Worked examples - Multiple Random Variables

Example 1 Let X and Y be random variables that take on values from the set $\{-1,0,1\}$.
(a) Find a joint probability mass assignment for which X and Y are independent, and confirm that X^{2} and Y^{2} are then also independent.
(b) Find a joint pmf assignment for which X and Y are not independent, but for which X^{2} and Y^{2} are independent.

Solution

(a) We assign a joint probability mass function for X and Y as shown in the table below. The values are designed to observe the relations: $P_{X Y}\left(x_{k}, y_{j}\right)=P_{X}\left(x_{k}\right) P_{Y}\left(y_{j}\right)$ for all k, j. Hence, the independence property of X and Y is enforced in the assignment.

$P_{X Y}\left(x_{k}, y_{j}\right)$	$x_{1}=-1$	$x_{2}=0$	$x_{3}=1$	$P_{Y}\left(y_{j}\right)$
$y_{1}=-1$	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{2}$
$y_{2}=0$	$\frac{1}{18}$	$\frac{1}{9}$	$\frac{1}{6}$	$\frac{1}{3}$
$y_{3}=1$	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{6}$
$P_{X}\left(x_{k}\right)$	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$	

Given the above assignment for X and Y, the corresponding joint probability mass function for the pair X^{2} and Y^{2} is seen to be

$P_{X^{2} Y^{2}}\left(\widetilde{x_{k}}, \widetilde{y_{j}}\right)$	$\widetilde{x}_{1}=1$	$\widetilde{x}_{2}=0$	$P_{Y^{2}}\left(\widetilde{y}_{j}\right)$
$\widetilde{y}_{1}=1$	$\frac{1}{12}+\frac{1}{4}+\frac{1}{36}+\frac{1}{12}=\frac{4}{9}$	$\frac{1}{6}+\frac{1}{18}=\frac{2}{9}$	$\frac{2}{3}$
$\widetilde{y}_{2}=0$	$\frac{1}{18}+\frac{1}{6}=\frac{2}{9}$	$\frac{1}{9}$	$\frac{1}{3}$
$P_{X^{2}}\left(\widetilde{x}_{k}\right)$	$\frac{2}{3}$	$\frac{1}{3}$	

Note that $P_{X^{2}, Y^{2}}\left(\widetilde{x}_{k}, \widetilde{y}_{j}\right)=P_{X^{2}}\left(\widetilde{x}_{k}\right) P_{Y^{2}}\left(\widetilde{y}_{j}\right)$ for all k and j, so X^{2} and Y^{2} are also independent.
(b) Suppose we take the same joint pmf assignment for X^{2} and Y^{2} as in the second table, but modify the joint pmf for X and Y as shown in the following table.

$P_{X Y}\left(x_{k}, y_{j}\right)$	$x_{1}=-1$	$x_{2}=0$	$x_{3}=1$	$P_{Y}\left(y_{j}\right)$
$y_{1}=-1$	$\frac{1}{4}$	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{2}$
$y_{2}=0$	$\frac{1}{18}$	$\frac{1}{9}$	$\frac{1}{6}$	$\frac{1}{3}$
$y_{3}=1$	$\frac{1}{12}$	$\frac{1}{18}$	$\frac{1}{36}$	$\frac{1}{6}$
$P_{X}\left(x_{k}\right)$	$\frac{7}{18}$	$\frac{1}{3}$	$\frac{5}{18}$	

This new joint pmf assignment for X and Y can be seen to give rise to the same joint pmf assignment for X^{2} and Y^{2} in the second table. However, in this new assignment, we observe that

$$
\frac{1}{4}=P_{X Y}\left(x_{1}, y_{1}\right) \neq P_{X}\left(x_{1}\right) P_{Y}\left(y_{1}\right)=\frac{7}{18} \cdot \frac{1}{2}=\frac{7}{36}
$$

and the inequality of values can be observed also for $P_{X Y}\left(x_{1}, y_{3}\right), P_{X Y}\left(x_{3}, y_{1}\right)$ and $P_{X Y}\left(x_{3}, y_{3}\right)$, etc. Hence, X and Y are not independent.

Remark

1. Since -1 and 1 are the two positive square roots of 1 , we have

$$
P_{X}(1)+P_{X}(-1)=P_{X^{2}}(1) \quad \text { and } \quad P_{Y}(1)+P_{Y}(-1)=P_{Y^{2}}(1),
$$

therefore

$$
\begin{aligned}
P_{X^{2}}(1) P_{Y^{2}}(1) & =\left[P_{X}(1)+P_{X}(-1)\right]\left[P_{Y}(1)+P_{Y}(-1)\right] \\
& =P_{X}(1) P_{Y}(1)+P_{X}(-1) P_{Y}(1)+P_{X}(1) P_{Y}(-1)+P_{X}(-1) P_{Y}(-1) .
\end{aligned}
$$

On the other hand, $P_{X^{2} Y^{2}}(1,1)=P_{X Y}(1,1)+P_{X Y}(-1,1)+P_{X Y}(1,-1)+P_{X Y}$ $(-1,-1)$. Given that X^{2} and Y^{2} are independent, we have $P_{X^{2} Y^{2}}(1,1)=P_{X^{2}}(1)$ $P_{Y^{2}}(1)$, that is,

$$
\begin{aligned}
& P_{X Y}(1,1)+P_{X Y}(-1,1)+P_{X Y}(1,-1)+P_{X Y}(-1,-1) \\
= & P_{X}(1) P_{Y}(1)+P_{X}(-1) P_{Y}(1)+P_{X}(1) P_{Y}(-1)+P_{X}(-1) P_{Y}(-1) .
\end{aligned}
$$

However, there is no guarantee that $P_{X Y}(1,1)=P_{X}(1) P_{Y}(1), P_{X Y}(1,-1)=P_{X}(1)$ $P_{Y}(-1)$, etc., though their sums are equal.
2. Suppose X^{3} and Y^{3} are considered instead of X^{2} and Y^{2}. Can we construct a pmf assignment where X^{3} and Y^{3} are independent but X and Y are not?
3. If the set of values assumed by X and Y is $\{0,1,2\}$ instead of $\{-1,0,1\}$, can we construct a pmf assignment for which X^{2} and Y^{2} are independent but X and Y are not?

Example 2 Suppose the random variables X and Y have the joint density function defined by

$$
f(x, y)=\left\{\begin{array}{ll}
c(2 x+y) & 2<x<6, \quad 0<y<5 \\
0 & \text { otherwise }
\end{array} .\right.
$$

(a) To find the constant c, we use

$$
\begin{aligned}
1=\text { total probability } & =\int_{2}^{6} \int_{0}^{5} c(2 x+y) d y d x=\left.\int_{2}^{5} c\left(2 x y+\frac{y^{2}}{2}\right)\right|_{0} ^{5} d x \\
& =\int_{2}^{6} c\left(10 x+\frac{25}{2}\right) d x=210 c
\end{aligned}
$$

so $c=\frac{1}{210}$.
(b) The marginal cdf for X and Y are given by

$$
\begin{aligned}
F_{X}(x)=P(X \leq x) & =\int_{-\infty}^{x} \int_{-\infty}^{\infty} f(x, y) d y d x \\
& =\left\{\begin{array}{ll}
0 \\
\int_{2}^{x} \int_{0}^{5} \frac{2 x+y}{210} d y d x=\frac{2 x^{2}+5 x-18}{84} & x<2 \\
\int_{2}^{6} \int_{0}^{5} \frac{2 x+y}{210} d y d x=1 & x \geq 6
\end{array} ;\right. \\
F_{Y}(y)=P(Y \leq y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{y} \frac{2 x+y}{210} d y d x \\
& = \begin{cases}0 & y<0 \\
\int_{2}^{6} \int_{0}^{y} \frac{2 x+y}{210} d y d x=\frac{y^{2}+16 y}{105} & 0 \leq y<5 \\
\int_{2}^{5} \int_{0}^{5} \frac{2 x+y}{210} d y d x=1 & y \geq 5\end{cases}
\end{aligned}
$$

(c) Marginal cdf for X : $f_{X}(x)=\frac{d}{d x} F_{X}(x)=\left\{\begin{array}{ll}\frac{4 x+5}{84} & 2<x<6 \\ 0 & \text { otherwise }\end{array}\right.$.

Marginal cdf for $Y: f_{Y}(y)=\frac{d}{d y} F_{Y}(y)=\left\{\begin{array}{ll}\frac{2 y+16}{105} & 0<y<5 \\ 0 & \text { otherwise }\end{array}\right.$.
(d)

$$
\begin{aligned}
P(X>3, Y>2) & =\frac{1}{210} \int_{3}^{6} \int_{2}^{5}(2 x+y) d y d x=\frac{3}{20} \\
P(X>3) & =\frac{1}{210} \int_{3}^{6} \int_{0}^{5}(2 x+y) d y d x=\frac{23}{28} \\
P(X+Y<4) & =\frac{1}{210} \int_{2}^{4} \int_{0}^{4-x}(2 x+y) d x d y=\frac{2}{35}
\end{aligned}
$$

(e) Joint distribution function

Suppose (x, y) is located in $\{(x, y): x>6,0<y<5\}$, then

$$
F(x, y)=\int_{2}^{6} \int_{0}^{y} \frac{2 x+y}{210} d y d x=\frac{y^{2}+16 y}{105}
$$

and $f(x, y)=\frac{2 y+16}{105}$.
Note that for this density $f(x, y)$, we have

$$
f(x, y) \neq f_{X}(x) f_{Y}(y)
$$

so x and Y are not independent.

Example 3 The joint density of X and Y is given by

$$
f(x, y)= \begin{cases}\frac{15}{2} x(2-x-y) & 0<x<1,0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

Compute the condition density of X, given that $Y=y$, where $0<y<1$.
Solution For $0<x<1,0<y<1$, we have

$$
\begin{aligned}
f_{X}(x \mid y) & =\frac{f(x, y)}{f_{Y}(y)}=\frac{f(x, y)}{\int_{-\infty}^{\infty} f(x, y) d x} \\
& =\frac{x(2-x-y)}{\int_{0}^{1} x(2-x-y) d x}=\frac{x(2-x-y)}{\frac{2}{3}-\frac{y}{2}}=\frac{6 x(2-x-y)}{4-3 y} .
\end{aligned}
$$

Example 4 If X and Y have the joint density function

$$
f_{X Y}(x, y)= \begin{cases}\frac{3}{4}+x y & 0<x<1,0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

find (a) $f_{Y}(y \mid x)$,
(b) $P\left(Y>\frac{1}{2} \left\lvert\, \frac{1}{2}<X<\frac{1}{2}+d x\right.\right)$.

Solution

(a) For $0<x<1$,

$$
f_{X}(x)=\int_{0}^{1}\left(\frac{3}{4}+x y\right) d y=\frac{3}{4}+\frac{x}{2}
$$

and

$$
f_{Y}(y \mid x)=\frac{f_{X Y}(x, y)}{f_{X}(x)}=\left\{\begin{array}{ll}
\frac{3+4 x y}{3+2 x} & 0<y<1 \\
0 & \text { otherwise }
\end{array} .\right.
$$

For other values of $x, f(y \mid x)$ is not defined.
(b) $P\left(Y>\frac{1}{2} \left\lvert\, \frac{1}{2}<X<\frac{1}{2}+d x\right.\right)=\int_{1 / 2}^{\infty} f_{Y}\left(y \left\lvert\, \frac{1}{2}\right.\right) d y=\int_{1 / 2}^{1} \frac{3+2 y}{4} d y=\frac{9}{16}$.

Example 5 Let X and Y be independent exponential random variables with parameter α and β, respectively. Consider the square with corners $(0,0),(0, a),(a, a)$ and ($a, 0$), that is, the length of each side is a.

(a) Find the value of a for which the probability that (X, Y) falls inside a square of side a is $1 / 2$.
(b) Find the conditional pdf of (X, Y) given that $X \geq a$ and $Y \geq a$.

Solution

(a) The density function of X and Y are given by

$$
f_{X}(x)=\left\{\begin{array}{ll}
\alpha e^{-\alpha x}, & x \geq 0 \\
0 & x<0
\end{array}, \quad f_{Y}(y)= \begin{cases}\beta e^{-\beta y}, & y \geq 0 \\
0 & y<0\end{cases}\right.
$$

Since X and Y are independent, so $f_{X Y}(x, y)=f_{X}(x) f_{Y}(y)$. Next, we compute

$$
P[0 \leq X \leq a, 0 \leq Y \leq a]=\int_{0}^{a} \int_{0}^{a} \alpha \beta e^{-\alpha x} e^{-\beta y} d x d y=\left(1-e^{-a \alpha}\right)\left(1-e^{-a \beta}\right)
$$

and solve for a such that $\left(1-e^{-a \alpha}\right)\left(1-e^{-a \beta}\right)=1 / 2$.
(b) Consider the following conditional pdf of (X, Y)

$$
\begin{aligned}
& F_{X Y}(x, y \mid X \geq a, Y \geq a) \\
&= P[X \leq x, Y \leq y \mid X \geq a, Y \geq a] \\
&= \frac{P[a \leq X \leq x, a \leq Y \leq y]}{P[X \geq a, Y \geq a]} \\
&= \frac{P[a \leq X \leq x] P[a \leq Y \leq y]}{P[X \geq a] P[Y \geq a]} \text { since } X \text { and } Y \text { are independent } \\
&= \begin{cases}\frac{\int_{a}^{y} \int_{a}^{x} \alpha \beta e^{-\alpha x} e^{-\beta y} d x d y}{\int_{a}^{\infty} \int_{a}^{\infty} \alpha \beta e^{-\alpha x} e^{-\beta y} d x d y}=\frac{\left(e^{-a \alpha}-e^{-\alpha x}\right)\left(e^{-a \beta}-e^{-\beta y}\right)}{e^{-a \alpha} e^{-a \beta}}, & x>a, y>a . \\
0 & \text { otherwise }\end{cases} \\
& \quad f_{X Y}(x, y \mid X \geq a, Y \geq a)= \frac{\partial^{2}}{\partial x \partial y} F_{X Y}(x, y \mid X \geq a, Y \geq a) \\
&= \begin{cases}\alpha \beta e^{-\alpha x} e^{-\beta y} / e^{-\alpha a} e^{-\beta a} & \text { for } x>a, y>a . \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Example 6 A point is chosen uniformly at random from the triangle that is formed by joining the three points $(0,0),(0,1)$ and $(1,0)$ (units measured in centimetre). Let X and Y be the co-ordinates of a randomly chosen point.
(i) What is the joint density of X and Y ?
(ii) Calculate the expected value of X and Y, i.e., expected co-ordinates of a randomly chosen point.
(iii) Find the correlation between X and Y. Would the correlation change if the units are measured in inches?

Solution

(i) $f_{X, Y}(x, y)=\frac{1}{\text { Area } \triangle}=2, \quad(x, y)$ lies in the triangle.
(ii) $f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}\left(x, y^{\prime}\right) d y^{\prime}=\int_{0}^{1-x} 2 d y=2(1-x)$.
$f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}\left(x^{\prime}, y\right) d x^{\prime}=\int_{0}^{1-y} 2 d x=2(1-y)$.
Hence, $E[X]=2 \int_{0}^{1} x(1-x) d x=2\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}=\frac{1}{3}$
and $E[Y]=2 \int_{0}^{1} y(1-y) d y=\frac{1}{3}$.
(iii) To find the correlation between X and Y, we consider

$$
\begin{aligned}
E[X Y] & =2 \int_{0}^{1} \int_{0}^{1-y} x y d x d y=2 \int_{0}^{1} y\left[\frac{x^{2}}{2}\right]_{0}^{1-y} d y \\
& =\int_{0}^{1} y\left(1-2 y+y^{2}\right) d y \\
& =\left[\frac{y^{2}}{2}-\frac{2}{3} y^{3}+\frac{y^{4}}{4}\right]_{0}^{1}=\frac{1}{12} . \\
\operatorname{COV}(X, Y) & =E[X Y]-E[X] E[Y] \\
& =\frac{1}{12}-\left(\frac{1}{3}\right)^{2}=-\frac{1}{36} . \\
E\left[X^{2}\right] & =2 \int_{0}^{1} x^{2}(1-x) d x=2\left[\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{1}=\frac{1}{6}
\end{aligned}
$$

so

$$
\operatorname{VAR}(X)=E\left[X^{2}\right]-[E[X]]^{2}=\frac{1}{6}-\left(\frac{1}{3}\right)^{2}=\frac{1}{18}
$$

Similarly, we obtain $\operatorname{VAR}(Y)=\frac{1}{18}$.

$$
\rho_{X Y}=\frac{\operatorname{COV}(X, Y)}{\sqrt{\operatorname{VAR}(X)} \sqrt{\operatorname{VAR}(Y)}}=\frac{-\frac{1}{36}}{\frac{1}{18}}=-\frac{1}{2} .
$$

Since $\rho(a X, b Y)=\frac{\operatorname{COV}(a X, b Y)}{\sigma(a X) \sigma(b Y)}=\frac{a b \operatorname{COV}(X, Y)}{a \sigma(X) b \sigma(Y)}=\rho(X, Y)$, for any scalar multiples a and b. Therefore, the correlation would not change if the units are measured in inches.

Example 7 Let X, Y, Z be independent and uniformly distributed over (0,1). Compute $P\{X \geq Y Z\}$.

Solution Since X, Y, Z are independent, we have

$$
f_{X, Y, Z}(x, y, z)=f_{X}(x) f_{Y}(y) f_{Z}(z)=1, \quad 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1
$$

Therefore,

$$
\begin{aligned}
P[X \geq Y Z] & =\iiint_{x \geq y z} f_{X, Y, Z}(x, y, z) d x d y d z \\
& =\int_{0}^{1} \int_{0}^{1} \int_{y z}^{1} d x d y d z=\int_{0}^{1} \int_{0}^{1}(1-y z) d y d z \\
& =\int_{0}^{1}\left(1-\frac{z}{2}\right) d z=\frac{3}{4}
\end{aligned}
$$

Example 8 The joint density of X and Y is given by

$$
f(x, y)= \begin{cases}e^{-(x+y)} & 0<x<\infty, 0<y<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Find the density function of the random variable X / Y.

Solution We start by computing the distribution function of X / Y. For $a>0$,

$$
\begin{aligned}
F_{X / Y}(a) & =P\left[\frac{X}{Y} \leq a\right] \\
& =\int_{x / y \leq a} e^{-(x+y)} d x d y=\int_{0}^{\infty} \int_{0}^{a y} e^{-(x+y)} d x d y \\
& =\int_{0}^{\infty}\left(1-e^{-a y}\right) e^{-y} d y=\left.\left[-e^{-y}+\frac{e^{-(a+1) y}}{a+1}\right]\right|_{0} ^{\infty} \\
& =1-\frac{1}{a+1}=\frac{a}{a+1} .
\end{aligned}
$$

By differentiating $F_{X / Y}(a)$ with respect to a, the density function X / Y is given by

$$
f_{X / Y}(a)=1 /(a+1)^{2}, 0<a<\infty .
$$

Example 9 Let X and Y be a pair of independent random variables, where X is uniformly distributed in the interval $(-1,1)$ and Y is uniformly distributed in the interval $(-4,-1)$. Find the pdf of $Z=X Y$.

Solution Assume $Y=y$, then $Z=X Y$ is a scaled version of X. Suppose $U=\alpha W+\beta$, then $f_{U}(u)=\frac{1}{|\alpha|} f_{W}\left(\frac{u-\beta}{\alpha}\right)$. Now, $f_{Z}(z \mid y)=\frac{1}{|y|} f_{X}\left(\left.\frac{z}{y} \right\rvert\, y\right)$; the pdf of z is given by

$$
f_{Z}(z)=\int_{-\infty}^{\infty} \frac{1}{|y|} f_{X}\left(\left.\frac{z}{y} \right\rvert\, y\right) f_{Y}(y) d y=\int_{-\infty}^{\infty} \frac{1}{|y|} f_{X Y}\left(\frac{z}{y}, y\right) d y
$$

Since X is uniformly distributed over $(-1,1), f_{X}(x)=\left\{\begin{array}{ll}\frac{1}{2} & -1<x<1 \\ 0 & \text { otherwise }\end{array}\right.$. Similarly, Y is uniformly distributed over $(-4,-1), f_{Y}(y)=\left\{\begin{array}{ll}\frac{1}{3} & -4<y<-1 \\ 0 & \text { otherwise }\end{array}\right.$. As X and Y are independent,

$$
f_{X Y}\left(\frac{z}{y}, y\right)=f_{X}\left(\frac{z}{y}\right) f_{Y}(y)= \begin{cases}\frac{1}{6} & -1<\frac{z}{y}<1 \text { and }-4<y<-1 \\ 0 & \text { otherwise }\end{cases}
$$

We need to observe $-1<z / y<1$, which is equivalent to $|z|<|y|$. Consider the following cases:
(i) $|z|>4$; now $-1<z / y<1$ is never satisfied so that $f_{X Y}\left(\frac{z}{y}, y\right)=0$.
(ii) $|z|<1$; in this case, $-1<z / y<1$ is automatically satisfied so that

$$
\left.f_{Z}(z)=\int_{-4}^{-1} \frac{1}{|y|} \frac{1}{6} d y=\int_{-4}^{-1}-\frac{1}{6 y} d y=-\frac{1}{6} \ln |y|\right]_{-4}^{-1}=\frac{\ln 4}{6}
$$

(iii) $1<|z|<4$; note that $f_{X Y}\left(\frac{z}{y}, y\right)=\frac{1}{6}$ only for $-4<y<-|z|$, so that

$$
\left.f_{Z}(z)=\int_{-4}^{-|z|} \frac{1}{|y|} \frac{1}{6} d y=-\frac{1}{6} \ln |y|\right]_{-4}^{-|z|}=\frac{1}{6}[\ln 4-\ln |z|] .
$$

In summary, $f_{Z}(z)=\left\{\begin{array}{ll}\frac{\ln 4}{6} & \text { if }|z|<1 \\ \frac{1}{6}[\ln 4-\ln |z|] & \text { if } 1<|z|<4 \\ 0 & \text { otherwise }\end{array}\right.$.
Remark Check that $\int_{-\infty}^{\infty} f_{Z}(z) d z=\int_{-4}^{-1} \frac{1}{6}[\ln 4-\ln |z|] d z$

$$
\begin{aligned}
& +\int_{-1}^{1} \frac{\ln 4}{6} d z+\int_{1}^{4} \frac{1}{6}[\ln 4-\ln |z|] d z \\
& =\int_{-4}^{4} \frac{\ln 4}{6} d z-2 \int_{1}^{4} \frac{\ln |z|}{6} d z
\end{aligned}
$$

$$
=\frac{8}{6} \ln 4-\frac{1}{3}[z \ln z-z]_{1}^{4}=1
$$

Example 10 Let X and Y be two independent Gaussian random variables with zero mean and unit variance. Find the pdf of $Z=|X-Y|$.

Solution We try to find $F_{Z}(z)=P[Z \leq z]$. Note that $z \geq 0$ since Z is a non-negative random variable.

Consider the two separate cases: $x>y$ and $x<y$. When $X=Y, Z$ is identically zero.
(i) $x>y, Z \leq z \Leftrightarrow x-y \leq z, z \geq 0$; that is, $x-z \leq y<x$.

$$
\begin{gathered}
F_{Z}(z)=\int_{-\infty}^{\infty} \int_{x-z}^{x} f_{X Y}(x, y) d y d x \\
f_{Z}(z)=\frac{d}{d z} F_{Z}(z)=\int_{-\infty}^{\infty} f_{X Y}(x, x-z) d x \\
=\int_{-\infty}^{\infty} \frac{1}{2 \pi} e^{-\left[x^{2}+(x-z)^{2}\right] / 2} d x \\
=\frac{1}{2 \sqrt{\pi}} e^{-z^{2} / 4} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi}} e^{-\left(x-\frac{z}{2}\right)^{2}} d x=\frac{1}{2 \sqrt{\pi}} e^{-z^{2} / 4} .
\end{gathered}
$$

(ii) $x<y, Z \leq z \Leftrightarrow y-x \leq z, z \geq 0$; that is $x<y \leq x+z$.

$$
\begin{aligned}
F_{Z}(z) & =\int_{-\infty}^{\infty} \int_{x}^{x+z} f_{X Y}(x, y) d y d x \\
f_{Z}(z) & =\int_{-\infty}^{\infty} f_{X Y}(x, x+z) d x=\frac{1}{2 \sqrt{\pi}} e^{-z^{2} / 4} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi}} e^{-(x+z)^{2}} d x=\frac{1}{2 \sqrt{\pi}} e^{-z^{2} / 4}
\end{aligned}
$$

Example 11 Suppose two persons A and B come to two separate counters for service. Let their service times be independent exponential random variables with parameters λ_{A} and λ_{B}, respectively. Find the probability that B leaves before A ?

Solution Let T_{A} and T_{B} denote the continuous random service time of A and B, respectively. Recall that the expected value of the service times are: $E\left[T_{A}\right]=\frac{1}{\lambda_{A}}$ and $E\left[T_{B}\right]=\frac{1}{\lambda_{B}}$. That is, a higher value of λ implies a shorter average service time. One would expect

$$
P\left[T_{A}>T_{B}\right]: P\left[T_{B}>T_{A}\right]=\frac{1}{\lambda_{A}}: \frac{1}{\lambda_{B}}
$$

and together with $P\left[T_{A}>T_{B}\right]+P\left[T_{B}>T_{A}\right]=1$, we obtain

$$
P\left[T_{A}>T_{B}\right]=\frac{\lambda_{B}}{\lambda_{A}+\lambda_{B}} \quad \text { and } \quad P\left[T_{B}>T_{A}\right]=\frac{\lambda_{A}}{\lambda_{A}+\lambda_{B}} .
$$

Justification:- Since T_{A} and T_{B} are independent exponential random variables, their joint density $f_{T_{A}, T_{B}}\left(t_{A}, t_{B}\right)$ is given by

$$
\begin{aligned}
& f_{T_{A}, T_{B}}\left(t_{A}, t_{B}\right) d t_{A} d t_{B} \\
= & P\left[t_{A}<T_{A}<t_{A}+d t_{A}, t_{B}<T_{B}<t_{B}+d t_{B}\right] \\
= & P\left[t_{A}<T_{A}<t_{A}+d t_{A}\right] P\left[t_{B}<T_{B}<t_{B}+d t_{B}\right] \\
= & \left(\lambda_{A} e^{-\lambda_{A} t_{A}} d t_{A}\right)\left(\lambda_{B} e^{-\lambda_{B} t_{B}} d t_{B}\right) . \\
P\left[T_{A}>T_{B}\right]= & \int_{0}^{\infty} \int_{0}^{t_{A}} \lambda_{A} \lambda_{B} e^{-\lambda_{A} t_{A}} e^{-\lambda_{B} t_{B}} d t_{B} d t_{A} \\
= & \int_{0}^{\infty} \lambda_{A} e^{-\lambda_{A} t_{A}}\left(1-e^{-\lambda_{B} t_{A}}\right) d t_{A} \\
= & \int_{0}^{\infty} \lambda_{A} e^{-\lambda_{A} t_{A}} d t_{A}-\int_{0}^{\infty} \lambda_{A} e^{-\left(\lambda_{A}+\lambda_{B}\right) t_{A}} d t_{A} \\
= & 1-\frac{\lambda_{A}}{\lambda_{A}+\lambda_{B}}=\frac{\lambda_{B}}{\lambda_{A}+\lambda_{B}} .
\end{aligned}
$$

