\sqrt{v s_{2}}-s_{2} .
$$

To verify, we calculate the second-order derivative:

$$
\frac{\partial^{2} f_{1}}{\partial s_{1}^{2}}=-\frac{2 v s_{2}}{\left(s_{1}+s_{2}\right)^{3}}<0 .
$$

Similarly,

$$
s_{2}\left(s_{1}\right)=\sqrt{v s_{1}}-s_{1}, \quad s_{1}>0 .
$$

(b) - When either $s_{1}=0$ or $s_{2}=0$, according to (a), the best-response function for at least one of the players does not exist. We thus cannot find any Nash equilibrium in this case.

- When $s_{1} s_{2}>0$, the unique Nash equilibrium is given by the intersection of the two best-response functions:

$$
\left\{\begin{array}{l}
s_{1}=\sqrt{v s_{2}}-s_{2} \\
s_{2}=\sqrt{v s_{1}}-s_{1}
\end{array} \Longrightarrow s_{1}^{*}=s_{2}^{*}=\frac{v}{4} .\right.
$$

(c) In this case, the expected payoff of player 2 changes to

$$
f_{2}\left(s_{2}\right)= \begin{cases}\frac{1}{2} k v, & s_{1}=s_{2}=0 \\ \left(\frac{k v}{s_{1}+s_{2}}-1\right) s_{2}, & \text { otherwise }\end{cases}
$$

Her best-response function changes to

$$
s_{2}\left(s_{1}\right)=\sqrt{k v s_{1}}-s_{1}, \quad s_{1}>0
$$

Together with $s_{1}\left(s_{2}\right)=\sqrt{v s_{2}}-s_{2}, s_{2}>0$, we find $s_{1}^{* \prime}=\frac{k}{(k+1)^{2}} v<\frac{v}{4}$ and $s_{2}^{* \prime}=\left(\frac{k}{k+1}\right)^{2} v>$ $\frac{v}{4}$. Therefore, the Nash equilibrium spending level decreases for player 1 but increases for player 2 .
2. (a) Suppose $\Gamma>\sum_{j=1}^{N} q_{j}$. Take the first-order derivative and set it to zero:

$$
\frac{\partial u_{i}}{\partial q_{i}}=\Gamma-2 q_{i}-\sum_{j \neq i}^{N} q_{j}-c_{i}=0 \Longrightarrow q_{i}\left(q_{-i}\right)=\frac{\Gamma-\sum_{j \neq i}^{N} q_{j}-c_{i}}{2}, \quad i=1,2, \cdots, N .
$$

To verify the critical point is a maximum, we check the second-order derivative is negative:

$$
\frac{\partial^{2} u_{i}}{\partial q_{i}^{2}}=-2<0
$$

Using the relation

$$
2 q_{i}+\sum_{j \neq i}^{N} q_{j}=\Gamma-c_{i}, \quad i=1,2, \cdots, N
$$

we get the following equation

$$
\left(\begin{array}{ccccc}
2 & 1 & 1 & \cdots & 1 \\
1 & 2 & 1 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 1 & 1 & \cdots & 2
\end{array}\right)\left(\begin{array}{c}
q_{1} \\
q_{2} \\
\vdots \\
q_{N}
\end{array}\right)=\left(\begin{array}{c}
\Gamma-c_{1} \\
\Gamma-c_{2} \\
\vdots \\
\Gamma-c_{N}
\end{array}\right)
$$

which yields

$$
\left(\begin{array}{c}
q_{1} \\
q_{2} \\
\vdots \\
q_{N}
\end{array}\right)=\frac{1}{N+1}\left(\begin{array}{ccccc}
N & -1 & -1 & \cdots & -1 \\
-1 & N & -1 & \cdots & -1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
-1 & -1 & -1 & \cdots & N
\end{array}\right)\left(\begin{array}{c}
\Gamma-c_{1} \\
\Gamma-c_{2} \\
\vdots \\
\Gamma-c_{N}
\end{array}\right)=\left(\begin{array}{c}
\frac{\Gamma-N c_{1}+\sum_{j \neq 1}^{N} c_{j}}{N+1} \\
\frac{\Gamma-N c_{2}+\sum_{j \neq 2}^{N} c_{j}}{N+1} \\
\vdots \\
\frac{\Gamma-N c_{N}+\sum_{j \neq N}^{N} c_{j}}{N+1}
\end{array}\right)
$$

Therefore, the optimal quantity produced by firm i is given by

$$
q_{i}^{*}=\frac{\Gamma-N c_{i}+\sum_{j \neq i}^{N} c_{j}}{N+1}, \quad i=1,2, \cdots, N
$$

We argue that the optimal strategy profile $\left(q_{i}^{*}, q_{-i}^{*}\right)$ we get forms a Nash equilibrium. For any firm i, the profit it gets under the strategy profile (q_{i}^{*}, q_{-i}^{*}) is given by

$$
u_{i}\left(q_{i}^{*}, q_{-i}^{*}\right)=\left(\frac{\Gamma-N c_{i}+\sum_{j \neq i}^{N} c_{j}}{N+1}\right)^{2}
$$

Suppose player i deviates from the profile to a quantity $q_{i}^{\prime} \neq q_{i}^{*}$ and others do not change, her profit function changes to

$$
\begin{aligned}
u_{i}\left(q_{i}^{\prime}, q_{-i}^{*}\right) & =q_{i}^{\prime}\left(\frac{2 \Gamma-2 N c_{i}+2 \sum_{j \neq i}^{N} c_{j}}{N+1}-q_{i}^{\prime}\right) \\
& =-\left(q_{i}^{\prime}-\frac{\Gamma-N c_{i}+\sum_{j \neq i}^{N} c_{j}}{N+1}\right)^{2}+\left(\frac{\Gamma-N c_{i}+\sum_{j \neq i}^{N} c_{j}}{N+1}\right)^{2} \\
& <\left(\frac{\Gamma-N c_{i}+\sum_{j \neq i}^{N} c_{j}}{N+1}\right)^{2}=u_{i}\left(q_{i}^{*}, q_{-i}^{*}\right) .
\end{aligned}
$$

Then player i will not deviate from the profile $\left(q_{i}^{*}, q_{-i}^{*}\right)$, otherwise she will be worse off. Therefore, we conclude that $\left(q_{i}^{*}, q_{-i}^{*}\right)$ is a Nash equilibrium.
(b) Assuming $c_{1}=c_{2}=\cdots=c_{N}=c$, we have

$$
q^{*}=\frac{\Gamma-c}{N+1} .
$$

When $N \rightarrow \infty$, the optimal quantity $q^{*} \rightarrow 0$ for each firm.
3. (a) According to the charity auction rule, the expected payment for each bidder is equal to her bidding amount, namely,

$$
\beta(v)=D(v)=v F^{N-1}(v)-\int_{v_{\min }}^{v} F^{N-1}(u) \mathrm{d} u .
$$

Since $F(v)$ is uniform over $\left[v_{\min }, v_{\max }\right]$, we have

$$
\begin{aligned}
\beta(v) & =v\left(\frac{v-v_{\min }}{v_{\max }-v_{\min }}\right)^{N-1}-\int_{v_{\min }}^{v}\left(\frac{u-v_{\min }}{v_{\max }-v_{\min }}\right)^{N-1} \mathrm{~d} u \\
& =v\left(\frac{v-v_{\min }}{v_{\max }-v_{\min }}\right)^{N-1}-\frac{1}{N}\left(\frac{v-v_{\min }}{v_{\max }-v_{\min }}\right)^{N}\left(v_{\max }-v_{\min }\right) \\
& =\left(\frac{v-v_{\min }}{v_{\max }-v_{\min }}\right)^{N-1}\left(v-\frac{v-v_{\min }}{N}\right), \quad v \in\left[v_{\min }, v_{\max }\right]
\end{aligned}
$$

(b) Bidder 1's expected payoff is expressed by

$$
\Pi(x ; v)=v F^{N-1}(x)-D(x)=v F^{N-1}(x)-\beta(x), \quad x=\beta^{-1}(b)
$$

for the charity auction. Since $b^{*}=\beta(v)$, we have $x=v$ at $b=b^{*}$.
To maximize $\Pi(v)$ with respect to the bidding amount b, we take the first-order derivative and set it to zero:

$$
\begin{aligned}
& \left.\frac{\mathrm{d} \Pi}{\mathrm{~d} b}\right|_{b^{*}=\beta(v)}=\left.\left.v \frac{\mathrm{~d} F^{N-1}}{\mathrm{~d} x}\right|_{x=v} \frac{\mathrm{~d} x}{\mathrm{~d} b}\right|_{b^{*}=\beta(v)}-\left.\left.\frac{\mathrm{d} \beta}{\mathrm{~d} x}\right|_{x=v} \frac{\mathrm{~d} x}{\mathrm{~d} b}\right|_{b^{*}=\beta(v)}=0 \\
\Longleftrightarrow & v \frac{\mathrm{~d} F^{N-1}(v)}{\mathrm{d} v}=\frac{\mathrm{d} \beta(v)}{\mathrm{d} v} \Longleftrightarrow \int v \mathrm{~d} F^{N-1}(v)=\int \mathrm{d} \beta(v) \\
\Longleftrightarrow & v F^{N-1}(v)-v_{\min } F^{N-1}\left(v_{m i n}\right)-\int F^{N-1}(u) \mathrm{d} u=\beta(v)-\beta\left(v_{m i n}\right)
\end{aligned}
$$

Since $\left.\Pi\left(x ; v_{\text {min }}\right)\right|_{x=v_{\text {min }}}=v_{\text {min }} F^{N-1}\left(v_{\text {min }}\right)-\beta\left(v_{\text {min }}\right)=0$, we have

$$
b^{*}=\beta(v)=v F^{N-1}(v)-\int_{v_{\min }}^{v} F^{N-1}(u) \mathrm{d} u,
$$

which maximizes bidder 1's expected payoff. Then bidder 1 will always get a lower payoff if she deviates to any bidding rule other than $b^{*}=\beta(v)$. Therefore, the bidding rule we calculated above is exactly a Nash equilibrium.
4. (a) (i) When $x>y$, player 1 shoots earlier than player 2 , her expected payoff is given by

$$
M(x, y)=(1) P_{1}(x)+(-1)\left[1-P_{1}(x)\right]=2 P_{1}(x)-1 .
$$

(ii) When $x=y$, the two players shoot simultaneously, the expected payoff for player 1 is

$$
M(x, y)=(1) P_{1}(x)\left[1-P_{2}(x)\right]+(-1)\left[1-P_{1}(x)\right] P_{2}(x)=P_{1}(x)-P_{2}(x)
$$

(iii) When $x<y$, player 2 shoots first, the expected payoff for player 1 is given by

$$
M(x, y)=(-1) P_{2}(y)+(1)\left[1-P_{2}(y)\right]=1-2 P_{2}(y) .
$$

Therefore, we have

$$
M(x, y)= \begin{cases}2 P_{1}(x)-1, & x>y \\ P_{1}(x)-P_{2}(x), & x=y \\ 1-2 P_{2}(y), & x<y\end{cases}
$$

(b) Method I: For player 1, she chooses x to maximize $M(x, y)$. Since it is a zero-sum game, she takes into account $\min _{y} M(x, y)$. When $x<y$, player 2 minimizes $M(x, y)$ by choosing $y=x^{+}$. Then player 1 considers the following maximin problem:

$$
\max _{x} \min _{y} M(x, y)=\max _{x} \min \left[2 P_{1}(x)-1, P_{1}(x)-P_{2}(x), 1-2 P_{2}(x)\right] .
$$

- When $x \leq x^{*}$, we have $P_{1}(x)+P_{2}(x) \geq 1$. Then

$$
2 P_{1}(x)-1 \geq P_{1}(x)-P_{2}(x) \geq 1-2 P_{2}(x)
$$

and

$$
\max _{x} \min _{y} M(x, y)=\max _{x \leq x^{*}}\left[1-2 P_{2}(x)\right],
$$

which equals $P_{1}(x)-P_{2}(x)$ when $x=x^{*}$.

- When $x \geq x^{*}$, we have $P_{1}(x)+P_{2}(x) \leq 1$. Then

$$
2 P_{1}(x)-1 \leq P_{1}(x)-P_{2}(x) \leq 1-2 P_{2}(x)
$$

and

$$
\max _{x} \min _{y} M(x, y)=\max _{x \geq x^{*}}\left[2 P_{1}(x)-1\right],
$$

which equals $P_{1}(x)-P_{2}(x)$ when $x=x^{*}$.

- When $x=x^{*}$, we have $P_{1}(x)+P_{2}(x)=1$. Then

$$
2 P_{1}(x)-1=P_{1}(x)-P_{2}(x)=1-2 P_{2}(x)
$$

and and

$$
\max _{x} \min _{y} M(x, y)=P_{1}\left(x^{*}\right)-P_{2}\left(x^{*}\right) .
$$

In conclustion, player 1's expected payoff $M(x, y)$ is maximized at $x=x^{*}$ taking into account $\min M(x, y)$. Similarly, player 2 will also choose the distance y^{*} satisfying $P_{1}\left(y^{*}\right)+P_{2}\left(y^{*}\right)=1$ to maximize her own payoff given that player 1 is trying to minimize it.
Method II: We argue that the strategy profile $\left(x^{*}, y^{*}\right)$ forms a Nash equilibrium, under which player 1's payoff is given by

$$
M\left(x^{*}, y^{*}\right)=P_{1}\left(x^{*}\right)-P_{2}\left(x^{*}\right)=P_{1}\left(y^{*}\right)-P_{2}\left(y^{*}\right)
$$

since $x^{*}=y^{*}$.

- When $x \leq x^{*}=y^{*}, M\left(x, y^{*}\right)=1-2 P_{2}\left(y^{*}\right)=P_{1}\left(y^{*}\right)-P_{2}\left(y^{*}\right)=M\left(x^{*}, y^{*}\right)$.
- When $x>x^{*}=y^{*}, M\left(x, y^{*}\right)=2 P_{1}(x)-1<P_{1}\left(x^{*}\right)-P_{2}\left(x^{*}\right)=M\left(x^{*}, y^{*}\right)$.
- When $y \leq y^{*}=x^{*}, M\left(x^{*}, y\right)=2 P_{1}\left(x^{*}\right)-1=P_{1}\left(x^{*}\right)-P_{2}\left(x^{*}\right)=M\left(x^{*}, y^{*}\right)$.
- When $y>y^{*}=x^{*}, M\left(x^{*}, y\right)=1-2 P_{2}(y)>P_{1}\left(y^{*}\right)-P_{2}\left(y^{*}\right)=M\left(x^{*}, y^{*}\right)$.

In conclusion, $M\left(x, y^{*}\right) \leq M\left(x^{*}, y^{*}\right) \leq M\left(x^{*}, y\right)$ for all x and y, which implies that $\left(x^{*}, y^{*}\right)$ is a saddle point for the zero-sum game and therefore a Nash equilibrium.
5. (a) A non-permanent member can be marginal in the following condition:

- The "big five" approve and there are other 3 non-permanent countries approving. There are C_{3}^{9} such coalitions. Therefore, the probability for a non-permanent member to make a difference is given by

$$
\pi(p)=C_{3}^{9} \cdot p^{8}(1-p)^{6}
$$

(b) Under the assumption of homogeneity and uniform distribution of the probability p, the power index is equal to the Shapley-Shubik index, so the Shapley-Shubik index for a non-permanent member is given by

$$
\phi_{s}=\int_{0}^{1} \pi(p) f(p) \mathrm{d} p=\int_{0}^{1} C_{3}^{9} \cdot p^{8}(1-p)^{6} \mathrm{~d} p=C_{3}^{9} \cdot \frac{8!\cdot 6!}{15!} .
$$

(c) Let p_{1}, \cdots, p_{5} be the voting probability for the "big five" and q_{6}, \cdots, q_{15} be the voting probability for the non-permanent members. The probability that a non-permanent member (say player 6) can make a difference is given by

$$
\begin{aligned}
\pi\left(p_{1}, \cdots, p_{5}, q_{7}, \cdots, q_{15}\right)= & \prod_{j=1}^{5} p_{j} \cdot q_{7} q_{8} q_{9}\left(1-q_{10}\right) \cdots\left(1-q_{15}\right)+\cdots \\
& +\prod_{j=1}^{5} p_{j} \cdot\left(1-q_{7}\right) \cdots\left(1-q_{12}\right) q_{13} q_{14} q_{15}
\end{aligned}
$$

where there are totally C_{3}^{9} terms, choosing 3 non-permanent members from the remaining 9 members with probability q_{j} and the other 6 members with probability $1-q_{j}$.

Under the assumption of independence together with mean value of voting probability equals $\frac{1}{2}$, the absolute Banzhaf index for a non-permanent member (say player 6) is given by

$$
\begin{aligned}
\beta_{6}^{\prime} & =\int_{0}^{1} \pi\left(p_{1}, \cdots, p_{5}, q_{7}, \cdots, q_{15}\right) f_{1}\left(p_{1}\right) \cdots f_{15}\left(q_{15}\right) \mathrm{d} p_{1} \cdots \mathrm{~d} q_{15} \\
& =\prod_{j=1}^{5} \int_{0}^{1} p_{j} f_{j}\left(p_{j}\right) \mathrm{d} p_{j} \cdot \int_{0}^{1} q_{7} f_{7}\left(q_{7}\right) \mathrm{d} q_{7} \int_{0}^{1} q_{8} f_{8}\left(q_{8}\right) \mathrm{d} q_{8} \cdots \\
& =\frac{C_{3}^{9}}{2^{14}}
\end{aligned}
$$

6. (a) Under the threat strategy $\left(X_{t}, Y_{t}\right)$, the security point changes to $\left(u_{0}, v_{0}\right)=\left(X_{t} A Y_{t}^{T}, X_{t} B Y_{t}^{T}\right)$. Assuming an interior solution, the bargaining solution (\bar{u}, \bar{v}) must be on the Paretooptimal boundary $v=m_{p} u+b$. Therefore, we can transform the objective function into

$$
f(u)=\left(u-X_{t} A Y_{t}^{T}\right)\left(m_{p} u+b-X_{t} B Y_{t}^{T}\right)
$$

To maximize it, we take the first-order derivative and set it to zero:

$$
f^{\prime}(u)=2 m_{p} u+X_{t}\left(-m_{p} A-B\right) Y_{t}^{T}+b=0
$$

which yields

$$
\bar{u}=\frac{X_{t}\left(-m_{p} A-B\right) Y_{t}^{T}+b}{-2 m_{p}}, \quad m_{p}<0 .
$$

Correspondingly,

$$
\bar{v}=m_{p} \bar{u}+b=\frac{1}{2}\left[b-X_{t}\left(-m_{p} A-B\right) Y_{t}^{T}\right] .
$$

Both players aim to choose their optimal threat strategies (X_{t} and Y_{t}, respectively) to maximize their own payoffs (\bar{u} and \bar{v}, respectively). From the above equations, we observe that player 1 can maximize the term $X_{t}\left(-m_{p} A-B\right) Y_{t}^{T}$ to maximize \bar{u} and player 2 can minimize the same term $X_{t}\left(-m_{p} A-B\right) Y_{t}^{T}$ to maximize \bar{v}. Therefore, it changes to a zero-sum game with matrix $-m_{p} A-B$ where the row player (player 1) chooses X_{t} to maximize the entries while the column player (player 2) chooses Y_{t} to minimize the entries.
(b) (i) Nash bargaining solution.

- Find the security point.

The individual matrices are as follows:

$$
A=\left(\begin{array}{cc}
4 & 2 \\
-1 & 2
\end{array}\right), \quad B^{T}=\left(\begin{array}{cc}
2 & 2 \\
-1 & 4
\end{array}\right)
$$

It is easy to calculate that $\operatorname{value}(A)=2, \operatorname{value}\left(B^{T}\right)=2$, so the status quo security point for this game is at $\left(u^{*}, v^{*}\right)=(2,2)$.

- Find the feasible set and Pareto-optimal boundary.

The feasible set, taking into account the security point, is

$$
S^{*}=\{(u, v) \mid v \leq-u+6,2 \leq u \leq 4,2 \leq v \leq 4\}
$$

The Pareto-optimal boundary is $v=-u+6,2 \leq u \leq 4$.

- Set up and solve the nonlinear programming problem.

The problem we then need to solve is

$$
\begin{aligned}
& \text { Maximize } g(u, v)=(u-2)(v-2) \\
& \text { subject to }(u, v) \in S^{*}
\end{aligned}
$$

If the optimal point (\bar{u}, \bar{v}) occurs on the Pareto-optimal boundary $v=-u+6$, $2 \leq u \leq 4$, then we maximize

$$
g(u, v)=f(u)=(u-2)(-u+4) .
$$

Take the first-order derivatives of function $f(u)$ and set it to zero:

$$
f^{\prime}(u)=-2 u+6=0 \Longrightarrow \bar{u}=3 \Longrightarrow \bar{v}=3
$$

which yields $g(3,3)=1$. Checking the second-order derivative is negative:

$$
f^{\prime \prime}(u)=-2<0 .
$$

- Find the strategies giving the negotiated solution.

The only points in the bimatrix that are of interest are the endpoints of the Pareto-optimal boundary, namely, $(2,4)$ and $(4,2)$. So the cooperation must be a linear combination of the strategies yielding these payoffs. Solve

$$
(3,3)=\lambda(2,4)+(1-\lambda)(4,2)
$$

to get $\lambda=\frac{1}{2}$. This says that (I, II) must agree to play the pure strategies $\left(\mathrm{I}_{1}, \mathrm{II}_{1}\right)$ and $\left(\mathrm{I}_{2}, \mathrm{II}_{2}\right)$ half of the time, respectively.
(ii) Threat solution.

- Identify the possible Pareto-optimal boundary.

The Pareto-optimal boundary is given by $v=-u+6$ with $m_{p}=-1$ and $b=6,2 \leq u \leq 4$.

- Construct new matrix $-m_{p} A-B$ for a zero sum game.

We look for the value of the game with matrix $A-B$:

$$
A-B=\left(\begin{array}{cc}
2 & 3 \\
-3 & -2
\end{array}\right)
$$

- Find the optimal strategies X_{t}, Y_{t} for the zero sum game.

We find that value $(A-B)=2$ and the optimal threat strategies are $X_{t}=$ $Y_{t}=(1,0)$. Then we know that the security point is as follows:

$$
u^{t}=4 \quad \text { and } \quad v^{t}=2
$$

- Calculate solution (\bar{u}, \bar{v}) of the bargaining game.

This point is exactly the vertex of the feasible set. The two players have no choice but achieve the bargaining solution $(\bar{u}, \bar{v})=(4,2)$ with threat strategies $X_{t}=Y_{t}=(1,0)$.

