
MATH4512 – Fundamentals of Mathematical Finance

Topic Four — Utility optimization and stochastic dominance

for investment decisions

4.1 Optimal long-term investment criterion – log utility criterion

4.2 Axiomatic approach to the construction of utility functions

4.3 Maximum expected utility criterion

4.4 Characterization of utility functions

4.5 Stochastic dominance
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4.1 Optimal long-term investment strategy – log utility

Suppose there is an investment opportunity that the investor will

either double her investment or return nothing. The probability

of the favorable outcome is p. Suppose the investor has an initial

capital of X0, and she can repeat this investment many times. How

much should she invest at each time in order to maximize the long-

term growth of capital?

Statement of the problem

Let α be the proportion of capital invested during each play. The

investor would like to find the optimal value of α which maximizes

the long-term growth. The possible proportional changes are given

by {
1+ α if outcome is favorable
1− α if outcome is unfavorable

, 0 ≤ α ≤ 1.
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General formulation

Let Xk represent the capital after the kth trial, then

Xk = RkXk−1

where Rk is the random return variable.

We assume that all Rk’s have identical probability distribution and

they are mutually independent. The capital at the end of n trials is

Xn = RnRn−1 · · ·R2R1X0.
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Taking logarithm on both sides

lnXn = lnX0 +
n∑

k=1

lnRk

or

ln

(
Xn

X0

)1/n
=

1

n

n∑
k=1

lnRk.

Since the random variables lnRk are independent and have identical

probability distribution, by the law of large numbers, the sample

average tends to the true mean. We have

1

n

n∑
k=1

lnRk −→ E[lnR1], as n → ∞.
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Remark

Since the expected value of lnRk is independent of k, so we simply

consider E[lnR1]. Suppose we write m = E[lnR1], we have(
Xn

X0

)1/n
−→ em or Xn −→ X0e

mn.

For asymptotically large n, the capital grows exponentially with n at

a rate m. Here, em is the growth factor for each investment period.

Log utility of single-period investment model

m+ lnX0 = E[lnR1] + lnX0 = E[lnR1X0] = E[lnX1].

If we define the log utility form: U(x) = lnx, then the problem of

maximizing the growth rate m in the long-term investment strategy

is equivalent to maximizing the expected utility E[U(X1)] of single-

period terminal wealth.
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Essentially, we transform the optimal long-term investment growth

problem into a single-period model. The single-period maximization

of log utility of terminal wealth guarantees the maximum growth of

wealth in the long run.

Back to the investment strategy problem, how to find the optimal

value of α such that the growth factor em, or equivalently, m is

maximized:

m = E[lnR1] = p ln(1 + α) + (1− p) ln(1− α).

The decision variable is α. Setting
dm

dα
= 0, we obtain

p(1− α)− (1− p)(1 + α) = 0

giving α = 2p− 1.
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Suppose we require α ≥ 0, then the existence of the above solution

implicitly requires p ≥ 0.5.

What happen when p < 0.5? The value for α for optimal growth is

given by α = 0 since m is a decreasing function of α when α ≥ 0.

Lesson learnt If the game is unfavorable to the player, then he

should stay away from the game.

Example (volatility pumping)

Stock: In each period, its value either doubles or reduces by half.

riskless asset: just retain its value.

How to use these two instruments in combination to achieve growth?

Return vector R =

{ (
1
2 1

)
if stock price goes down

(2 1) if stock price goes up
.
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Strategy of 50-50 portfolio

Invest one half of the capital in each asset for every period. Do the

rebalancing at the beginning of each period so that one half of the

capital is invested in each asset.

The expected growth rate

m =
1

2
ln
(
1

2
+ 1

)
+

1

2
ln
(
1

2
+

1

4

)
≈ 0.059.

↑ ↑
prob of doubling prob of halving

We obtain em ≈ 1.0607, so the gain on the portfolio is about 6%

per period.

Remark This strategy follows the dictum of “buy low and sell high”

via the process of rebalancing.
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Combination of 50-50 portfolio of risky stock and riskless asset

gives an enhanced growth.
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Example (equal weight portfolio strategy)

Both risky assets either double or halve in value over each period

with probability 1/2; and the price moves over successive periods are

independent. Suppose we invest one half of the capital in each asset,

and rebalance at the end of each period. The expected growth rate

of the portfolio is found to be

m =
1

4
ln2 +

1

2
ln

5

4
+

1

4
ln

1

2
=

1

2
ln

5

4
= 0.1116,

so that em =

√
5

4
= 1.118. This gives an 11.8% growth rate for

each period.

Remark Advantage of the index tracking fund, say, Dow Jones

Industrial Average. The index automatically

(i) exercises stock splitting,

(ii) get rids of the weaker performers periodically.
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Investment wheel

The number shown in a sec-

tor is the payoff for one-

dollar investment on that

sector.

1. Top sector: paying 3 to 1, though the area is 1/2 of the whole

wheel (favorable odds).

2. Lower left sector: paying only 2 to 1 for an area of 1/3 of wheel

(unfavorable odds).

3. Lower right sector: paying 6 to 1 for an area of 1/6 of the wheel

(even odds).
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Aggressive strategy

Invest all money in the top sector. This produces the highest single-

period expected return. This is too risky for long-term investment!

Why? The investor goes broke half of the time and cannot continue

with later spins.

Fixed proportion strategy

Prescribe wealth proportions to each sector; apportion current wealth

among the sectors as bets at each spin.

(α1, α2, α3) where αi ≥ 0 and α1 + α2 + α3 ≤ 1.

α1: top sector

α2: lower left sector

α3: lower right sector
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If “top” occurs, R(ω1) = 1+ 2α1 − α2 − α3.

If “bottom left” occurs, R(ω2) = 1− α1 + α2 − α3.

If “bottom right” occurs, R(ω3) = 1− α1 − α2 +5α3.

The expected value of the log return is given by

m =
1

2
ln(1+2α1−α2−α3)+

1

3
ln(1−α1+α2−α3)+

1

6
ln(1−α1−α2+5α3).

To maximize m, we compute
∂m

∂αi
, i = 1,2,3, and set them be zero:

2

2(1 + 2α1 − α2 − α3)
−

1

3(1− α1 + α2 − α3)
−

1

6(1− α1 − α2 +5α3)
= 0

−1

2(1 + 2α1 − α2 − α3)
+

1

3(1− α1 + α2 − α3)
−

1

6(1− α1 − α2 +5α3)
= 0

−1

2(1 + 2α1 − α2 − α3)
−

1

3(1− α1 + α2 − α3)
+

5

6(1− α1 − α2 +5α3)
= 0.
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There is a whole family of optimal solutions, and it can be shown

that they all give the same value for m.

(i) α1 = 1/2, α2 = 1/3, α3 = 1/6

One should invest in every sector of the wheel, and the bet

proportions are equal to the probabilities of occurrence. Now,

m =
1

2
ln

3

2
+

1

3
ln

2

3
+

1

6
ln 1 =

1

6
ln

3

2

so em ≈ 1.06991 (a growth rate of about 7%).

Remark: Betting on the unfavorable sector is like buying insur-

ance.

(ii) α1 = 5/18, α2 = 0 and α3 = 1/18.

Nothing is invested in the unfavorable sector. Note that α1 +

α2 + α3 < 1 in this case. The corresponding value of m is also

equal to
1

6
ln

3

2
.
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Log utility and growth function

Let wi = (wi1 · · ·win)
T be the weight vector of holding n risky

securities at the ith period, where weight is defined in terms of

wealth. Write the random return vector at the ith period as Ri =

(Ri1 · · ·Rin)
T . Here, Rij is the random return of holding the jth

security after the ith play.

Write Sm as the total return of the portfolio after m periods:

Sm =
m∏

i=1

wi ·Ri.

Define B = {w ∈ Rn : 1 · w ≤ 1 and w ≥ 0}, where 1 = (1 · · ·1)T .
This represents a trading strategy that does not allow short selling.

When the successive plays are identical, we may drop the depen-

dence on i by assuming that the gambler follows the same strategy

for all plays.
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Single-period growth function

Based on the log-utility criterion, we define the growth function by

W (w;F ) = E[ln(w ·R)],

where F (R) is the distribution function of the stochastic return

vector R. The growth function is seen to be a function of the

trading strategy w together with dependence on F . The optimal

growth function is defined by

W ∗(F ) = max
w∈B

W (w;F ).

Remark

To achieve the maximization of the long-term growth, we maximize

E[ln(w · R)] instead of E[w · R]. The maximization of E[w · R] is

the optimal strategy for single play of the game.
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Betting wheel revisited

Let the payoff upon the occurrence of the ith event (denoted by

ωi, which corresponds to the pointer landing on the ith sector) be

(0 · · · ai ·0)T with probability pi. That is, R(ωi) = (0 · · · ai ·0)T . Take

the earlier example, the random return vector is given by

R(ω1) = (3 0 0)T

R(ω2) = (0 2 0)T

R(ω3) = (0 0 6)T .

ω1 = top sector, ω2 = bottom left sector, ω3 = bottom right sector.

For this betting wheel game, the gambler betting on the ith sector

(equivalent to investment on security i) is paid ai if the pointer lands

on the ith sector and loses the whole bet if otherwise.

17



Suppose the gambler chooses the weights w = (w1 · · ·wn)T as the

betting strategy with
n∑

i=1

wi = 1, then

W (w;F ) =
n∑

i=1

pi ln(w ·R(ωi)) =
n∑

i=1

pi lnwiai

=
n∑

i=1

pi ln
wi

pi
+

n∑
i=1

pi ln pi +
n∑

i=1

pi ln ai,

where the last two terms are known quantities. Using the inequality:

lnx ≤ x− 1 for x > 0, with equality holds when x = 1, we have

n∑
i=1

pi ln
wi

pi
≤

n∑
i=1

pi

(
wi

pi
− 1

)
=

n∑
i=1

wi −
n∑

i=1

pi = 0.

The upper bound of
n∑

i=1

pi ln
wi

pi
is zero, and this maximum value

is achieved when we choose wi = pi for all i. It also occurs that∑n
i=1wi = 1. Therefore, an optimal betting strategy within B is

w∗
i = pi, for all i; and W (w∗;F ) =

n∑
i=1

pi ln piai.
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Remarks

1. Consider the following example

p
1

= 0.5

a
1

= 1.01

p
2

= 0.2

a
2

= 106 p
3

= 0.3

a
3

= 0.8

Though the return of the second sector is highly favorable, we

still apportion only w2 = 0.2 to this sector, given that our goal

is to achieve the long-term growth. However, if we would like

to maximize the one-period return, we should place all bets in

the second sector.

2. An optimal long-term strategy as characterized by wi depends

on pi but not ai. The growth function W (w;F ) surely depends

on ai.
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4.2 Axiomatic approach to the construction of utility func-

tions

How do we rank the following 4 investment choices?

Investment A Investment B Investment C Investment D
x p(x) x p(x) x p(x) x p(x)
4 1 5 1 −5 1/4 −10 1/5

0 1/2 10 1/5
40 1/4 20 2/5

30 1/5

When there is no risk, we choose the investment with the highest

rate of return. — Maximum Return Criterion.

e.g. Investment B dominates Investment A, but this criterion fails

to compare Investment B with Investment C.
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Identify the investment with the highest expected return by com-

paring

EC(x) =
1

4
(−5) +

1

2
(0) +

1

4
(40) = 8.75

ED(x) =
1

5
(−10) +

1

5
(10) +

2

5
(20) +

1

5
(30) = 14.

According to the maximum expected return criterion, D is preferred

over C. However, some investors may prefer C on the ground that

it has a smaller downside loss of −5 and a higher upside gain of 40.

Expected value criterion is not sufficient. How to construct a math-

ematical function that is used to correct the expected value (with

dependence only on probability) to account for the risk appetite of

an individual investor into the decision procedure? The risk appetite

changes with respect to the wealth level of the investor.

21



St Petersburg paradox (failure of Maximum Expected Return Cri-

terion)

• Published by Bernuolli in the St Petersburg Academy Proceed-

ings (1738)

Tossing of a fair coin until the first head shows up. The prize is

2k−1, where k is the number of tosses until the first head shows up

(the game is then ended). For example, suppose the head shows

up in the first toss, the price is 1. This occurs with probability
1

2
for a fair coin. There is a very small chance to receive a large sum

of money, which occurs when k is large. There is no upper bound

on the potential rewards from very low probability events.

Expected prize of the game =
∞∑

k=1

1

2k
2k−1 = ∞.
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A. Outcome tree for the St. Petersburg gamble. The St. Pe-

tersburg gamble consists of a series of coin flips offering a 50%

chance of $1, a 25% chance of $2, a 12.5% chance of $4, and

so on. The gamble may continue indefinitely.

B. The probability of each possible outcome decreases as a function

of the outcome amount. The probability of a large reward is very

low, but not zero.
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• The decision criterion which takes only the expected value into

account would recommend a course of action that no (real)

rational person would be willing to take.

• Given the finite resources of the participants, people can only

buy a lottery with a finite price. On the other hand, sellers would

not produce a lottery whose potential loss were unacceptable.

One simply cannot buy that which is not sold.

If the total resources (or maximum jackpot) of the casino is W ,

then the expected value of the lottery is

E =
∞∑

k=1

1

2k
min(2k−1,W ).

Suppose 2L−1 ≤ W < 2L, that is, L = 1 + floor(log2W ). With

the very low probability events neglected, we have

E =
L∑

k=1

1

2k
2k−1 +

∞∑
k=L+1

1

2k
W =

L

2
+

W

2L
.
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The following table shows the expected value E of the game with

various potential backers and their bankroll W

Backer Bankroll Expected value of lottery
Friendly game $100 $4.28
Millionaire $100,000,000 $10.95
Billionaire $1,000,000,000 $15.93
Bill Gates (2008) $58,000,000,000 $18.84
U.S. GDP (2007) $13.8 trillion $22.79
World GDP (2007) $54.3 trillion $23.77
Googolaire $10100 $166.50

Notes: The estimated net worth of Bill Gates is from Forbes. The

GDP data are as estimated for 2007 by the International Monetary

Fund, where one trillion dollars equals $1012. A “googolaire” is a

hypothetical person worth a googol dollars ($10100).
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Is the expected payoff of the St. Petersburg gamble infinite?

Buffon (1777) had a child play the St. Petersburg game 2,048

times.

Tosses (k) Frequency Payoff (2k−1)
1 1061 1
2 494 2
3 232 4
4 137 8
5 56 16
6 29 32
7 25 64
8 8 128
9 6 256

Based on the above, Buffon concluded that the St. Petersburg

game becomes fair with an entrance fee of approximately $5.
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• In more recent times, computers have made it possible to simu-

late coin flips more rapidly. Though estimated values are higher,

the fundamental result does not change.

• Statistically, expected value is the central tendency of the distri-

bution embodied in a risky game. For highly non-Gaussian dis-

tributions, the mean is not considered a valid estimator. Some

researchers conclude that the true expected value of the St.

Petersburg gamble is undefined, but not infinite.

• An alternative estimator of central tendency is median, which is

robust to noise and favored for highly skewed distributions. The

median of the distribution associated with the St. Petersburg

gamble is between $1 and $2. Apparently, people estimate the

value of the gamble using the median.
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Histogram of bids offered for the standard St. Petersburg paradox.

Although the expected value of the gamble is infinite, all bids were

finite. The median bid was $1.50. The distribution was bimodal,

with large modes at $1 and $2. Bids ranged from zero to $50,000.
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Survey results on opinion polls
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Preference relation and utility function

Building block – Pairwise comparison

Consider the set of alternatives B, how to determine which element

in the choice set B that is preferred?

The individual first considers two arbitrary elements: x1, x2 ∈ B. He

then picks the preferred element x1 and discards the other. From

the remaining elements, he picks the third one and compares with

the winner. The process continues and the best choice among all

alternatives is identified.
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Choice set and preference relation

Let the choice set B be a convex subset of the n-dimensional Eu-

clidean space. The component x(i) of the n-dimensional vector x

may represent x(i) units of commodity i. By convex, we mean that

if x1, x2 ∈ B, then αx1 + (1− α)x2 ∈ B for any α ∈ [0,1].

• An individual is endowed with a preference relation, ≽, for de-

termining the preference between 2 elements.

• Given any elements x1 and x2 ∈ B, x1 ≽ x2 means either that x1
is preferred to x2 or that x1 is indifferent to x2.
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Three axioms for ≽

Reflexivity

For any x1 ∈ B, x1 ≽ x1.

Comparability

For any x1, x2 ∈ B, either x1 ≽ x2 or x2 ≽ x1.

Transitivity

For x1, x2, x3 ∈ B, given x1 ≽ x2 and x2 ≽ x3, then x1 ≽ x3.

Remarks

1. Without the comparability axiom, an individual could not deter-

mine an optimal choice. There would exist at least two elements

of B between which the individual could not discriminate.
2. The transitivity axiom ensures that the choices are consistent.
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Example 1 – Total quantity

Let B = {(x, y) : x ∈ [0,∞) and y ∈ [0,∞)} represent the set of

alternatives. Let x represent ounces of orange soda and y represent

ounces of grape soda. It is easily seen that B is a convex subset of

R2.

Suppose the individual is concerned only with the total quantity of

soda available, the more the better, then the individual is endowed

with the following preference relation:

For (x1, y1), (x2, y2) ∈ B,

(x1, y1) ≽ (x2, y2) if and only if x1 + y1 ≥ x2 + y2.
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Example 2 – Dictionary order

Let the choice set B = {(x, y) : x ∈ [0,∞), y ∈ [0,∞)}, the dictionary

order ≽ is defined as follows:

Suppose (x1, y1) ∈ B and (x2, y2) ∈ B, then

(x1, y1) ≽ (x2, y2) if and only if

[x1 > x2] or [x1 = x2 and y1 ≥ y2].

It is easy to check that the dictionary order satisfies the three basic

axioms of a preference relation.
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Definition

Given x, y ∈ B and a preference relation ≽ satisfying the above three

axioms.

1. x is indifferent to y, written as

x ∼ y if and only if x ≽ y and y ≽ x.

2. x is strictly preferred to y, written as

x ≻ y if and only if x ≽ y but not x ∼ y.
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Axiom 4 – Order Preserving

For any x, y ∈ B where x ≻ y and α, β ∈ [0,1],

[αx+ (1− α)y] ≻ [βx+ (1− β)y] if and only if α > β.

Example 1 revisited – checking the Order Preserving Axiom

Recall the preference relation defined in Example 1, we take (x1, y1),

(x2, y2) ∈ B such that (x1, y1) ≻ (x2, y2) so that x1+y1−x2−y2 > 0.

Take α, β ∈ [0,1] such that α > β, and observe

α[(x1 + y1)− (x2 + y2)] > β[(x1 + y1)− (x2 + y2)].

Adding x2 + y2 to both sides, we obtain

α(x1 + y1) + (1− α)(x2 + y2) > β(x1 + y1) + (1− β)(x2 + y2).
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Axiom 5 – Intermediate Value

For any x, y, z ∈ B, if x ≻ y ≻ z, then there exists a unique α ∈ (0,1)

such that

αx+ (1− α)z ∼ y.

Remark

Given 3 alternatives with rankings of x ≻ y ≻ z, there exists a convex

combination of x and z that is indifferent to y. Trade-offs between

the alternatives exist.
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Example 1 revisited – checking the Intermediate Value Axiom

Given x1 + y1 > x2 + y2 > x3 + y3, we choose

α =
(x2 + y2)− (x3 + y3)

(x1 + y1)− (x3 + y3)
.

Rearranging gives

α(x1 + y1) + (1− α)(x3 + y3) = x2 + y2

so that

[α(x1, y1) + (1− α)(x3, y3)] ∼ (x2, y2).

α

x y
1 1
+x y

2 2
+x y

3 3
+

1

When x2 + y2 is getting closer to x3 + y3, α becomes smaller.
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Dictionary order does not satisfy the intermediate value axiom

We quote a counter example. Suppose (x1, y1), (x2, y2), (x3, y3) ∈ B

such that (x1, y1) ≻ (x2, y2) ≻ (x3, y3) and x1 > x2 = x3 and y2 > y3.

For any α ∈ (0,1), we consider the convex combination

α(x1, y1) + (1− α)(x3, y3)

= α(x1, y1) + (1− α)(x2, y3)

= (αx1 + (1− α)x2, αy1 + (1− α)y3).

But for α > 0, we have αx1 + (1− α)x2 > x2 so

α(x1, y1) + (1− α)(x3, y3) ≻ (x2, y2) for all α ∈ (0,1).

In other words, there does not exist α ∈ (0,1) such that

αx+ (1− α)z ∼ y.
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Axiom 6 – Boundedness

There exist x∗, y∗ ∈ B such that x∗ ≽ z ≽ y∗ for all z ∈ B.

• This Axiom ensures the existence of a most preferred element

x∗ ∈ B and a least preferred element y∗ ∈ B.

Example 1 revisited – checking the Boundedness Axiom

Recall B = {(x, y) : x ∈ [0,∞) and y ∈ [0,∞)}. Given any (z1, z2) ∈
B, we have

(z1 +1, z2) ≽ (z1, z2) since z1 + z2 +1 > z1 + z2.

Therefore, a maximum does not exist.
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Motivation for defining utility

Knowledge of the preference relation ≽ effectively requires a com-

plete listing of preferences over all pairs of elements from the choice

set B. We define a utility function that assigns a numeric value to

each element of the choice set such that a larger numeric value

implies a higher preference.

• Firstly, we establish the theorem on the existence of utility func-

tion.

• Next, we show that the optimal criterion for ranking alternative

investments is based on the ranking of the expected utility values

of various investments.

41



Theorem – Existence of Utility Function

Let B denote the set of payoffs from a finite number of choices, also

being a convex subset of Rn. Let ≽ denote a preference relation on

B. Suppose ≽ satisfies the following axioms

(i) ∀x ∈ B, x ≽ x.

(ii) ∀x, y ∈ B, x ≽ y or y ≽ x.

(iii) For any x, y, z ∈ B, if x ≽ y and y ≽ z, then x ≽ z.

(iv) For any x, y ∈ B, x ≽ y and α, β ∈ [0,1],

αx+ (1− α)y ≽ βx+ (1− β)y if and only if α > β.

(v) For any x, y, z ∈ B, suppose x ≻ y ≻ z, then there exists a unique

α ∈ (0,1) such that αx+ (1− α)z ∼ y.

(vi) There exist x∗, y∗ ∈ B such that ∀z ∈ B, x∗ ≽ z ≽ y∗.

Then there exists a utility function U : B → R such that

(a) x ≻ y if and only if U(x) > U(y).

(b) x ∼ y if and only if U(x) = U(y).
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To show the existence of U : B → R, we write down one such

function and show that it satisfies the stated conditions.

Based on Axiom 6, we choose x∗, y∗ ∈ B such that

x∗ ≽ z ≽ y∗ for all z ∈ B.

Without loss of generality, let x∗ ≻ y∗. [Otherwise, x∗ ∼ z ∼ y∗ for

all z ∈ B. In this case, U(z) = 0 for all z ∈ B, which is a trivial utility

function that satisfies condition (b).]

Consider an arbitrary z ∈ B. There are 3 possibilities:

1. z ∼ x∗; 2. x∗ ≻ z ≻ y∗; 3. z ∼ y∗.
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We define U by giving its value under all 3 cases:

1. U(z) = 1. The most preferred element has utility value of one.

2. By Axiom 5, there exists a unique α ∈ (0,1) such that

[αx∗ + (1− α)y∗] ∼ z.

Define U(z) = α.

3. U(z) = 0. The least preferred element has utility value of zero.

Such U satisfies properties (a) and (b).

The Boundness Axiom gives the lower and upper bound of U . The

Intermediate Value Axiom gives the utility value α. Finally, the

Order Preserving Axiom gives the ranking of the alternatives based

on their utility values.
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Proof of property (a)

Necessity

Suppose z1, z2 ∈ B are such that z1 ≻ z2, we need to show

U(z1) > U(z2).

Consider the four possible cases.

1. z1 ∼ x∗ ≻ z2 ≻ y∗

2. z1 ∼ x∗ ≻ z2 ∼ y∗

3. x∗ ≻ z1 ≻ z2 ≻ y∗

4. x∗ ≻ z1 ≻ z2 ∼ y∗.

Case 1 By definition, U(z1) = 1 and U(z2) = α, where α ∈ (0,1)

uniquely satisfies

αx∗ + (1− α)y∗ ∼ z2.

Now, U(z1) = 1 > α = U(z2).
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Case 2 By definition, U(z1) = 1 > 0 = U(z2).

Case 3 By defintion, U(zi) = αi, where αi ∈ (0,1) uniquely satis-

fies

αix
∗ + (1− αi)y

∗ ∼ zi,

so that

z1 ∼ [α1x
∗ + (1− α1)y

∗] and [α2x
∗ + (1− α2)y

∗] ∼ z2.

We claim U(z1) = α1 > α2 = U(z2). Assume not, then

α1 ≤ α2. By Axiom 4,

[α2x
∗ + (1− α2)y

∗] ≽ [α1x
∗ + (1− α1)y

∗].

This is a contradiction. Hence, α1 > α2 is true and

U(z1) = α1 > U(z2) = α2.
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Case 4 By definition, U(z1) = α1, where α1 ∈ (0,1) uniquely sat-

isfies

α1x
∗ + (1− α1)y

∗ ∼ y1 and U(z2) = 0.

We have U(z1) = α1 > 0 = U(z2).
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Sufficiency

Suppose, given z1, z2 ∈ B, that U(z1) > U(z2), we would like to

show z1 ≻ z2. Consider the following 4 cases

1. U(z1) = 1 and U(z2) = α2, where α2 ∈ (0,1) uniquely satisfies

[α2x
∗ + (1− α2)y

∗] ∼ z2.

2. U(z1) = 1, where z1 ∼ x∗ and U(z2) = 0, where z2 ∼ y∗.

3. U(zi) = αi, where αi ∈ (0,1) uniquely satisfies

[αix
∗ + (1− αi)y

∗] ∼ zi.

4. U(z1) = α1 and U(z2) = 0, where z2 ∼ y∗.
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Case 1 z1 ∼ x∗ ∼ [1 · x∗ +0 · y∗] and z2 ∼ [α2x
∗ + (1− α2)y

∗].

By Axiom 4, 1 > α2 so that z1 ≻ z2.

Case 2 z1 ∼ x∗ ≻ y∗ ∼ z2.

Case 3 z1 ∼ [α1x
∗ + (1− α1)y

∗]

z2 ∼ [α2x
∗ + (1− α2)y

∗]

Since α1 = U(z1) > U(z2) = α2, by Axiom 4, z1 ≻ z2.

Case 4 z1 ∼ [α1x
∗ + (1− α1)y

∗] and

z2 ∼ y∗ ∼ [0x∗ + (1− 0)y∗].

By Axiom 4 and since α1 > 0, z1 ≻ z2.
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Proof of Property (b)

Necessity

Suppose z1 ∼ z2 but U(z1) ̸= U(z2), then

U(z1) > U(z2) or U(z2) > U(z1).

By property (a), this implies z1 ≻ z2 or z2 ≻ z1, a contradiction.

Hence,

U(z1) = U(z2).

Sufficiency

Suppose U(z1) = U(z2), but z1 ≻ z2 or z1 ≺ z2. By property (a),

this implies U(z1) > U(z2) or U(z2) > U(z1), a contradiction. Hence,

z1 ∼ z2.
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4.3 Maximum expected utility criterion

How to make a choice between the following two lotteries:

L1 = {p1, A1; p2, A2; · · · ; pn, An}
L2 = {q1, A1; q2, A2; · · · ; qn, An}?

The outcomes are A1, · · · , An; pi and qi are the probabilities of occur-

rence of Ai in L1 and L2, respectively. These outcomes are mutually

exclusive and only one outcome can be realized under each lottery.

We are not limited to lotteries with the same set of outcomes. Sup-

pose outcome Ai will not occur in Lottery L1, we can simply set

pi = 0.

Comparability

When faced with two monetary outcomes Ai and Aj, the investor

must say Ai ≻ Aj, Aj ≻ Ai or Ai ∼ Aj.
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Continuity

If A3 ≽ A2 and A2 ≽ A1, then there exists unique U(A2) [0 ≤
U(A2) ≤ 1] such that

L = {[1− U(A2)], A1;U(A2), A3} ∼ A2.

For a given set of outcomes A1, A2 and A3, these probabilities are

a function of A2, hence the notation U(A2).

Why is it called continuity axiom? When U(A2) = 1, we obtain

L = A3 ≽ A2; when U(A2) = 0, we obtain L = A1 ≼ A2. If we

increase U(A2) continuously from 0 to 1, we hit a value U(A2) such

that L ∼ A2.

Remark
Though U(A2) is a probability value, we will see that it is also the

investor’s utility function.
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Interchangeability

Given L1 = {p1, A1; p2, A2; p3, A3} and A2 ∼ A = {q,A1; (1− q), A3},
the investor is indifferent between L1 and L2 = {p1, A1; p2, A; p3, A3}.
Note that L2 has monetary values A1 and A3 and a lottery A as

prizes.

Transitivity

Given L1 ≻ L2 and L2 ≻ L3, then L1 ≻ L3.

Also, if L1 ∼ L2 and L2 ∼ L3, then L1 ∼ L3.
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Decomposability

A complex lottery has lotteries as prizes. A simple lottery has mon-

etary values A1, A2, as prizes.

Consider a complex lottery L∗ = {1− q, L1; q, L2}, where

L1 = {p1, A1; (1− p1), A2} and L2 = {p2, A1; (1− p2), A2},

L∗ can be decomposed into a simple lottery L = {p∗, A1; (1−p∗), A2},
with A1 and A2 as prizes where p∗ = (1− q)p1 + qp2.

The decomposability property can be extended to the generalized

case. Suppose

L∗ = {p1, L1; p2, L2; . . . ; pn, Ln}

and

Li = {1− qi, A1; qi, A2}, i = 1,2, . . . , n,

then

L∗ = {
n∑

i=1

pi(1− qi), A1;
n∑

i=1

piqi, A2}.
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Monotonicity

(a) For monetary outcomes, A2 > A1 ⇐⇒ A2 ≻ A1.

(b) For lotteries

(i) Let L1 = {p,A1; (1 − p), A2} and L2 = {p,A1; (1 − p), A3},
0 < p < 1. We have A3 > A2 if and only if A3 ≻ A2 and L2 ≻
L1. Under the same probability of occurrence, we compare

monetary outcomes.

(ii) Let L1 = {p,A1; (1−p), A2} and L2 = {q,A1; (1−q), A2}, also
A2 > A1 (hence A2 ≻ A1). We have p < q ⇐⇒ L1 ≻ L2.

Under the same set of monetary outcomes, we compare the

respective probability of occurrence.
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Theorem

The optimal criterion for ranking alternative investments is the ex-

pected utility of the various investments, where

L1 ≻ L2 ⇔
∑

piU(Ai) >
∑

qiU(Ai).

Proof

How to make a choice between L1 and L2

L1 = {p1, A1; p2, A2; · · · ; pn, An}
L2 = {q1, A1; q2, A2; · · · ; qn, An}

where Ai are distinct monetary outcomes arranged according to

A1 < A2 < · · · < An?
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1. By comparability axiom, we can compare Ai. Further, by mono-

tonicity axiom, we determine that

A1 < A2 < · · · < An implies A1 ≺ A2 ≺ · · · ≺ An.

2. By continuity axiom, for every Ai, there exists U(Ai) such that

Ai ∼ A∗
i . Define the lottery A∗

i = {[1 − U(Ai)], A1;U(Ai), An}
where 0 ≤ U(Ai) ≤ 1.

For A1, U(A1) = 0, hence A∗
1 ∼ A1; for An, U(An) = 1. For other

Ai,0 < U(Ai) < 1. By the monotonicity and transitivity axioms,

U(Ai) increases from zero to one as Ai increases from A1 to An.

3. Substituting Ai by A∗
i in L1 successively and by the interchange-

ability axiom, we have

L1 ∼ L̃1 = {p1, A∗
1; p2, A

∗
2; · · · ; pn, A

∗
n}.

The lotteries A∗
1, A

∗
2, . . . , A

∗
n are dependent only on the monetary

outcomes A1 and An.
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4. Note that L̃1 is a complex lottery, which consists only the two

monetary outcomes A1 and An. By the decomposability axiom,

we decompose the complex lottery L̃1 as a simple lottery that

is in terms of A1 and An, where

L1 ∼ L̃1 ∼ L∗
1 = {Σpi[1− U(Ai)], A1;ΣpiU(Ai), An}.

Similarly, we decompose L̃2 as a simple lottery, where

L2 ∼ L∗
2 = {Σqi[1− U(Ai)], A1;ΣqiU(Ai), An}.

5. By the monotonicity axiom, L∗
1 ≻ L∗

2 if and only if

ΣpiU(Ai) > ΣqiU(Ai).

This is precisely the expected utility criterion. By transitivity, we

obtain L1 ∼ L∗
1 > L∗

2 ∼ L2 if and only if
∑

piU(Ai) >
∑

qiU(Ai).
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Remarks

Recall Ai ∼ A∗
i = {[1−U(Ai)], A1;U(Ai), An}, such a function U(Ai)

always exists, though not all investors would agree on the specific

value of U(Ai).

• By the monotonicity axiom, utility is increasing. Suppose

Ai ∼ A∗
i = {[1− U(Ai)], A1;U(Ai), An}

≻ Aj ∼ A∗
j = {[1− U(Aj)], A1;U(Aj), An},

then U(Ai) > U(Aj).

• A utility function is determined up to a positive linear transfor-

mation, so its value is not limited to the range [0,1]. “Deter-

mined” means that the ranking of the projects by the Maximum

Expected Utility Criterion does not change.

• The absolute difference or ratio of the utilities of two investment

choices gives no indication of the degree of preference of one

over the other since utility values can be expanded or suppressed

by a linear transformation.
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4.4 Characterization of utility functions

1. More is being preferred to less: u′(w) > 0

2. Investors’ taste for risk

We define certainty equivalent c of a gamble with random out-

come X by

u(c) = E[u(X)].

– averse to risk (certainty equivalent < expected value)

The certainty equivalent may be visualized as the price of the

game. The investor visualizes the price to be less than its

expected value.

– neutral toward risk (indifferent to a fair gamble)

– seek risk (certainty equivalent > expected value)

3. Investors’ preference changes with a change in wealth. Percent-

age of wealth invested in risky asset changes as wealth changes.
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Jensen’s inequality

Suppose u′′(w) ≤ 0 and X is a random variable, then

u(E[X]) ≥ E[u(X)].
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Write E[X] = µ; since u(w) is concave, we have

u(w) ≤ u(µ) + u′(µ)(w − µ) for all values of w.

Replace w by X and take the expectation on each side

E[u(X)] ≤ u(µ) = u(E[X]).

Interpretation

E[u(X)] represents the expected utility of the gamble associated

with X. The investor prefers a sure wealth of µ that is set to be

equal to the expected value E[X] rather than playing the game, if

u′′(w) ≤ 0. This indicates risk aversion.

Recall that the certainty equivalent c is given by

u(c) = E[u(X)] ≤ u(µ)

so that c ≤ µ since u is an increasing function. For example, a risk

averse gambler prefers to receive $4 with certainty than to play a

game with expected value $5.
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Alternative viewpoint on risk aversion – Insurance premium

Individual’s total initial wealth is w, and the wealth is subject to

random loss Y during the period, 0 ≤ Y < w.

Let π be the insurable premium payable at time 0 that fully reim-

burses the loss (neglecting the time value of money).

1. If the individual decides not to buy insurance, then the expected

utility is E[u(w − Y )]. The expectation is based on investor’s

own subjective assessment of the loss.

2. If he buys the insurance, the utility at the end of the period is

u(w − π). Note that w − π is the sure wealth.

The fair value of insurance premium π is determined by

u(w − π) = E[u(w − Y )].
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Recall that if the individual is risk averse [u′′(w) ≤ 0], then from

Jensen’s inequality (change X to w − Y ), we obtain

u(w − E[Y ]) ≥ E[u(w − Y )].

Therefore, we deduce that π ≥ E[Y ].

Suppose the higher moments of Y are negligible, it can be deduced

that the maximum premium that a risk-averse individual with wealth

w is willing to pay to avoid a possible loss of Y is approximately

π ≈ µY +
σ2Y
2

RA(w − µ),

where RA(w) = −u′′(w)/u′(w), 0 ≤ Y < w and µ = E[Y ] < w. With

higher RA(w), the individual is willing to pay a higher premium to

avoid risk.
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Proof

We start from the governing equation for π

u(w − π) = E[u(w − Y )].

We proceed to find an analytic approximation of π in powers of a

small perturbation parameter. Write Y = µ + zV , where V is a

random variable of finite value and with zero mean. Here, z is a

small perturbation parameter. This is based on the assumption that

the deviation of Y from its mean value µ is small. We then have

u(w − π) = E[u(w − µ− zV )]. (1)

We are seeking the perturbation expansion of π in powers of z in

the form

π = a+ bz + cz2 + · · ·

Similar to the determination of the coefficient in a Taylor series

expansion, we differentiate the governing equation with respect to

the parameter z at successive orders and set z = 0 in the resulting

equation.
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(i) Setting z = 0, u(w − a) = E[u(w − µ)] = u(w − µ) so that

a = µ.

(ii) Differentiating (1) with respect to z and setting z = 0, we obtain

−π′(0)u′(w − π) = E[−V u′(w − µ)]. (2)

Since E[V ] = 0 and π′(0) = b, so b = 0.

(iii) Differentiating (1) twice with respect to z, we have

−π′′(z)u′(w − π) + [π′(z)]2u′′(w − π) = E[V 2u′′(w − µ)].

Setting z = 0 and observing π′(0) = 0, we obtain

−π′′(0)u′(w − π) = E[V 2u′′(w − µ)].

Note that var(V ) = E[V 2] since E[V ] = 0 and π′′(0) = 2c, we

obtain

c = −
var(V )

2

u′′

u′

∣∣∣∣∣∣
w−µ

.
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Absolute risk aversion coefficient

Define the absolute risk aversion coefficient: RA(w) = −
u′′(w)

u′(w)
, we

have

π ≈ µ+
RA(w − µ)

2
z2var(V )

= µ+
σ2Y
2

RA(w − µ).

Here, π − µ≈
σ2Y
2

RA(w − µ) is called the risk premium. The risk

premium represents the extra amount that the insurer charges since

uncertainty of the random loss is transferred from the buyer to the

insurer. For low level of risks, π−µ is approximately proportional to

the product of one half of the variance of the loss distribution and

individual’s absolute risk aversion coefficient.

Note that RA is evaluated at w−µ = w−E[Y ], which is the expected

resulting wealth of the investor when faced with the random loss Y .
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Relative risk aversion coefficient

The whole wealth w is invested into the game. Let Zw denote

the outcome of the game, where Z is the random return. Write

var(Z) = σ2Z. If the game is fair, then E[Z] = 1.

Choice A Choice B

wZ wC (with certainty)

According to the expected utilities criterion, the investor is indiffer-

ent to these two positions if and only if

E[u(Zw)] = u(wC).

Note that wC = w − (w − wC), indicating the payment of w − wC

for Choice B. The payment w−wC represents the certainty amount

the investor would be willing to pay in order to avoid the risk of the

game.
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Let q be the fraction of wealth an investor is giving up in order to

avoid the gamble; then q =
w − wC

w
or wC = w(1− q). Let Z be the

return per dollar invested so that for a fair gamble, E[Z] = 1. Write

var(Z) = σ2Z.

Suppose we invest w dollars, the random amount at the end of the

game would be wZ. Expand u(wZ) around w:

u(wZ) = u(w) + u′(w)(wZ − w) +
u′′(w)

2
(wZ − w)2 + · · ·

so that the expected utility value of the terminal wealth is given by

E[u(wZ)] = u(w) + 0+
u′′(w)

2
w2σ2Z + · · ·

since σ2Z = E[(Z − 1)2].
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On the other hand, by Taylor series expansion, we obtain

u(wC) = u(w(1− q)) = u(w)− qwu′(w) + · · · .

Equating u(wC) with E[u(wZ)] of their leading order terms, we

obtain

u′′(w)

2
w2σ2Z = −u′(w)qw

so that

q = −
σ2Z
2

w
u′′(w)

u′(w)
.

Define RR(w) = coefficient of relative risk aversion = −w
u′′(w)

u′(w)
,

then q =
w − wC

w
= percentage of risk premium =

σ2Z
2

RR(w). Again,

RR is evaluated at the expected resulting wealth of the investor,

which equals E[Zw] = w since E[Z] = 1.
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Types of utility functions

1. Exponential utility

u(x) = 1− e−ax, x > 0

u′(x) = ae−ax

u′′(x) = −a2e−ax < 0 (risk aversion)

so that RA(x) = a for all wealth level x.

2. Power utility

u(x) =
xα − 1

α
, α ≤ 1

u′(x) = xα−1

u′′(x) = (α− 1)xα−2

so that RA(x) =
1− α

x
and RR(x) = 1− α.
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3. Logarithmic utility (corresponds to α → 0 in power utility)

u(x) = a lnx+ b, a > 0

u′(x) = a/x

u′′(x) = −a/x2

so that RA(x) =
1

x
and RR(x) = 1.

Observe that

lim
α→0

xα − 1

α
= lim

α→0

(lnx)xα

1
= lnx.
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Properties of the power utility functions: U(x) = xα/α, α ≤ 1

(i) α > 0, aggressive utility

Consider α = 1, corresponding to U(x) = x. This is the expected

value criterion.

Recall that the strategy that maximizes the expected value

bets all capital on the most favorable sector – prone to early

bankruptcy.

For α = 1/2; consider two opportunities:

(a) capital will double with a probability of 0.9 or it will go to

zero with probability 0.10,

(b) capital will increase by 25% with certainty.

Since 0.9 ×
√
2 >

√
1.25, so opportunity (a) is preferred to (b).

However, opportunity (a) is certain to go bankrupt if the game

is repeated many times.
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(ii) α < 0, conservative utility

For α = −1/2, consider two opportunities

(a) capital quadruples in value with certainty

(b) with probability 0.5 capital remains constant and with prob-

ability 0.5 capital is multiplied by 10 million.

Since −4−1/2 > −0.5− 0.5(10,000,000)−1/2, opportunity (a) is

preferred to (b).

Apparently, the best choice for α may be negative, but close to zero.

This utility function is close to the logarithm function.
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Absolute risk aversion

A(w) = −
u′′(w)

u′(w)

If A(w) has the same sign for all values of w, then the investor has

the same risk preference (risk averse, neutral or seeker) for all values

of w (global).

Relative risk aversion

R(w) = −
wu′′(w)

u′(w)
.

Note that utility functions are only unique up to a strictly posi-

tive affine transformation. The second derivative alone cannot be

used to characterize the intensity of risk averse behavior. The risk

aversion coefficients are invariant to a strictly positive affine trans-

formation of individual utility function, say ũ(w) = au(w) + b, a > 0.

We observe u′′(w)/u′(w) = ũ′′(w)/ũ′(w).
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Changes in Absolute Risk Aversion with Wealth

Condition Definition Property

of A(w)

Example

Increasing absolute

risk aversion

As wealth in-

creases, hold

fewer dollars in

risky assets

A′(w) >

0

w−Cw2

Constant absolute

risk aversion

As wealth in-

creases, hold

same dollar

amount in risky

assets

A′(w) =

0

−e−Cw

Decreasing abso-

lute risk aversion

As wealth in-

creases, hold

more dollars in

risky assets

A′(w) <

0

lnw
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Changes in Relative Risk Aversion with Wealth

Condition Definition Property

of

R′(W )

Examples

of Utility

Functions
Increasing relative

risk aversion

Percentage invest-

ed in risky asset-

s declines as wealth

increases

R′(w) >

0

w − bw2

Constant relative

risk aversion

Percentage invest-

ed in risky asset-

s is unchanged as

wealth increases

R′(w) =

0

lnw

Decreasing relative

risk aversion

Percentage invest-

ed in risky assets

increases as wealth

increases

R′(w) <

0

−e2w
−1/2
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Quadratic utility and mean-variance criterion

The mean-variance criterion can be reconciled with the expected

utility approach by either: (1) using a quadratic utility function, or

(2) making the assumption that the random returns of the risky

assets are normal random variables.

Quadratic utility

The quadratic utility function can be defined as U(x) = ax − b
2x

2,

where a > 0 and b > 0. This utility function is really meaningful

only in the range x ≤ a/b, for it is in this range that the function is

increasing. Note also that for b > 0 the function is strictly concave

everywhere and thus exhibits risk aversion.
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Quadratic concave utility and mean-variance criterion

mean-variance analysis ⇔ maximum expected utility criterion
based on quadratic concave utility (risk averse)

Suppose that a portfolio has a random terminal wealth value of y.

Using the expected utility criterion, we evaluate the portfolio using

E[U(y)] = E

[
ay −

b

2
y2
]

= aE[y]−
b

2
E[y2]

= aE[y]−
b

2
(E[y])2 −

b

2
var(y), a > 0, b > 0.

The expected utility value is seen to be dependent only on the mean

and variance of the random wealth y. The optimal portfolio is the

one that maximizes this value with respect to all feasible choices of

the random wealth variable y.
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• For a given value of E[y], maximizing E[U(y)] ⇔ minimizing

var(y).

• For a given var(y), maximizing E[U(y)] ⇔ maximizing E[y].

This is because U(x) = ax −
b

2
x2 is an increasing function of x

in the range 0 ≤ x ≤ a/b, a > 0 and b > 0.

U(x)

x

a/b
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Normal returns and mean-variance criterion

When all returns of risky assets are normal random variables, the

mean-variance criterion is also equivalent to the expected utility

approach for any risk-averse utility function.

To deduce this, select an utility function U that is increasing and

concave. Consider a random wealth variable y that is a normal

random variable with mean value M and standard deviation σ. Since

the probability distribution is completely defined by M and σ, it

follows that the expected utility is a function of M and σ. Since U

is increasing and risk averse, then

E[U(y)] =
∫ ∞

−∞
U(y)

1√
2πσ

e−(y−M)2/2σ2 dy = f(M,σ),

with
∂f

∂M
> 0 and

∂f

∂σ
< 0. The sign of

∂f

∂σ
is negative due to the risk

averse property of U .
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Portfolio selection procedure: minimizing portfolio variance

• Now suppose that the returns of all assets are normal random

variables. Then the return of any linear combination of these

assets is also a normal random variable. Hence any portfolio

problem is therefore equivalent to the selection of combination

of assets that maximizes the function f(MP , σP ) with respect to

all feasible combinations. Here, MP and σP are the mean and

standard deviation of portfolio’s random return, respectively.

• For a risk-averse utility, this again implies that the variance

should be minimized for any given value of the mean. This

is because f(MP , σP ) is a decreasing function of σP , a lower

value of portfolio variance σ2P , the higher value of E[U(y)]. In

other words, the solution must be mean-variance efficient.

• The portfolio selection problem is to find portfolio weights w∗

such that f(MP , σP ) is maximized with respect to all feasible

combinations.
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4.5 Stochastic dominance

• Once the investor’s utility function, we have the full information

on the investor’s preference. Using the maximum expected utili-

ty criterion, we obtain a complete ordering of all the investments

under consideration. What happens if we have only partial in-

formation on the choice of the utility funciton (say, prefer more

to less and/or risk aversion)?

• In the First Order Stochastic Dominance Rule, we only consider

the class of utility functions, call U1, such that u′ ≥ 0 (with strict

inequality over some range). This is a very general assumption

and it does not assume any specific utility function.

• Recall E[u(x)] =
∫
u(x) dF (x) = U(F ), where F is the probability

distribution of the random variable x. We may consider expected

utility value as a function of distribution on the underlying x.
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Feasible set – set of all available investments under consideration.

Dominance under U1

Investment A dominates investment B under U1 if for all utili-

ty functions such that u ∈ U1, EAu(x) ≥ EBu(x); [equivalently,

U(FA) ≥ U(FB), where FA and FB are the distribution function of

choices A and B, respectively]; and for at least one utility function,

there is a strict inequality.

• Dominance is transitive. If A dominates B and B dominates C,

then A dominates C.

• Choices among investments amount to choices on probability

distributions.

84



For any pair of distinct investments x and y, either one of the

following cases holds:

(i) x dominates y for any choice of utility function in U1;

(ii) x dominates y under one utility function while y dominates x

under another utility function;

(iii) y dominates x for any choice of utility function in U1.

Efficient set in U1 (collection of investments that are not being

dominated)

An investment is included in the efficient set if there is no other

investment that dominates it. Suppose investments A and B are

efficient, then neither A nor B dominates the other. That is, there

exists u1 ∈ U1 such that EAu1(x) > EBu1(x) while there exists

another u2 ∈ U1 such that EAu2(x) < EBu2(x). Some prefer A and

other prefer B (no dominance between A and B).
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Inefficient set in U1 (being dominated)

Any investment that does not lie in the efficient set is included in the

inefficient set. The inefficient set includes all inefficient investments.

An inefficient investment is that there is at least one investment

that dominates it. It is plausible that the inefficient set is null. For

example, if there are only two investment choices and either one

dominates the other, then the inefficient set is null.

• It is still possible that an inefficient investment is dominated by

another inefficient investment, but that dominating investment

is itself being dominated by an efficient investment. There is

no need for an inefficient investment to be dominated by all

efficient investments. One dominance is enough to relegate an

investment to the inefficient set.

• An investment within the inefficient set cannot dominate an

investment within the efficient set since if such dominance were

to exist then the latter one would not be efficient.
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Example

There are 5 investment choices: A,B,C,D and E.

inefficient set efficient set

C, D, E A, B

• EAu1(x) > EBu1(x) while EAu2(x) < EBu2(x).

• A dominates C and D, while B dominates E.

Since any investment must be either efficient or inefficient, the ef-

ficient and inefficient sets form a partition of the feasible set.
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• The partition of the set of feasible choices into the efficient

and inefficient sets depends on the choice of the class of utility

functions. In general, the smaller the efficient set relative to the

feasible set, the better for the decision maker.

• When we have only one utility function, we have complete or-

dering of all investment choices. The efficient set may likely

contain one element (possibly more than one if we have invest-

ments whose expected utility values happen to tie with each

other).

• Objective and subjective decisions

The first stage provides the efficient set (objective decision)

while the second state determines the optimal choice by maxi-

mizing the expected utility of an individual investor (subjective

decision).
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First order stochastic dominance

Can we argue that Investment A is better than Investment B? It is

still possible that the return from investing in B is 11 units but the

return is only 8 units from investing in A.
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Comparison of cumulative probability distributions

By looking at the cumulative probability distributions, we observe

that for all returns and the odds of obtaining that return or less, B

consistently has a higher or at least the same odd.

Cumulative Probability Distribution

Odds of obtaining a
return equal to or

less than that
shown in Column 1

Return A B

7 0 1/3
8 1/3 1/3
9 1/3 2/3
10 2/3 2/3
11 2/3 1
12 1 1
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To compare two investment choices, we examine their corresponding

probability distribution, where FX(x) = P [X ≤ x].

Definition

A probability distribution F dominates another probability distribu-

tion G according to the first order stochastic dominance if and only

if

F (x) ≤ G(x) for all x ∈ C,

where C is the set of possible outcomes.

Lemma

F dominates G by FSD if and only if∫
C
u(x) dF (x) ≥

∫
C
u(x) dG(x)

for all monotonically increasing utility functions u(x).
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Proof

The utility function u is an increasing function with u′(x) ≥ 0 (with

strict inequality over certain range).

(i) F (x) ≤ G(x) ⇒ EA[(u(x)] ≥ EB[u(x)]

Let a and b be the smallest and largest values that F and G can

take on. Consider∫ b

a
u(x) d[F (x)−G(x)] = u(x)[F (x)−G(x)]ba︸ ︷︷ ︸

zero since F (a) = G(a) = 0
and F (b) = G(b) = 1

−
∫ b

a
u′(x)[F (x)−G(x)] dx;

given F (x) ≤ G(x) and u′(x) ≥ 0, so

−
∫ b

a
u′(x)[F (x)−G(x)] dx ≥ 0.

Thus, F (x) ≤ G(x) ⇒
∫
C
u(x) dF (x) ≥

∫
C
u(x) dG(x).
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(ii) EA[u(x)] ≥ EB[u(x)] ⇒ F (x) ≤ G(x) for all x

We prove by contradiction. Assume the contrary, suppose there

exists x0 such that F (x0) > G(x0). Since distribution functions

are right continuous, there exists an interval [x0, c] on the right

hand side of x0 such that F (x) > G(x) for x ∈ [x0, c]. Define the

utility function

u(x) =
∫ x

a
1[x0,c]

(t) dt, where

1[x0,c]
(t) =

1 t ∈ [x0, c]

0 otherwise
.
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Note that u(x) is continuous and monotonically increasing, and

u′(x) =1[x0,c]
(x) ≥ 0.

Now, consider

EA[u(x)]− EB[u(x)] = −
∫ b

a
u′(x)[F (x)−G(x)] dx

= −
∫ c

x0
[F (x)−G(x)] dx < 0,

a contradiction is encountered.
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Properties of efficient and inefficient sets under FSD

• We do not require an inefficient investment to be dominated by

all efficient investments. In order that an investment is relegated

into the inefficient set, it is sufficient to have one investment

that dominates the inefficient investment.

• Dominance or non-dominance among investment choices within

the inefficient set is irrelevant since all investments included in

this set are inferior.

• The distribution functions of all investments within FSD effi-

cient set must intercept. If otherwise, one distribution would

dominate the other, a contradiction to non-dominance.
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Second order stochastic dominance

If both investments turn out the worst, the investor obtains outcome

of 6 from A and only outcome of 5 from B. If the second worst

return occurs, the investor obtains 8 from A rather than 9 from

B. If he is risk averse, then he should be willing to forfeit 1 unit

in return at a higher level of return in order to obtain an extra 1

unit at a lower return level. If risk aversion is assumed, then A is

preferred to B.
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Definition

A probability distribution F dominates another probability distribu-

tion G according to the second order stochastic dominance if and

only if for all x ∈ C ∫ x

−∞
F (y) dy ≤

∫ x

−∞
G(y) dy.

Theorem

F dominates G by SSD if and only if∫
C
u(x) dF (x) ≥

∫
C
u(x) dG(x)

for all increasing and concave utility functions u(x).
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According to SSD, A is preferred to B since the sum of cumulative

probability for A is always less than or equal to that for B.
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Write IA(x) =
∫ x

−∞
FA(y) dy and observe that FA(8) is constant

within [8,9)

IA(8.6) = IA(8) + FA(8)× 0.6 = 1+
1

2
× 0.6 = 1.3

IA(13.5) = IA(12) + FA(12)× 1.5 = 4+ 1× 1.5 = 5.5.

Note that FA(x) has discrete jumps at those discrete values that can

be taken by the random outcome of investment A, a feature that

is typical for the distribution function of a discrete-valued random

variable.
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Proof (i) “if” part∫ b

a
u(x) d[F (x)−G(x)] = −

∫ b

a
u′(x)[F (x)−G(x)] dx

= −u′(x)
∫ x

a
[F (y)−G(y)] dy

∣∣∣∣∣
b

a

+
∫ b

a
u′′(x)

∫ x

a
[F (y)−G(y)] dydx

= −u′(b)
∫ b

a
[F (y)−G(y)] dy

+
∫ b

a
u′′(x)

∫ x

a
[F (y)−G(y)] dydx.

Given that u′(b) ≥ 0 and u′′(x) ≤ 0, we obtain∫
C
u(x) dF (x) ≥

∫
C
u(x) dG(x)

if F dominates G by SSD, where∫ x

a
[F (y)−G(y)] dy ≤ 0,

for all x.
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(ii) “only if” part

We prove by contradiction. Suppose
∫ x0

a
F (x) dx >

∫ x0

a
G(x) dx

for some x0 ∈ [a, b]. Consider the choice of the following utility

function:

u(x) =

x0 if x ≥ x0
x if x < x0

.

u(x)

x
a bx0
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Obviously, u(x) is increasing and concave, so u ∈ U2. It suffices

to show that this choice of utility function leads to the violation of

the property: U(F ) ≥ U(G). Recall F (a) = G(a) = 0 and F (b) =

G(b) = 1, and consider∫ b

a
u(x) dF (x)−

∫ b

a
u(x) dG(x)

=
∫ x0

a
x d[F (x)−G(x)] +

∫ b

x0
x0 d[F (x)−G(x)]

= x[F (x)−G(x)]

∣∣∣∣∣
x0

a

−
∫ x0

a
[F (x)−G(x)] dx− x0[F (x0)−G(x0)]

= −
∫ x0

a
[F (x)−G(x)] dx < 0,

so there is a contradiction.
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Example

F (x) =


0 if x < 1
x− 1 if 1 ≤ x ≤ 2
1 if x ≥ 2

, G(x) =


0 if x < 0
x/3 if 0 ≤ x ≤ 3
1 if x ≥ 3

.

F dominates G by SSD since∫ x

−∞
F (y) dy ≤

∫ x

−∞
G(y) dy.

F (x) is seen to be more concentrated (less dispersed).

In this example, F (x) ≤ G(x) is not valid for all x.
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Sufficient rules and necessary rules for second order stochastic

dominance

Sufficient rule 1 FSD rule is sufficient for SSD

Proof : If F dominates G by FSD, then F (x) ≤ G(x), ∀x.

This implies
∫ x

a
[G(y)− F (y)] dy ≥ 0.

Remark

The inefficient set according to FSD is a subset of that of SSD.

Proof : Suppose G lies in the inefficient set of FSD, say, it is domi-

nated by F by FSD. Then F dominates G by SSD so that G must

lie in the inefficient set of SSD.
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Sufficient rule 2

MinF ≥ MaxG is a sufficient rule for SSD. Note that MinF ≥ MaxG
is a very strong requirement.

Example

F G
x p(x) x p(x)
5 1/2 2 3/4
10 1/2 4 1/4

MinF = 5 ≥ MaxG = 4. Note that F (x) = 0 for x ≤ minF while

G(x) = 1 for x ≥ maxG. Since F (x) and G(x) are non-decreasing

functions in x, so F (x) ≤ G(x).

MinF ≥ MaxG ⇒ FSD ⇒ SSD ⇒ EFu(x) ≥ EGu(x),∀u ∈ U2.
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distribution

function

x
max

G min
F

F(x)G(x)

1

F (x) = 0 for x ≤ minF
G(x) = 1 for x ≥ maxG.

Obviously, F (x) < G(x), ∀x ∈ C.
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Necessary rule 1 (Geometric means)

Given a risky project with the distribution (xi, pi), i = 1, · · · , n, the

geometric mean, Xgeo, is defined as

Xgeo = x
p1
1 · · ·xpnn =

n∏
i=1

x
pi
i , xi ≥ 0.

Taking logarithm on both sides

lnXgeo = Σpi lnxi = E[lnX].

Xgeo(F ) ≥ Xgeo(G) is a necessary condition for dominance of F over G by SSD.
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Proof

Suppose F dominates G by SSD, we have

EFu(x) ≥ EGu(x), for all u ∈ U2.

Since lnx = u(x) ∈ U2,

EF lnx = lnXgeo(F ) ≥ EG lnx = lnXgeo(G);

we obtain lnXgeo(F ) ≥ lnXgeo(G).

Since the logarithm function is an increasing function, we deduce

Xgeo(F ) ≥ Xgeo(G).

Therefore, F dominates G by SSD ⇒ Xgeo(F ) ≥ Xgeo(G).
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Necessary rule 2 (left-tail rule for SSD)

Suppose F dominates G by SSD, then

MinF ≥ MinG,

that is, the left tail of G must be “thicker”.

Proof by contradiction: Suppose MinF < MinG, and write xk =

MinG. At xk, G will still be zero but F will be positive. Observe that∫ xk

−∞
[G(y)− F (y)] dy =

∫ xk

−∞
[0− F (y)] dy < 0,

implying that F is not dominated by G by SSD. Hence, if F domi-

nates G by SSD, then MinF ≥ MinG.
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distribution

function

x

1

min
G min

F

The distribution G has a “thicker” tail at the left end.
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