
MATH 4512 — Fundamentals of Mathematical Finance

Solution to Homework One

Course instructor: Prof. Y.K. Kwok

1. Recall that

D =
1

B

n∑
i=1

ci
(1 + y)i

i

m

(cash flow ci occurs at time
i

m
years), where

B =
n∑

i=1

ci(1 + y)−i.

Taking the derivative of B with respect to y, we have

dB

dy
= − 1

1 + y

n∑
i=1

ici(1 + y)−i = −mDB

1 + y

so that

D = −1 + y

m

1

B

dB

dy
.

Comparing to a similar formula (see p.5 in Topic One), where

D = −1 + λ

B

dB

dλ
, λ = my.

In this problem, the growth factor over an extra period is 1+ y instead of 1+λ. Also, we
recall

B = BT
c

y
[1− 1

(1 + y)n
] +

BT

(1 + y)n
,

where c is the coupon rate per period and y is the yield per period (see p.2 in Topic One),
so

d

dy
ln

B

BT

=
1

B

dB

dy
= −1

y
+

cn(1 + y)−1 + 1 + y(1 + y)−1(−n)

c[(1 + y)n − 1] + y
.

Combining these relations, we have

D = −1 + y

m

1

B

dB

dy
=

1 + y

my
− 1 + y + n(c− y)

mc[(1 + y)n − 1] +my
.

Note that n = mT. For fixed value of m, we take T → ∞, which is equivalent to take
n → ∞. We then have

lim
T→∞

D =
1

m
+

1

λ
− lim

n→∞

1 + y + n(c− y)

mc[(1 + y)n − 1] +my
.

By virtue of L’Hospital’s rule, we obtain

lim
T→∞

D =
1

m
+

1

λ
− c− y

mc lim
n→∞

ln(1 + y)(1 + y)n
=

1

m
+

1

λ
.
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2. The term 1
B(t,T )

represents the “deterministic” return received by an investor holding a
zero-coupon bond to maturity. The right-hand side is the expected return from time t to
T generated by rolling over a $1 investment in one-period maturity bonds, each of which
has a yield equal to the future spot rate rt, assuming that the investor cannot quit the
annual rolling over strategy in the period [t, T ]. The relationship represents an equilibrium
condition, in which the expected returns for equal holding periods are themselves equal.
On one hand, one may argue that in an environment of economic equilibrium, the returns
on zero-coupon bonds of similar maturity cannot be significantly different since investors
would not hold the bonds with the lower return. On the other hand, the subjective
expectation of an individual investor determines the expected return for the rolling over
strategy. She would choose among the two strategies based on the one with higher
expected return. For example, under the current low interest rate environment, suppose
the investor expects future hikes in interest rates, she would prefer the rolling over strategy
to the long-term bond investment strategy.

3. We write

Bt =
c

i
+

1

(1 + i)T

(
BT − c

i

)
so that

Bt+1 =
c

i
+

1

(1 + i)T−1

(
BT − c

i

)
.

We then have

Bt+1 −Bt =
(
BT − c

i

) i

(1 + i)T
= iBt − c.

Rearranging the terms, we obtain

∆B

B
=

Bt+1 −Bt

Bt

= i− c

Bt

.

In the continuous time limit, we deduce that

1

B(t)

dB

dt
= i(t)− c(t)

B(t)
.

Note that i(t) and c(t) in the differential equation are visualized as cash flow rates so that
i(t)dt and c(t)dt are dollar amounts collected over (t, t + dt). Given that the governing
equation for B(t) is

dB(t)

dt
= i(t)B(t)− c(t), t < T,

with B(T ) = BT , the closed form solution is seen to be

B(t) = e−
∫ T
t i(s) ds

[
BT +

∫ T

t

c(u)e
∫ T
u i(s) dsdu

]
, t < T.

For the coupon amount c(u)du received within the differential time interval (u, u + du),

it grows by the growth factor e
∫ T
u i(s) ds by time T . Together with the par payment BT

received at time T , we apply the discount factor e−
∫ T
t i(s) ds to obtain the present bond

value at time T .

4. Recall rH(i) =

[
B(i)

B0

] 1
H

(1 + i)− 1. When i = i0, B(i) is simply the bond value at t = 0

since the initial interest rate is i0, so

rH(i0) =

[
B0

B0

] 1
H

(1 + i0)− 1 = i0.

Hence, rH(i0) = i0 for any H; so all curves rH(i) pass through (i0, i0).
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5. It is necessary to examine the Taylor expansion of dB
B

up to the third order, where

∆B

B
≈ 1

B

dB

di
di+

1

2

1

B

d2B

di2
(di)2 +

1

6

1

B

d3B

di3
(di)3.

Note that the third order derivative is always negative since

d3B

di3
= −

T∑
t=1

t(t+ 1)(t+ 2)ct(1 + i)−t−3 < 0.

When di > 0, the value i is to the right of the tangency point, we have

1

6

1

B

d3B

di3
(di)3 < 0.

Therefore, the actual bond value is below the quadratic approximation to the right of
the tangency point. On the other hand, since convexity of the bond value is greater than
zero, so the actual bond value lies above the linear approximation.

Similarly, when di < 0, both d2B
di2

(di)2 and d3B
di3

(di)3 are positive. Therefore, the actual
bond value lies above the quadratic approximation and linear approximation curves to
the left of the tangency point.

6. (a) Bond A: maturity is 15 years and coupon rate is 10%

Time of
payment t

(year)

t(t+1) Cash flows in
nominal

value

Discount
rate

Cash flows in
present

value

Share of
cash flows in

present
value in

Weighted
time of

payment

t(t+1) times
share of

discounted
cash flows

1 2 100 0.8929 89.2857 0.1034 0.1034 0.2067

2 6 100 0.7972 79.7194 0.0923 0.1846 0.5537

3 12 100 0.7118 71.1780 0.0824 0.2472 0.9888

4 20 100 0.6355 63.5518 0.0736 0.2943 1.4715

5 30 100 0.5674 56.7427 0.0657 0.3285 1.9707

6 42 100 0.5066 50.6631 0.0587 0.3519 2.4634

7 56 100 0.4523 45.2349 0.0524 0.3666 2.9326

8 72 100 0.4039 40.3883 0.0468 0.3741 3.3665

9 90 100 0.3606 36.0610 0.0417 0.3757 3.7573

10 110 100 0.3220 32.1973 0.0373 0.3727 4.1002

11 132 100 0.2875 28.7476 0.0333 0.3661 4.3931

12 156 100 0.2567 25.6675 0.0297 0.3566 4.6356

13 182 100 0.2292 22.9174 0.0265 0.3449 4.8287

14 210 100 0.2046 20.4620 0.0237 0.3316 4.9746

15 240 1100 0.1827 200.9659 0.2327 3.4899 55.8379

863.7827 7.8880 76.9145

bond price

Calculation results for Bond A: duration is 7.8880 and convexity is 76.9145.

Bond B: maturity is 11 years and coupon rate is 5%

Time of
payment t

(year)

t(t+1) Cash flows in
nominal

value

Discount
rate

Cash flows in
present

value

Share of cash
flows in

present value
in  bond

price

Weighted
time of

payment

t(t+1) times
share of

discounted
cash flows

1 2 50 0.8929 44.6429 0.0764 0.0764 0.1528

2 6 50 0.7972 39.8597 0.0682 0.1364 0.4093

3 12 50 0.7118 35.5890 0.0609 0.1827 0.7308

4 20 50 0.6355 31.7759 0.0544 0.2175 1.0875

5 30 50 0.5674 28.3713 0.0486 0.2428 1.4565

6 42 50 0.5066 25.3316 0.0433 0.2601 1.8207

7 56 50 0.4523 22.6175 0.0387 0.2709 2.1675

8 72 50 0.4039 20.1942 0.0346 0.2765 2.4882

9 90 50 0.3606 18.0305 0.0309 0.2777 2.7770

10 110 50 0.3220 16.0987 0.0275 0.2755 3.0304

11 132 1050 0.2875 301.8499 0.5165 5.6820 68.1842

584.3611 7.8985 67.2073
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Calculation results for Bond B: duration is 7.8985 and convexity is 67.2073.

(b) Bond A has rate of return of 12.06% at horizon H = D = 7.8880 if interest rate
jumps to 10% or 14%. Bond B has rate of return of 12.03% at horizon H = D = 7.8985
if interest rate jumps to 10% or 14%. These sample calculations show that the rates of
return almost stay at the same level of 12% at horizon that equals duration.

Rates of return of Bond A when YTM changes

Horizon

Scenario (YTM)

Current 10% 14%

1 12.00% 27.35% -0.45%

2 12.00% 18.36% 6.53%

3 12.00% 15.50% 8.97%

4 12.00% 14.10% 10.20%

5 12.00% 13.27% 10.95%

6 12.00% 12.72% 11.45%

7 12.00% 12.33% 11.81%

7.888 12.00% 12.06% 12.06%

8 12.00% 12.03% 12.09%

9 12.00% 11.80% 12.30%

10 12.00% 11.62% 12.47%

Rates of return of Bond B when YTM changes

Horizon

Scenario (YTM)

Current 10% 14%

1 12.00% 27.11% -0.65%

2 12.00% 18.25% 6.42%

3 12.00% 15.43% 8.89%

4 12.00% 14.05% 10.15%

5 12.00% 13.23% 10.91%

6 12.00% 12.68% 11.42%

7 12.00% 12.30% 11.78%

7.8985 12.00% 12.03% 12.03%

8 12.00% 12.01% 12.06%

9 12.00% 11.78% 12.27%

10 12.00% 11.60% 12.44%

(c) I would choose bond A. These two bonds have pretty much the same duration, but
bond A has a higher value of convexity. As a result, bond A has a higher rate of return
compared to that of bond B, no matter interest rates increase or decrease, and for any
choice of horizon.
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7. Let t be the tax rate, xi be the number of units of bond i bought, ci be the coupon of
bond i, pi be the price of bond i, i = 1, 2. The par value of each bond is 100.

To create a zero coupon bond, we require that the after-tax coupons match. This gives

100[x1(1− t)c1 + x2(1− t)c2] = 0,

which reduces to an equation independent of t:

x1c1 + x2c2 = 0.

Next, we require that the after-tax final cash flows match (mutually consistent). This
gives another equation that relates the bond prices p1, p2 and p0.

x1[100− (100− p1)t] + x2[100− (100− p2)t] = [100− (100− p0)t].

The price of the zero-coupon bond will be

p0 = x1p1 + x2p2.

The last relation for matching the par payments at maturity is given by

x1 + x2 = 1.

Combining x1 + x2 = 1, c1x1 + c2x2 = 0, and p0 = x1p1 + x2p2, we obtain

p0 =
c2p1 − c1p2
c2 − c1

=
0.07× 92.21− 0.1× 75.84

0.07− 0.1
= 37.64.

8. Let P denote the principal left in the pool and r denote the annualized rate of return.

Year 1 P = (20)(1.085) +
−10(20)(−0.005)

1.085
− 12.5(0.07) = 21.75

r =
21.75− 20

20− 12.5
= 23.33%;

Year 2 P = (21.75)(1.08) +
−10(21.75)(−0.005)

1.08
− 12.5(0.065) = 23.68

r =
23.69− 21.75

21.75− 12.5
= 20.86%;

Year 3 P = (23.68)(1.075) +
−10(23.68)(−0.005)

1.075
− 12.5(0.06) = 25.81

r =
25.81− 23.68

23.68− 12.5
= 19.02%;

Year 4 P = (25.81)(1.07) +
−10(25.81)(−0.005)

1.07
− 12.5(0.055) = 28.14

r =
28.14− 25.81

25.81− 12.5
= 17.51%;

Year 5 P = (28.14)(1.065)− 10(28.14)(0.02)

1.065
− 12.5(0.05) = 24.06

r =
24.06− 28.14

28.14− 12.5
= −26.09%;

Year 6 P = (24.06)(1.085)− 10(24.06)(0.02)

1.085
− 12.5(0.07) = 20.80

r =
20.80− 24.06

24.06− 12.5
= −28.20%.
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Net gain after 6 years

= principal left in the pool at the end of Year 6− initial investment− borrowed amount

= 20.80− 12.5− 7.5 = 0.80.

If invested in bank of amount 7.5 billion (without borrowing to gain leverage), then the
net gain = 7.5(1.06)(1.055)(1.05)(1.045)(1.04)(1.06)− 7.5 = 2.64.

Note the significant mark-to-market losses in the bond portfolio when the interest rates
increased by 2% in two consecutive years (Years 5 and 6).

9. The decisions at times after the initial time do not depend on d. At time 1, the upper
and lower node values are x2 = 14 + 14d and x1 = 7 + 7d, respectively. Then, the initial
value is

x0 = max[14d(1 + d), 7(1 + d+ d2)].

The choice depends on d. The critical value of d is

d∗ =

√
5− 1

2
≈ 0.618.

• For d < d∗, we choose x2.

• For r = 33%, we have d = 0.75 and for r = 25% we have d = 0.8, so solution is the
same for both.

10. (a) Since we mine forever, we have KK = KK+1 = constant. We let this constant be K.

So K =
(g − dK)2

2000
+ dK implies K = 220 every period. Thus, the initial value of

the mine, V0 = Kx0 = 220x0 = $11 million.

(b) The amount of gold remaining in the mine in period n, xn = xn−1 − zn−1 where zn
equals the amount mined in period n. Recall the relation:

zj =
(g − dKj+1)

1000
xj, j = 0, 1, 2, . . .

According to the Table in the lecture note, we have

z0 =
400− dK1

1000
x0 =

400− 211.45
1.1

1000
× 50000 = 10389, x1 = x0 − z0 = 39611;

z1 =
400− 208.17

1.1

1000
× 50000 = 10538, x2 = x1 − z1 = 39611− 10538 = 29073; etc.

Through successive iteration, we finally obtain x10 = 2393.
Thus, by part (a), the value of the mine in period 10 is found to be 220x10 = $526, 460
(at that time).

(c) The optimal extraction rate in each period =
g − dK

1000
= 20%, so after 10 years,

x10 = 0.810 × 50, 000 = 5369 ounces of gold remains with a value of $1, 181, 116 (at
that time). Note that the miner is more aggressive to get a larger amount of gold
from the mine when the lease of the mine has finite number of years.

11. (a) Set up a trinomial lattice with arcs:
“up” = no pumping
“middle” = normal pumping
“down” = enhanced pumping
The reserve values can be entered on each node. At the final time, the maximum
reserve is 100, 000 and the minimum is 26, 214 barrels.

(b) Work backward to find present value = $366, 740. The optimal strategy is: enhanced
pumping for the first two years, followed by normal pumping in the last year.
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