
2.2 Extensions of the structural approach to the pricing of
risky debts

1. Interest rate uncertainty

Debts are relatively long-term interest rate sensitive instruments.
The assumption of constant interest rate is embarrassing.

2. Jump-diffusion process of the firm value.

• Allows for jump component to shock the firm value process.
• Remedy the unrealistic small short-maturity spreads in pure

diffusion model. Default may occur by surprise.

3. Bankruptcy–triggering mechanism

Black-Cox (1976) assume a cut-off level whereby intertemporal
default can occur. The cut-off may be considered as a safety
covenant which protects the bondholders. It is the liability level
for the firm below which the firm bankrupts.

4. Deviation from the strict priority rule

Empirical studies show that the absolute priority rule is enforced
in only 25% of corporate bankruptcy cases. The write-down
of creditor claims is usually the outcome of a bargaining pro-
cess which results in shifts of gains and losses among corporate
claimants relative to their contractual rights.



Quality spread differentials between fixed rate debt
and floating rate debt

• In fixed rate debts, the par paid at maturity is fixed.

• A floating rate debt is similar to a money market account, where
the par at maturity is the sum of principal and accrued interests.
The amount of accrued interests depends on the realization of
the stochastic interest rate over the life of bond.

What is the appropriate proportion of debts put into either fixed
rate or floating rate debts?

1. Balance sheet duration
2. Current interest rate environment
3. Peer group practices.



Whether the default premiums demanded by investors are equal for
both types of debts?

Related question: Does the swap rate in an interest rate swap
depend on which party is serving as the fixed
rate payer?

• Empirical studies reveal that the yield premiums for fixed rate
debts are in general higher than those for floating rate debts.
Why? On the other hand, when the yield curve is upward slop-
ing, floating rate debt holders should demand a higher floating
spread. Floating rate debts would appear to be less desirable to
investors under such scenario. Consequently, supply and demand
drives down the price. Can a risky debt model endogenously re-
flects this phenomenon?

Reference

M. Ikeda, “Default premiums and quality spread differentials in a
stochastic interest rate economy,” Advances in Futures and Options
Research, vol. 8 (1995) p.175-202.



Riskfree debts
fixed rate debt floating rate debt

Risky debts
fixed rate debt floating rate debt

BX < PFX since the debtholder BL < DL since the debtholder
bears the credit risk bears the credit risk



Interest rate dynamics

The short rate rt follows the Vasicek model

drt = k(θ − rt) dt+ σr dZr.

The price of the default free discount bond with unit par is given
by

P = a(T )e−rb(T )

where

b(T ) =
1 − e−kT

k
,

a(T ) = exp

(
−
(
θ+

σλ

k
−

σ2

2k2

)
[T − b(T )]

)
−
σ2

r b(T )2

4k
,

λ is the market price of risk. The dynamics of P is given by

dP

P
= r dt− σP dZr, where σP = b(T )σr.

Firm value process

Under the risk neutral measure Q

dV

V
= r dt+ σV dZV .



Fixed rate debt

The price of the fixed rate debt BX of face amount FX is the present
value of the maturity payoff

min(V (T ), FX) = V (T ) − max(V (T ) − FX,0).

Now, BX = PEQT [min(V (T ), FX)], where QT is the forward measure.
The forward measure is used since rt appears only in the discount
factor but not in the terminal payoff. Under QT , the variance of the
firm value expressed in units of P is given by

σ2
X =

∫ T

0
[σ2

P (t) + 2ρσV σP (t) + σ2
V ] dt, where ρ dt = dZr dZV .

The variance of V/P can be obtained via the Ito lemma, using the
information that V is lognormal with variance rate σ2

V and P is
lognormal with variance rate b(T )σr.



Knowing that the debt value is the difference of firm value and
equity value (call option with strike FX), we obtain

BX = V N(−hX) + PFXN(hX − σX)

where

hX = −
ln kX

σX
+
σX

2
and kX =

PFX

V
.

Note that BX contains ρ and σ2
X is time-dependent. By making use

of time-changed Brownian motion, σX is seen to play the same role
as σ

√
τ in usual Black-Scholes price formula with constant σ.



Floating rate debt

A zero floating rate bond with a stochastic face amount

FL(T ) = DLe
∫ T
0 r(t) dt = DLY (T )

where DL is a constant and Y (t) is the money market account. The
dynamics of Y (t) is

dY (t) = r(t)Y (t) dt, and Y = 1.

We use Y (t) as the numeraire and define M(t) = V (t)/Y (t). The
dynamics of M is given by

dM

M
= σV dZV .

The terminal payoff normalized by Y is M(T )−(M(T )−DL)+. The
price of the floating rate loan

BL = V − EQ∗[(M(T ) −DL)+]

= V N(−hL) +DLN(hL − σV

√
T )

where Q∗ is the measure with Y (t) as the numeraire and

hL =
− lnDL/V

σV

√
T

+
σV

√
T

2
.



Default premiums

Yield on the risky fixed rate debt

YX =
1

T
ln
FX

BX

and the default premium πX = YX −RX where RX = −
lnP

T
, we have

πX = −
1

T
ln

[
N(hX − σX) +

N(−hX)

kX

]
.

The default free yield of floating rate debt is

RL =
1

T

∫ T

0
r(t) dt.

The default premium πL = YL −RL, where YL =
1

T
ln
FL

BL
, so that

πL = −
1

T
ln

[
N(hL − σV

√
T ) +

N(−hL)

kL

]
, kL =

DL

V
.

Though RL and FL are stochastic but the default premium πL is

a deterministic function since the stochastic term
1

T

∫ T

0
r(t) dt is

cancelled.



Examination of fixed-floating differential

A firm is assumed to have the choice to issue between fixed rate
and floating rate debt to raise the same dollar amount B.

B = V N(−hX) + PFXN(hX − σX)

B = V N(−hL) +DLN(hL − σV

√
T ).

Solve for F ∗
X and D∗

L such that

F ∗
X =

B − V N(−h∗X)

PN(h∗X − σX)
where h∗X =

ln V
PF ∗

X

σX
+
σX

2

D∗
L =

B − V N(−h∗L)

N(h∗L − σV

√
T )

where h∗L =
ln V

D∗
L

σV

√
T

+
σV

√
T

2
.

The default premiums evaluated at B are

πX |BX=B =
1

T
ln
PF ∗

X

B
and πL|BL=B =

1

T
ln
D∗

L

B
.

Fixed-floating quality differential = DIF = πX |BX=B − πL|BL=B

=
1

T
ln
PF ∗

X

D∗
L

.



The quality differential is zero if and only if

PF ∗
X = D∗

L or k∗X = k∗L
where

k∗X =
PF ∗

X

V
= quasi-debt ratio for fixed rate debt

k∗L =
D∗

L

V
= quasi-debt ratio for floating rate debt.

The sign of DIF is the same as the sign of k∗X − k∗L.

Lemma

k∗X > k∗L ⇐⇒ σ2
X > σ2

V T and k∗X = k∗L ⇐⇒ σ2
X = σ2

V T.

Proposition 1

When ρ ≥ 0, DIF > 0 since σ2
X − σ2

V T =
∫ T

0
[σ2

P (t) + 2ρσV σP (t)] dt

which is positive whenever ρ ≥ 0.

Proposition 2

When ρ < 0, DIF is generally positive.



Financial intuition

• An increase in ρ increases the default risk of the fixed rate debt
through increasing the risk adjusted volatility measure σX while
it leaves the default risk of floating rate debt σV

√
T unchanged.

Hence, DIF is an increasing function of ρ.

• When the firm value is decreased, the default risk of both fixed
rate and floating rate debt is increased. In normal circumstance,
F ∗

X/V > D∗
L/V (corresponding to positive DIF). A decrease in

the firm value widens the difference in quasi-debt ratios, and
the difference in default premiums is also widened. Therefore,
when the firm value is decreased, the default risk of the fixed
rate debt increases at a faster speed than that of the floating
rate debt, and so DIF is increased.

Possible extensions

1. Inter-temporal default.

2. Incorporate the information of the current yield curve by us-
ing Hull-White model instead of Vasicek model with constant
parameters.



Black-Cox model (1976)

Impact of various bond indenture provisions on risky debt valuation

1. Inter-temporal default (safety covenants)

If the firm value falls to a specified level, the bondholders are en-
titled to force the firm into bankruptcy and obtain the ownership
of the assets.

2. Subordinated bonds

Payments can be made to the junior debt holders only if the full
promised payment to the senior debt holders has been made.

claim V < P P ≤ V ≤ P +Q V > P +Q
senior bond V P P
junior bond 0 V − P Q

equity 0 0 V − P −Q

P = par value of senior bond

Q = par value of junior bond



Typical capital structure of a firm arranged according to seniority



Recoveries on defaulted bonds

Recovery can refer to

• price of the bonds at the time of default

• their value at the end of the distressed-reogranization period

Average recovery rate on a sample of more than 700 defaulting
bonds (1978-1995) was $41.70 per $100 face value.

Industry affiliation factor

The asset structure and regulatory environment of public utilities
lead to better recovery rates than those of industries that operate
in a highly competitive environment and have little tangible assets.

Seniority on recovery rates

Senior secured debt 58%
Senior unsecured debt 48%
Senior subordinate debt 34%
Junor subordinate debt 31%



Data from “Almost everything you wanted to know about recoveries
on defaulted bonds,” by E.I. Altman and V.M. Kishore, Financial
Analysts Journal Nov-Dec issue (1996).

Across various industry sectors
average median standard deviation

Public utilities 70.47 79.07 19.46
Casino, hotel and recreation 40.15 28.00 25.66
Lodging, hospitals and nursing facilities 26.49 16.00 22.65

Within the same industry
Chemicals, petroleum, rubber and plastic products no. of observations average weighted
senior secured 6 75.04 89.17
senior unsecured 16 71.91 81.71
senior subordinated 7 63.07 77.81
subordinated 6 25.54 31.46

∗ weighted average > simple average means bond issues of larger
size have higher recovery rate.



Longstaff-Schwartz model

F.A. Longstaff and E.S. Schwartz, “A simple approach to valuing
risky fixed and floating rate debt,” Journal of Finance, vol. 50(1)
(1995) p.789-819.

Interest rate uncertainty

Vasicek interest rate process: dr = (ζ − βr) dt+ η dZ2

Bankruptcy-triggering mechanism and payoff

Threshold value ν(t) for the firm value at which financial distress
occurs; take ν(t) = K = constant. Upon default, the bondholder
receives 1−w times the face value of the bond at maturity. Terminal
payoff can be expressed as

1 − w1{γ≤T}
where γ is the first passage time of V hitting K. The firm value V
follows

dV

V
= µ dt+ σ dZ1, dZ1 dZ2 = ρ dt.



The defaultable bond price B(r, t;T ) and default free bond price
B(r, t;T ) are related by

B(r, t;T ) = B(r, t;T )[1 − wQ(V, r, T )],

where Q(V, r, t) is the probability of default of the risky debt over
[0, T ]. The solution to B(r, t;T ) takes the form exp(A(T )−B(T )r),
where B(T ) is found to be (1 − e−βT)/β. Let X = V/K, then Q
satisfies

σ2

2
X2QXX + ρσηXQXr +

η2

2
Qrr + [r − ρσηB(T )]XQX

+[α− βr − η2B(T )]Qr −QT = 0,

subject to the initial condition: Q(X, r,0) = 1{γ≤T}.

Q(X, r, T ) can be interpreted as the probability that the first passage
time of lnX to zero is less than T . The initial condition can be
changed to Q(X, r,0) = 1 after the imposition of the homogeneous
Dirichlet condition (absorbing barrier condition) on lnX = 0.



The joint processes of lnX and r are given by

d lnX =

[
r −

σ2

2
− ρσηB(T − t)

]
dt+ σ dZ1

dr = [α− βr − η2B(T − t)] dt+ η dZ2.

Integrating the dynamics for r from time zero to time τ

rτ = r exp(−βτ) +

(
α

β
−
η2

β2

)
[1 − e−βτ ]

+
η2

2β2
exp(−βT )

(
eβτ − e−βτ

)
+ ηe−βτ

∫ τ

0
eβs dZ2.

Substituting in the value of r, we obtain

lnXT = lnX +M(T, T ) +
η

β

∫ T

0
[1 − e−β(T−t)] dZ2 + σ

∫ T

0
dZ1.

Thus, lnXT is normally distributed with mean lnX + M(T, T ) and
variance S(T ). The last step is to determine the first passage time
density q(0, τ | lnX,0) of lnX to zero at time τ starting from lnX at
time zero. Finally

Q(X, r, T ) = P [γ ≤ T ] =
∫ T

0
q(0, τ | lnX,0) dτ.



First passage time for one-dimensional Markov processes

Consider a one-factor continuous Markov process `t. Define π(`t, t|`s, s)
as the free transition density. Further, define g(`s = `, s|`0,0) as the
probability density that the first passage time through a constant
boundray ` occurs at date-s. An implicit formula for g(·) in terms
of π(·) is given by

π(`t, t|`0,0) =
∫ t

0
g(`s = `, s|`0,0)π(`t, t|`s = `, s) ds, `t > ` > `0. (A1)

• In this integral equation for g, it is assumed that `t and `0 are
on opposite sides of the boundary ` = `.

• When the process ` is one-factor Markov, the above equation has
a very intuitive interpretation: The only way that the process
can start below the boundary (`0 < `) and end up above the
boundary (`t > `) is that the process, at some intermediate time
s, must pass through the boundary for the first time.

• From the strong Markov property of Brownian processes, the
Brownian path after s is independent of the path history before
s. It only depends on the information that `s = `.



First passage time for two-dimensional Markov processes

Longstaff-Schwartz model is not one-factor Markov since the pro-
posed firm value process is a function of the spot rate, which itself
is stochastic.

Define g[`s = `, rs, s|`0, r0,0] as the probability density that the first
passage time is at time s, and that the random process r takes
on the value rs at that time. We claim that the two-dimensional
generalization is for `0 < ` < `t

π(`t, rt, t|`0, r0,0)

=
∫ t

0

∫ ∞

−∞
g[`s = `, rs, s|`0, r0,0]π(`t, rt, t|`s = `, rs, s) drsds (B1)

Remark

At time s, the r-process takes on some value rs. We need to inte-
grate over drs from −∞ to ∞.



Numerical procedure

Define

ψ(rt, t) =
∫ ∞

`
π(`t, rt, t|`0, r0,0) d`t

φ(rt, t; rs, s) =
∫ ∞

`
π(`t, rt, t|`s = `, rs, s) d`t

g(rs, s) = g(`s = `, rs, s|`0, r0,0).

Integrating (B1) by
∫ ∞

`
d`t, we obtain

ψ(rt, t) =
∫ t

0

∫ ∞

−∞
g(rs, s)φ(rt, t; rs, s) drs ds.

Discretized version of the above equation takes the form

ψ(rt, t) =
j∑

v=1

nr∑

u=1

q(ru, tv)φ(ri, tj|ru, tv)

where q(ru, tv) = ∆t∆r g(ru, tv). The probability that the first pas-
sage time is less than T is given by

QT (r0, `0, T ) =
nT∑

j=1

nr∑

i=1

q(ri, tj).



Briys and de Varenne model

“Valuing risky fixed debt: an extension,” Journal of Financial and
Quantitative Analysis, vol. 32, p. 239-248 (1997).

Assume the existence of a unique probability measure Q (risk neu-
tral measure) under which the continuously discounted price of any
security is a Q-martingale.

Under Q, the short rate rt follows

drt = a(t)[b(t)− rt] dt+ σr(t) dWt.

For Gaussian type interest rate models, the dynamics of the default
free bond price B(t, T ) under Q is

dB

B
= rt dt− σP (t, T ) dWt

where

σP (t, T ) = σr(t)
∫ T

t
exp

(
−
∫ u

t
a(s) ds

)
du.



Under Q, the firm value process Vt follows

dVt

Vt
= rt dt+ σV

[
ρ dWt +

√
1 − ρ2 dW̃t

]
,

where Wt and W̃t are uncorrelated Wiener processes.

The default-trigger barrier K(t) = αFB(t, T ), 0 ≤ α ≤ 1, F is the
face value.

Define the first passage time of the process Vu through the barrier
K(u), t ≤ u ≤ T .

TV,K = inf
{
u ≥ t : Vu = K(u) = αFB(t, T )

}
.

The price as of time t of the risky zero coupon bond is

B(r, t;T ) = EQ

[
exp

(
−
∫ T

t
ru du

)

{
f1αF1{T

V,K
<T} + F1{T

V,K
≥T,VT≥F} + f2VT1{T

V,K
≥T,VT<F}

}]

where f1 and f2 are recovery rates.



Advantages of the model

The term structure of corporate spreads is affected by the presence
of safety covenant and the violations of the absolute priority rule.

• Larger corporate spreads than those derived by Merton’s model.

• Corporate spreads will exhibit more complex structures since
there are more parameters in the model.

Good analytic tractability since the default-trigger barrier normalized
by B(t, T ) becomes the constant barrier αF . The bond pricing model
becomes a barrier option model. Note that Vt/B(r, t;T ) follows the
Geometric Brownian motion with zero drift rate.



By using the methodology of the change of numeraires and time change, it can
be shown that

B(r, t;T ) = FB(t, T )

[
1 − PE(`t) +

qt

`t
PE

(
q2
t

`t

)
− (1 − f1)

1

`t
[N(−d3)

+ qtN(−d4)] − (1 − f2)
1

`t
{N(d3) − N(d5) + qt [N(d4) − N(d6)]}

]

where
`t =

FB(t, T )

At

qt =
K(t)

Vt
=

αFB(t, T )

Vt

and
d1 =

− ln `t + Σ(t, T )2/2

Σ(t, T )
= d2 + Σ(t, T )

d3 =
− ln qt + Σ(t, T )2/2

Σ(t, T )
= d4 + Σ(t, T )

d5 =
− ln(q2

t /`t) + Σ(t, T )2/2

Σ(t, T )
= d6 + Σ(t, T )

Σ(t, T )2 =

∫ T

t

{
[ρσV + σB(u, T )]2 + (1 − ρ2)σ2

V

}
du

PE(`t) and PE(q2
t /`t) denote the price as of time t of two European put options

of maturity T :

PE(`t) = −
1

`t
N(−d1) + N(−d2)

PE

(
q2
t

`t

)
= −

`t

q2
t

N(−d5) + N(−d6)



Financial interpretation

The defaultable bond price formula consists of two ratios, `t and qt.

• `t is the classical Merton’s quasi-debt ratio `t. It is not equal
to the true debt to asset ratio because the numerator (i.e. the
face value of corporate debt) is discounted by the riskless rate.
As a result, it is an upward-biased estimate of the real debt to
asset ratio.

• qt can be defined as the bankruptcy or early default ratio. It is
simply the ratio of the current default threshold to the current
value of the firm. As soon as qt is equal to 1, bankruptcy is
forced.



Bond price formula has 5 basic components

1. The first term corresponds to an otherwise identical riskless
zero-coupon bond.

2. The second term is the usual put-to-default at maturity.

3. The thrid term, a long position on a European put, appears
because of the possibility of an early default triggered by the
safety covenant. As such it contributes to mitigating the effect
of the previous traditional put-to-default.

4. The last two terms represent the effect of the deviations from
the strict priority rule. This effect is negative to the bondholders
due to the non-enforecement of the strict priority rule.



Some polar cases

• When the absolute priority rule is strictly enforced (f1 = f2 =
1). The last two terms disappear.

• In the polar case α = 1, then qt = `t and the two put op-
tions cancel out. The bondholder’s situation has become
riskless. As soon as the value of corporate assets reaches the
present value of liabilities discounted at the risk-free rate,
early bankruptcy is forced. The bondholder is then sure to
receive the face value F at maturity T .



Towards dynamic capital structure: Stationary leverage ratios

“Do credit spreads reflect stationary leverage ratio?” P. Collin-
Dufresne and R.S. Goldstein, Journal of Finance, vol. 56 (5),
p.1929-1957 (2001).

Background

• Firms adjust outstanding debt levels in response to changes in
firm value, thus generating mean-reverting leverage ratios.

• Develop a structural model of default with stochastic interest
rates that generates stationary leverage ratios (exogenous as-
sumption on future leverage).

• Empirical studies show the support for the existence of target
leverage ratios within an industry. Theoretical dynamic models
of optimal capital structure find that firm value is maximized
when a firm acts to keep its leverage ratio within a certain
band.



Assume that under the risk neutral measure Q,

dVt

Vt
= (r − δ) dt+ σ dZt (1)

where δ is the payout rate. The default threshold changes dynami-
cally over time. Let kt denote the log-default threshold,

dkt = λ(yt − ν − kt) dt, where yt = lnVt. (2)

• When kt < yt − ν, the firm acts to increase kt. That is, firms
tend to issue debt when their leverage ratio falls below some
target, and are most hesitant to replace maturing debt when
their leverage ratio is above that target.

Define the log-leverage `t = kt − yt, then

d`t = λ(`− `t) dt− σ dZt, (3)

where the stationary target leverage ` is given by

` =
−r+ δ + σ2

2

λ
− ν.



Define τ̃ as the random time at which `(t) reaches zero for the first
time triggering default. The risky discount bond with maturity T
receives $1 at T if τ̃ > T or 1 − w at time T if τ̃ ≤ T .

PT(`0) = e−rTEQ

[
1{τ̃>T} + (1 − w)1{τ̃<T}

]
= e−rT [1 − wQ(`0, T )],

where Q(`0, T ) is the risk neutral probability that default occurs
before time T given that the leverage ratio is `0 at time 0.

Constant interest rate

Define π(`t, t|`s, s) as the unrestricted transition density of `t and
g(`s = `, `0,0) as the probability density that the first passage time
through a constant boundary ` occurs at date-s. Recall that

π(`t, t|`0,0) =
∫ t

0
g(`s = `, s|`0 = 0)π(`t, t|`s, s) ds, `t > ` > `0.



From Eq. (3), `t is a Gaussian process with

Mt = EQ[`t|`0] = `0e
−λt + `(1 − e−λt)

EQ[`t|`s = 0] = L(t− s) = `[1 − e−λ(t−s)]

varQs [`t] = s2(t− s) =

(
σ2

2λ

) [
1 − e−λ(t−s)

]
.

With the default boundary at ` = 0, we integrate both sides with
respect to `t from 0 to ∞ to obtain

N

(
M(t)

s(t)

)
=
∫ t

0
g(`s = `, s|`0,0)N

(
L(t− s)

s(t− s)

)
ds.



Discretize time into n equal intervals, and define date tj = jT/n ≡
j∆t for j ∈ (1,2, · · · , n). The price of a risky discount bond is given
by

PT (`0) = e−rT [1 − wQ(`0, T )]
where

Q(`0, tj) =
j∑

i=1

qi j = 2,3, · · · , n

q1 =
N(a1)

N(b(1/2))

qi =


 1

N(b(1/2))




N(ai) −

i−1∑

j=1

qjN(b
i−j+1

2
)


 i = 2,3, · · · , n

ai =
M(i∆t)

s(i∆t)

bi =
L(i∆t)

s(i∆t)
.



Credit Spreads

Consider a coupon bond with promised coupon payments C at dates
tj, j ∈ (1,N), where tN ≡ T . Treating a risky coupon bond as the
sum of discount risky bonds, the price of this coupon bond can be
written as

PT (`0) =
N∑

j=1

Ce−rtjEQ
[
1{τ̃>tj} + (1 − ωcoup)1{τ̃<tj}

]

+ e−rTEQ
[
1{τ̃>T} + (1 − ω)1{τ̃<T}

]

≡
N∑

j=1

Ce−rtj[1 − ωcoupQ(`0, tj)] + e−rT [1 − ωQ(`0, T )].



1. Most theoretical models of risky debt limit their investigation to
discount bonds. However, the term structure of credit spreads
generated by discount bonds is qualitatively different than those
generated by coupon bonds.

2. In practice, claims to future coupon payments are of the lowest
priority, and rarely receive any compensation in bankruptcy. We
thus set ωcoup = 1, that is, only future principal payments receive
compensation in bankruptcy.

3. The yield to maturity for this coupon bond Y T is defined im-
plicitly through the equation

PT
c (`0) = e−Y T T + C

N∑

j=1

e−Y T tj .

Finally, the credit spread CS(T ) is defined via

CS(T ) = Y T − r.



Performance of the model

The traditional model predicts for all maturities counter-intuitive
low credit spreads for low leverage firms and high credit spreads for
speculative grade debt.

In contrast, modeling the leverage ratio dynamics as mean reverting
improves the predictions of structural models.

The intuition is straightforward.

1. With constant default boundary, a low leverage firm almost
never defaults and a high leverage firm almost certainly defaults
over a short period of time.

2. With mean reversion in leverage ratios, default depends on both
the initial leverage ratio and the long-term mean. If the latter is
assumed to take on “moderate” values for all firms, then default
probabilities will be less variable across firms.


