
4. Complex integration: Cauchy integral theorem and Cauchy

integral formulas

Definite integral of a complex-valued function of a real variable

Consider a complex valued function f(t) of a real variable t:

f(t) = u(t) + iv(t),

which is assumed to be a piecewise continuous function defined in

the closed interval a ≤ t ≤ b. The integral of f(t) from t = a to

t = b, is defined as

∫ b

a
f(t) dt =

∫ b

a
u(t) dt + i

∫ b

a
v(t) dt.
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Properties of a complex integral with real variable of integration

1.

Re

∫ b

a
f(t) dt =

∫ b

a
Re f(t) dt =

∫ b

a
u(t) dt.

2.

Im

∫ b

a
f(t) dt =

∫ b

a
Im f(t) dt =

∫ b

a
v(t) dt.

3.
∫ b

a
[γ1f1(t) + γ2f2(t)] dt = γ1

∫ b

a
f1(t) dt + γ2

∫ b

a
f2(t) dt,

where γ1 and γ2 are any complex constants.

4.
∣
∣
∣
∣
∣
∣

∫ b

a
f(t) dt

∣
∣
∣
∣
∣
∣

≤
∫ b

a
|f(t)| dt.
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To prove (4), we consider
∣
∣
∣
∣
∣
∣

∫ b

a
f(t) dt

∣
∣
∣
∣
∣
∣

= e−iφ
∫ b

a
f(t) dt =

∫ b

a
e−iφf(t) dt,

where φ = Arg

(
∫ b

a
f(t) dt

)

. Since

∣
∣
∣
∣
∣
∣

∫ b

a
f(t) dt

∣
∣
∣
∣
∣
∣

is real, we deduce that

∣
∣
∣
∣
∣
∣

∫ b

a
f(t) dt

∣
∣
∣
∣
∣
∣

= Re

∫ b

a
e−iφf(t) dt =

∫ b

a
Re [e−iφf(t)] dt

≤
∫ b

a
|e−iφf(t)| dt =

∫ b

a
|f(t)| dt.
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Example

Suppose α is real, show that

|e2απi − 1| ≤ 2π|α|.

Solution

Let f(t) = eiαt, α and t are real. We obtain
∣
∣
∣
∣
∣
∣

∫ 2π

0
eiαt dt

∣
∣
∣
∣
∣
∣

≤
∫ 2π

0
|eiαt| dt = 2π.

The left-hand side of the above inequality is equal to
∣
∣
∣
∣
∣
∣

∫ 2π

0
eiαt dt

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

eiαt

iα

∣
∣
∣
∣
∣
∣

2π

0

∣
∣
∣
∣
∣
∣

=
|e2απi − 1|

|α|
.

Combining the results, we obtain

|e2απi − 1| ≤ 2π|α|, α is real.
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Definition of a contour integral

Consider a curve C which is a set of points z = (x, y) in the complex

plane defined by

x = x(t), y = y(t), a ≤ t ≤ b,

where x(t) and y(t) are continuous functions of the real parameter

t. One may write

z(t) = x(t) + iy(t), a ≤ t ≤ b.

• The curve is said to be smooth if z(t) has continuous derivative

z′(t) 6= 0 for all points along the curve.

• A contour is defined as a curve consisting of a finite number

of smooth curves joined end to end. A contour is said to be a

simple closed contour if the initial and final values of z(t) are

the same and the contour does not cross itself.
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• Let f(z) be any complex function defined in a domain D in the

complex plane and let C be any contour contained in D with

initial point z0 and terminal point z.

• We divide the contour C into n subarcs by discrete points z0, z1, z2,

. . ., zn−1, zn = z arranged consecutively along the direction of in-

creasing t.

• Let ζk be an arbitrary point in the subarc zkzk+1 and form the

sum

n−1∑

k=0

f(ζk)(zk+1 − zk).
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Subdivision of the contour into n subarcs by discrete points z0, z1, · · · ,
zn−1, zn = z.
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We write △zk = zk+1 − zk. Let λ = max
k

|△zk| and take the limit

lim
λ→0
n→∞

n−1∑

k=0

f(ζk) △zk.

The above limit is defined to be the contour integral of f(z) along

the contour C.

If the above limit exists, then the function f(z) is said to be inte-

grable along the contour C.

If we write

dz(t)

dt
=

dx(t)

dt
+ i

dy(t)

dt
, a ≤ t ≤ b,

then
∫

C
f(z) dz =

∫ b

a
f(z(t))

dz(t)

dt
dt.
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Writing f(z) = u(x, y) + iv(x, y) and dz = dx + idy, we have
∫

C
f(z) dz =

∫

C
u dx − v dy + i

∫

C
u dy + v dx

=

∫ b

a

[

u(x(t), y(t))
dx(t)

dt
− v(x(t), y(t))

dy(t)

dt

]

dt

+ i
∫ b

a

[

u(x(t), y(t))
dy(t)

dt
+ v(x(t), y(t))

dx(t)

dt

]

dt.

The usual properties of real line integrals are carried over to their

complex counterparts. Some of these properties are:

(i)

∫

C
f(z) dz is independent of the parameterization of C;

(ii)
∫

−C
f(z) dz = −

∫

C
f(z) dz, where −C is the opposite curve of C;

(iii) The integrals of f(z) along a string of contours is equal to the

sum of the integrals of f(z) along each of these contours.
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Example

Evaluate the integral
∮

C

1

z − z0
dz,

where C is a circle centered at z0 and of any radius. The path is

traced out once in the anticlockwise direction.

Solution

The circle can be parameterized by

z(t) = z0 + reit, 0 ≤ t ≤ 2π,

where r is any positive real number. The contour integral becomes

∮

C

1

z − z0
dz =

∫ 2π

0

1

z(t) − z0

dz(t)

dt
dt =

∫ 2π

0

ireit

reit
dt = 2πi.

The value of the integral is independent of the radius r.
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Example

Evaluate the integral

(i)

∫

C
|z|2 dz and (ii)

∫

C

1

z2
dz,

where the contour C is

(a) the line segment with initial point −1 and final point i;

(b) the arc of the unit circle Im z ≥ 0 with initial point −1 and final

point i.

Do the two results agree?
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Solution

(i) Consider

∫

C
|z|2 dz,

(a) Parameterize the line segment by

z = −1 + (1 + i)t, 0 ≤ t ≤ 1,

so that

|z|2 = (−1 + t)2 + t2 and dz = (1 + i) dt.

The value of the integral becomes

∫

C
|z|2 dz =

∫ 1

0
(2t2 − 2t + 1)(1 + i) dt =

2

3
(1 + i).
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(b) Along the unit circle, |z| = 1 and z = eiθ, dz = ieiθdθ. The initial

point and the final point of the path correspond to θ = π and

θ = π
2, respectively. The contour integral can be evaluated as

∫

C
|z|2 dz =

∫ π
2

π
ieiθ dθ = eiθ

∣
∣
∣
∣
∣
∣

π
2

π

= 1 + i.

The results in (a) and (b) do not agree. Hence, the value of this

contour integral does depend on the path of integration.
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(ii) Consider

∫

C

1

z2
dz.

(a) line segment from −1 to i

∫

C

1

z2
dz =

∫ 1

0

1 + i

[−1 + (1 + i)t]2
dt = − 1

−1 + (1 + i)t

∣
∣
∣
∣
∣

1

0

= −1−1

i
= −1+i.

(b) subarc from −1 to i

∫

C

1

z2
dz =

∫ π
2

π

1

e2iθ
ieiθ dθ = −e−iθ

]π
2

π
= −1 + i.
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Estimation of the absolute value of a complex integral

The upper bound for the absolute value of a complex integral can

be related to the length of the contour C and the absolute value of

f(z) along C. In fact,
∣
∣
∣
∣
∣
∣

∫

C
f(z) dz

∣
∣
∣
∣
∣
∣

≤ ML,

where M is the upper bound of |f(z)| along C and L is the arc length

of the contour C.
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We consider
∣
∣
∣
∣
∣
∣

∫

C
f(z) dz

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∫ b

a
f(z(t))

dz(t)

dt
dt

∣
∣
∣
∣
∣
∣

≤
∫ b

a
|f(z(t))|

∣
∣
∣
∣
∣
∣

dz(t)

dt

∣
∣
∣
∣
∣
∣

dt

≤
∫ b

a
M

∣
∣
∣
∣
∣
∣

dz(t)

dt

∣
∣
∣
∣
∣
∣

dt

= M
∫ b

a

√
√
√
√

(

dx(t)

dt

)2

+

(

dy(t)

dt

)2

dt = ML.
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Example

Show that

∣
∣
∣
∣
∣
∣

∫

C

1

z2
dz

∣
∣
∣
∣
∣
∣

≤ 2, where C is the line segment joining −1 + i and 1 + i.

Solution

Along the contour C, we have z = x + i, −1 ≤ x ≤ 1, so that 1 ≤
|z| ≤

√
2. Correspondingly,

1

2
≤ 1

|z|2
≤ 1. Here, M = max

z∈C

1

|z|2
= 1

and the arc length L = 2. We have
∣
∣
∣
∣
∣
∣

∫

C

1

z2
dz

∣
∣
∣
∣
∣
∣

≤ ML = 2.
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Example

Estimate an upper bound of the modulus of the integral

I =

∫

C

Log z

z − 4i
dz

where C is the circle |z| = 3.

Now,

∣
∣
∣
∣
∣
∣

Log z

z − 4i

∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
ln |z|

∣
∣
∣
∣
∣
+ |Arg z|

||z| − |4i||
so that

max
z∈C

∣
∣
∣
∣
∣
∣

Log z

z − 4i

∣
∣
∣
∣
∣
∣

≤ ln 3 + π

|3 − 4|
= ln3 + π; L = (2π)(3) = 6π.

Hence,

∣
∣
∣
∣
∣
∣

∫

C

Log z

z − 4i
dz

∣
∣
∣
∣
∣
∣

≤ 6π(π + ln3).
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Example

Find an upper bound for

∣
∣
∣
∣
∣

∫

Γ
ez/(z2 + 1) dz

∣
∣
∣
∣
∣
, where Γ is the circle

|z| = 2 traversed once in the counterclockwise direction.

Solution

The path of integration has length L = 4π. Next we seek an upper

bound M for the function ez/(z2 + 1) when |z| = 2. Writing z =

x + iy, we have

|ez| = |ex+iy| = ex ≤ e2, for |z| =
√

x2 + y2 = 2,

and by the triangle inequality

|z2 + 1| ≥ |z|2 − 1 = 4 − 1 = 3 for |z| = 2.

Hence, |ez/(z2 + 1)| ≤ e2/3 for |z| = 2, and so
∣
∣
∣
∣
∣

∫

Γ

ez

z2 + 1
dz

∣
∣
∣
∣
∣
≤ e2

3
· 4π.
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Path independence

Under what conditions that
∫

C1

f(z) dz =
∫

C2

f(z) dz,

where C1 and C2 are two contours in a domain D with the same

initial and final points and f(z) is piecewise continuous inside D.

The property of path independence is valid for f(z) = 1
z2 but it fails

when f(z) = |z|2. The above query is equivalent to the question:

When does
∮

C
f(z) dz = 0

hold, where C is any closed contour lying completely inside D? The

equivalence is revealed if we treat C as C1 ∪ −C2.

We observe that f(z) = 1
z2 is analytic everywhere except at z = 0

but f(z) = |z|2 is nowhere analytic.

20



Cauchy integral theorem

Let f(z) = u(x, y)+iv(x, y) be analytic on and inside a simple closed

contour C and let f ′(z) be also continuous on and inside C, then
∮

C
f(z) dz = 0.

Proof

The proof of the Cauchy integral theorem requires the Green theo-

rem for a positively oriented closed contour C: If the two real func-

tions P(x, y) and Q(x, y) have continuous first order partial deriva-

tives on and inside C, then
∮

C
P dx + Q dy =

∫∫

D
(Qx − Py) dxdy,

where D is the simply connected domain bounded by C.
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Suppose we write f(z) = u(x, y) + iv(x, y), z = x + iy; we have
∮

C
f(z) dz =

∮

C
u dx − v dy + i

∮

C
v dx + u dy.

One can infer from the continuity of f ′(z) that u(x, y) and v(x, y)

have continuous derivatives on and inside C. Using the Green the-

orem, the two real line integrals can be transformed into double

integrals.
∮

C
f(z) dz =

∫∫

D
(−vx − uy) dxdy + i

∫∫

D
(ux − vy) dxdy.

Both integrands in the double integrals are equal to zero due to the

Cauchy-Riemann relations, hence the theorem.

In 1903, Goursat was able to obtain the same result without assum-

ing the continuity of f ′(z).
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Goursat Theorem

If a function f(z) is analytic throughout a simply connected domain

D, then for any simple closed contour C lying completely inside D,

we have
∮

C
f(z) dz = 0.

Corollary 1

The integral of a function f(z) which is analytic throughout a simply

connected domain D depends on the end points and not on the

particular contour taken. Suppose α and β are inside D, C1 and C2

are any contours inside D joining α to β, then
∫

C1

f(z) dz =

∫

C2

f(z) dz.
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Example

If C is the curve y = x3−3x2+4x−1 joining points (1,1) and (2,3),

find the value of
∫

C
(12z2 − 4iz) dz.

Method 1. The integral is independent of the path joining (1,1)

and (2,3). Hence any path can be chosen. In particular, let us

choose the straight line paths from (1,1) to (2,1) and then from

(2,1) to (2,3).

Case 1 Along the path from (1,1) to (2,1), y = 1, dy = 0 so that

z = x + iy = x + i, dz = dx. Then the integral equals

∫ 2

1
{12(x + i)2 − 4i(x + i)} dx = {4(x + i)3 − 2i(x + i)2}

∣
∣
∣
∣
∣

2

1

= 20+30i.
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Case 2 Along the path from (2,1) to (2,3), x = 2, dx = 0 so that

z = x + iy = 2 + iy, dz = idy. Then the integral equals

∫ 3

1
{12(2+iy)2−4i(2+iy)}i dy = {4(2+iy)3−2i(2+iy)2}

∣
∣
∣
∣
∣

3

1

= −176+8i.

Then adding, the required value = (20 + 30i) + (−176 + 8i) =

−156 + 38i.

Method 2. The given integral equals

∫ 2+3i

1+i
(12z2 − 4iz) dz = (4z3 − 2iz2)

∣
∣
∣
∣
∣

2+3i

1+i

= −156 + 38i.

It is clear that Method 2 is easier.
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Corollary 2

Let f(z) be analytic throughout a simply connected domain D. Con-

sider a fixed point z0 ∈ D; by virtue of Corollary 1,

F(z) =

∫ z

z0
f(ζ) dζ, for any z ∈ D,

is a well-defined function in D. Considering

F(z + ∆z) − F(z)

∆z
− f(z) =

1

∆z

∫ z+∆z

z
[f(ζ) − f(z)] dζ.

By the Cauchy Theorem, the last integral is independent of the path

joining z and z +∆z so long as the path is completely inside D. We

choose the path as the straight line segment joining z and z + ∆z

and choose |∆z| small enough so that it is completely inside D.
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By continuity of f(z), we have for all points u on this straight line

path

|f(u) − f(z)| < ǫ whenever |u − z| < δ.

Note that |∆z| < δ is observed implicitly.
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We have
∣
∣
∣
∣
∣

∫ z+∆z

z
[f(u) − f(z)] du

∣
∣
∣
∣
∣
< ǫ|∆z|

so that
∣
∣
∣
∣
∣

F(z + ∆z) − F(z)

∆z
− f(z)

∣
∣
∣
∣
∣
=

1

|∆z|

∣
∣
∣
∣
∣

∫ z+∆z

z
[f(u) − f(z)] du

∣
∣
∣
∣
∣
< ǫ

for |∆z| < δ. This amounts to say

lim
∆z→0

F(z + ∆z) − F(z)

∆z
= f(z),

that is, F ′(z) = f(z) for all z in D. Hence, F(z) is analytic in D
since F ′(z) exists at all points in D (which is an open set).
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• This corollary may be considered as a complex counterpart of

the fundamental theorem of real calculus.

• If we integrate f(z) along any contour joining α and β inside D,

then the value of the integral is given by

∫ β

α
f(z) dz =

∫ β

z0
f(ζ) dζ −

∫ α

z0
f(ζ) dζ

= F(β) − F(α), α and β ∈ D.
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Corollary 3

Let C, C1, C2, . . ., Cn be positively oriented closed contours, where

C1, C2, . . ., Cn are all inside C. For C1, C2, . . ., Cn, each of these

contours lies outside of the other contours. Let int Ci denote the

collection of all points bounded inside Ci. Let f(z) be analytic on

the set S : C ∪ int C \ int C1 \ int C2 \ · · · \ int Cn (see the shaded

area in Figure), then

∮

C
f(z) dz =

n∑

k=1

∮

Ck

f(z) dz.
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The proof for the case when n = 2 is presented below.
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Proof

• The constructed boundary curve is composed of C ∪−C1 ∪−C2

and the cut lines, each cut line travels twice in opposite direc-

tions.

• To explain the negative signs in front of C1 and C2, we note that

the interior contours traverse in the clockwise sense as parts of

the positively oriented boundary curve.

• With the introduction of these cuts, the shaded region bounded

within this constructed boundary curve becomes a simply con-

nected set.

We have
∮

C
f(z) dz +

∫

−C1

f(z) dz +
∫

−C2

f(z) dz = 0,

so that
∮

C
f(z) dz =

∫

C1

f(z) dz +
∫

C2

f(z) dz.
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Example

Let D be the domain that contains the whole complex plane except

the origin and the negative real axis. Let Γ be an arbitrary contour

lying completely inside D, and Γ starts from 1 and ends at a point

α. Show that
∫

Γ

dz

z
= Log α.

Solution

Let Γ1 be the line segment from 1 to |α| along the real axis, and

Γ2 be a circular arc centered at the origin and of radius |α| which

extends from |α| to α. The union Γ1 ∪ Γ2 ∪ −Γ forms a closed

contour. Since the integrand 1
z is analytic everywhere inside D, by

the Cauchy integral theorem, we have
∫

Γ

dz

z
=

∫

Γ1

dz

z
+

∫

Γ2

dz

z
.
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The contour Γ starts from z = 1 and ends at z = α. The arc Γ2 is

part of the circle |z| = |α|.
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Since α cannot lie on the negative real axis, so Arg α cannot assume

the value π. If we write α = |α|eiArg α (−π < Arg α < π), then

∫

Γ1

dz

z
=

∫ |α|

1

dt

t
= ln |α|

∫

Γ2

dz

z
=
∫ Arg α

0

ireiθ

reiθ
dθ = i Arg α.

Combining the results,
∫

Γ

dz

z
= ln |α| + i Arg α = Log α.

Note that the given domain D is the domain of definition of Log z,

the principal branch of the complex logarithm function.
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Poisson integral

Consider the integration of the function e−z2
around the rectangular

contour Γ with vertices ±a, ±a+ib and oriented positively. By letting

a → ∞ while keeping b fixed, show that
∫ ∞

−∞
e−x2

e±2ibx dx =
∫ ∞

−∞
e−x2

cos 2bx dx = e−b2√π.

y

x

(a, b)(−a, b)

(−a, 0) (a, 0)Γ1

Γ2

Γ3

Γ4

The configuration of the closed rectangular contour Γ.
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Solution

Since e−z2
is an entire function, we have

∮

Γ
e−z2

dz = 0,

by virtue of the Cauchy integral theorem. The closed contour Γ

consists of four line segments: Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4, where

Γ1 = {x : −a ≤ x ≤ a},
Γ2 = {a + iy : 0 ≤ y ≤ b},
Γ3 = {x + ib : −a ≤ x ≤ a},
Γ4 = {−a + iy : 0 ≤ y ≤ b},

and Γ is oriented in the anticlockwise direction.
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The contour integral can be split into four contour integrals, namely,
∮

Γ
e−z2

dz =

∫

Γ1

e−z2
dz +

∫

Γ2

e−z2
dz +

∫

Γ3

e−z2
dz +

∫

Γ4

e−z2
dz.

The four contour integrals can be expressed as real integrals as

follows:
∫

Γ1

e−z2
dz =

∫ a

−a
e−x2

dx,

∫

Γ2

e−z2
dz =

∫ b

0
e−(a+iy)2i dy,

∫

Γ3

e−z2
dz =

∫ −a

a
e−(x+ib)2 dx,

= −eb2
[∫ a

−a
e−x2

cos 2bx dx − i
∫ a

−a
e−x2

sin 2bx dx

]

,

∫

Γ4

e−z2
dz =

∫ 0

b
e−(−a+iy)2i dy.
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First, we consider the bound on the modulus of the second integral.
∣
∣
∣
∣
∣
∣

∫

Γ2

e−z2
dz

∣
∣
∣
∣
∣
∣

≤
∫ b

0
|e−(a2−y2+2iay)i| dy

= e−a2
∫ b

0
ey2

dy

≤ e−a2
∫ b

0
eb2 dy (since 0 ≤ y ≤ b)

=
beb2

ea2 → 0 as a → ∞ and b is fixed.

Therefore, the value of

∫

Γ2

e−z2
dz → 0 as a → ∞.

By similar argument, the fourth integral can be shown to be zero

as a → ∞.
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lim
a→∞

∮

Γ
e−z2

dz = lim
a→∞

(∫ a

−a
e−x2

dx − eb2
∫ a

−a
e−x2

cos 2bx dx

)

+ i lim
a→∞

(

eb2
∫ a

−a
e−x2

sin 2bx dx

)

= 0,

so that
∫ ∞

−∞
e−x2

cos 2bx dx−i
∫ ∞

−∞
e−x2

sin 2bx dx = e−b2
∫ ∞

−∞
e−x2

dx = e−b2√π.

Either by equating the imaginary parts of the above equation or

observing that e−x2
sin 2bx is odd, we deduce
∫ ∞

−∞
e−x2

sin 2bx dx = 0.

Hence, we obtain
∫ ∞

−∞
e−x2

e±2ibx dx =

∫ ∞

−∞
e−x2

cos 2bx dx = e−b2√π.
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Cauchy integral formula

Let the function f(z) be analytic on and inside a positively oriented

simple closed contour C and z is any point inside C, then

f(z) =
1

2πi

∮

C

f(ζ)

ζ − z
dζ.

Proof

We draw a circle Cr, with radius r around the point z, small enough

to be completely inside C. Since f(ζ)
ζ−z is analytic in the region lying

between Cr and C, we have

1

2πi

∮

C

f(ζ)

ζ − z
dζ =

1

2πi

∮

Cr

f(ζ)

ζ − z
dζ

=
1

2πi

∮

Cr

f(ζ) − f(z)

ζ − z
dζ +

f(z)

2πi

∮

Cr

1

ζ − z
dζ.

The last integral is seen to be equal to f(z). To complete the proof,

it suffices to show that the first integral equals zero.
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×

x

y

z

C

Cr

The contour C is deformed to the circle Cr, which encircles the

point z.
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Since f is continuous at z, for each ǫ > 0, there exists δ > 0 such

that

|f(ζ) − f(z)| < ǫ whenever |ζ − z| < δ.

Now, suppose we choose r < δ (it is necessary to guarantee that

Cr lies completely inside the contour C), the modulus of the first

integral is bounded by
∣
∣
∣
∣
∣

1

2πi

∮

Cr

f(ζ) − f(z)

ζ − z
dζ

∣
∣
∣
∣
∣

≤ 1

2π

∮

Cr

|f(ζ) − f(z)|
|ζ − z| |dζ|

=
1

2πr

∮

Cr

|f(ζ) − f(z)| |dζ|

<
ǫ

2πr

∮

Cr

|dζ| = ǫ

2πr
2πr = ǫ.

Since the modulus of the above integral is less than any positive

number ǫ, however small, so the value of that integral is zero.
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By the Cauchy integral formula, the value of f(z) at any point inside

the closed contour C is determined by the values of the function

along the boundary contour C.

Example

Apply the Cauchy integral formula to the integral

∮

|z|=1

ekz

z
dz, k is a real constant,

to show that
∫ 2π

0
ek cos θ sin(k sin θ) dθ = 0

∫ 2π

0
ek cos θ cos(k sin θ) dθ = 2π.
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Solution

By Cauchy’s integral formula:
∮

|z|=1

ekz

z
dz = (2πi)ekz

∣
∣
∣
∣
∣
∣
z=0

= 2πi.

On the other hand,

2πi =

∮

|z|=1

ekz

z
dz =

∫ 2π

0

ek(cos θ+i sin θ)

eiθ
ieiθ dθ

= i
∫ 2π

0
ek cos θ[cos(k sin θ) + i sin(k sin θ)] dθ.

Equating the real and imaginary parts, we obtain

0 =

∫ 2π

0
ek cos θ sin(k sin θ) dθ

2π =
∫ 2π

0
ek cos θ cos(k sin θ) dθ.
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Example

Evaluate
∮

C

sinπz2 + cosπz2

(z − 1)(z − 2)
dz,

where C is the circle: |z − i| = 3.

Solution

∮

C

sinπz2 + cosπz2

(z − 1)(z − 2)
dz =

∮

C

sinπz2 + cosπz2

z − 2
dz −

∮

C

sinπz2 + cosπz2

z − 1
dz

By Cauchy’s integral formula, we have

∮

C

sinπz2 + cosπz2

z − 2
dz = 2πi{sinπ(2)2 + cosπ(2)2} = 2πi

∮

C

sinπz2 + cosπz2

z − 1
dz = 2πi{sinπ(1)2 + cosπ(1)2} = −2πi

since z = 1 and z = 2 are inside C and sinπz2 + cosπz2 is analytic

on and inside C. The integral has the value 2πi − (−2πi) = 4πi.
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Remark

Alternately, by Corollary 3 of the Cauchy Integral Theorem, we have

∮

C

sinπz2 + cosπz2

(z − 1)(z − 2)
dz =

∮

C1

(sinπz2 + cosπz2)/(z − 2)

z − 1
dz

+

∮

C2

(sinπz2 + cosπz2)/(z − 1)

z − 2
dz,

where C1 and C2 are closed contours completely inside C, C1 encir-

cles the point z = 1 while C2 encircles the point z = 2.
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By the Cauchy Integral formula, choosing f(z) =
sinπz2 + cosπz2

z − 2
,

we obtain
∮

C1

f(z)

z − 1
dz = 2πif(1) = 2πi

sinπ + cosπ

−1
= 2πi.

In a similar manner

∮

C2

(sinπz2 + cosπz2)/(z − 1)

z − 2
dz = 2πi

sinπz2 + cosπz2

z − 1

∣
∣
∣
∣
∣
z=2

= 2πi.

Hence, the integral is equal to 2πi + 2πi = 4πi.

48



The Cauchy integral formula can be extended to the case where the

simple closed contour C can be replaced by the oriented boundary

of a multiply connected domain.

Suppose C, C1, C2, . . . , Cn and f(z) are given the same conditions

as in Corollary 3, then for any point z ∈ C ∪ int C \ int C1 \
int C2 \ · · · \ int Cn, we have

f(z) =
1

2πi

∮

C

f(ζ)

ζ − z
dζ −

n∑

k=1

1

2πi

∮

Ck

f(ζ)

ζ − z
dζ.
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Derivatives of contour integrals

Suppose we differentiate both sides of the Cauchy integral formula

formally with respect to z (holding ζ fixed), assuming that differen-

tiation under the integral sign is legitimate, we obtain

f ′(z) =
1

2πi

d

dz

∮

C

f(ζ)

ζ − z
dζ =

1

2πi

∮

C

d

dz

f(ζ)

ζ − z
dζ =

1

2πi

∮

C

f(ζ)

(ζ − z)2
dζ.

How to justify the legitimacy of direct differentiation of the Cauchy

integral formula? First, consider the expression

f(z + h) − f(z)

h
− 1

2πi

∮

C

f(ζ)

(ζ − z)2
dζ

=
1

h

{

1

2πi

∮

C

[

f(ζ)

ζ − z − h
− f(ζ)

ζ − z
− h

f(ζ)

(ζ − z)2

]

dζ

}

=
h

2πi

∮

C

f(ζ)

(ζ − z − h) (ζ − z)2
dζ.
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It suffices to show that the value of the last integral goes to zero

as h → 0. To estimate the value of the last integral, we draw the

circle C2d: |ζ − z| = 2d inside the domain bounded by C and choose

h such that 0 < |h| < d.

For every point ζ on the curve C, it is outside the circle C2d so that

|ζ − z| > d and |ζ − z − h| > d.

Let M be the upper bound of |f(z)| on C and L is the total arc

length of C. Using the modulus inequality and together with the

above inequalities, we obtain
∣
∣
∣
∣
∣
∣

h

2πi

∮

C

f(ζ)

(ζ − z − h) (ζ − z)2
dζ

∣
∣
∣
∣
∣
∣

≤ |h|
2π

ML

d3
.
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In the limit h → 0, we observe that

lim
h→0

∣
∣
∣
∣
∣
∣

h

2πi

∮

C

f(ζ)

(ζ − z − h)(ζ − z)2
dζ

∣
∣
∣
∣
∣
∣

≤ lim
h→0

|h|
2π

ML

d3
= 0;

therefore,

f ′(z) = lim
h→0

f(z + h) − f(z)

h
=

1

2πi

∮

C

f(ζ)

(ζ − z)2
dζ.

By induction, we can show the general result

f(k)(z) =
k!

2πi

∮

C

f(ζ)

(ζ − z)k+1
dζ, k = 1,2,3, · · · ,

for any z inside C. This result is called the generalized Cauchy

Integral Formula.
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Theorem

If a function f(z) is analytic at a point, then its derivatives of all

orders are also analytic at the same point.

Proof

Suppose f is analytic at a point z0, then there exists a neighborhood

of z0 : |z − z0| < ǫ throughout which f is analytic. Take C0 to be

a positively oriented circle centered at z0 and with radius ǫ/2 such

that f is analytic inside and on C0. We then have

f ′′(z) =
1

πi

∮

C0

f(ζ)

(ζ − z)3
dζ

at each point z interior to C0. The existence of f ′′(z) throughout

the neighborhood: |z − z0| < ǫ/2 means that f ′ is analytic at z0.

Repeating the argument to the analytic function f ′, we can conclude

that f ′′ is analytic at z0.

53



Remarks

(i) The above theorem is limited to complex functions only. In

fact, no similar statement can be made on real differentiable

functions. It is easy to find examples of real valued function

f(x) such that f ′(x) exists but not so for f ′′(x) at certain points.

(ii) Suppose we express an analytic function inside a domain D as

f(z) = u(x, y) + iv(x, y), z = x + iy. Since its derivatives of

all orders are analytic functions, it then follows that the par-

tial derivatives of u(x, y) and v(x, y) of all orders exist and are

continuous.

54



To see this, since f ′′(z) exists, we consider

f ′′(z) =
∂2u

∂x2
+ i

∂2v

∂x2
=

∂2v

∂y∂x
− i

∂2u

∂y∂x

[

from f ′(z) =
∂u

∂x
+ i

∂v

∂x

]

or

f ′′(z) =
∂2v

∂x∂y
− i

∂2u

∂x∂y
= −∂2u

∂y2
− i

∂2v

∂y2

[

from f ′(z) =
∂v

∂y
− i

∂u

∂y

]

.

The continuity of f ′′ implies that all second order partials of u and

v are continuous at points where f is analytic. Continuing with the

process, we obtain the result.

The mere assumption of the analyticity of f(z) on and inside C is

sufficient to guarantee the existence of the derivatives of f(z) of all

orders. Moreover, the derivatives are all continuous on and inside

C.
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Example

Suppose f(z) is defined by the integral

f(z) =

∮

|ζ|=3

3ζ2 + 7ζ + 1

ζ − z
dζ,

find f ′(1 + i).

Solution

Setting k = 1 in the generalized Cauchy integral formula,

f ′(z) =

∮

|ζ|=3

3ζ2 + 7ζ + 1

(ζ − z)2
dζ

=

∮

|ζ|=3

3(ζ − z)2 + (6z + 7)(ζ − z) + 3z2 + 7z + 1

(ζ − z)2
dζ

=
∮

|ζ|=3
3 dζ + (6z + 7)

∮

|ζ|=3

1

ζ − z
dζ

+ (3z2 + 7z + 1)

∮

|ζ|=3

1

(ζ − z)2
dζ.
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The first integral equals zero since the integrand is entire (a constant

function). For the second integral, we observe that

∮

|ζ|=3

1

ζ − z
dζ =

{

0 if |z| > 3
2πi if |z| < 3

.

Furthermore, we deduce that the third integral is zero since

∮

|ζ|=3

1

(ζ − z)2
dζ =

d

dz

[
∮

|ζ|=3

1

ζ − z
dζ

]

= 0.

Combining the results, we have

f ′(z) = (2πi)(6z + 7) if |z| < 3.

We observe that 1 + i is inside |z| < 3 since |1 + i| =
√

2 < 3.

Therefore, we obtain

f ′(1 + i) = 2πi [6(1 + i) + 7] = −12π + 26πi.
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Example

Evaluate

∮

C

e2z

(z + 1)4
dz, where C is the circle |z| = 3.

Solution

Let f(z) = e2z and a = −1 in the Cauchy integral formula

f(n)(a) =
n!

2πi

∮

C

f(z)

(z − a)n+1
dz.

If n = 3, then f ′′′(z) = 8e2z and f ′′′(−1) = 8e−2. Hence,

8e−2 =
3!

2πi

∮
e2z

(z + 1)4
dz

from which we see the required integral has the value 8πie−2/3.
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Cauchy inequality

Suppose f(z) is analytic on and inside the disc |z−z0| = r, 0 < r < ∞,

and let

M(r) = max
|z−z0|=r

|f(z)|,

then

|f(k)(z)|
k!

≤ M(r)

rk
, k = 0,1,2, . . . .

This inequality follows from the generalized Cauchy integral formula.

59



Example

Suppose f(z) is analytic inside the unit circle |z| = 1 and

|f(z)| ≤ 1

1 − |z|
,

show that

|f(n)(0)| ≤ (n + 1)!

(

1 +
1

n

)n
.

Solution

We integrate f(ζ)
ζn+1 around the circle |ζ| = n

n+1, where f(ζ) is analytic

on and inside the circle. Using the generalized Cauchy integral

formula, we have

f(n)(0) =
n!

2πi

∮

|ζ|= n
n+1

f(ζ)

ζn+1
dζ
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=
n!

2πi

∫ 2π

0

f
(

n
n+1eiθ

)

(
n

n+1

)n+1
ei(n+1)θ

(
n

n + 1

)

eiθ i dθ

=

(

1 +
1

n

)n n!

2π

∫ 2π

0
f

(
n

n + 1
eiθ
)

e−inθ dθ.

The modulus |f(n)(0)| is bounded by

|f(n)(0)| ≤
(

1 +
1

n

)n n!

2π

∫ 2π

0

∣
∣
∣
∣
∣
∣

f

(
n

n + 1
eiθ
)
∣
∣
∣
∣
∣
∣

dθ

≤
(

1 +
1

n

)n n!

2π

∫ 2π

0

1

1 − n
n+1

dθ

=

(

1 +
1

n

)n n!

2π
[(n + 1) 2π]

= (n + 1)!

(

1 +
1

n

)n
.
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Gauss’ mean value theorem

If f(z) is analytic on and inside the disc Cr : |z − z0| = r, then

f(z0) =
1

2π

∫ 2π

0
f(z0 + reiθ) dθ.

Proof

From the Cauchy integral formula, we have

f(z0) =
1

2πi

∮

Cr

f(z)

z − z0
dz

=
1

2πi

∫ 2π

0

f(z0 + reiθ)ireiθ

reiθ
dθ

=
1

2π

∫ 2π

0
f(z0 + reiθ) dθ.

Write u(z) = Re f(z), it is known that u is harmonic. We have

u(z0) =
1

2π

∫ 2π

0
u(z0 + reiθ) dθ.
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Example

Find the mean value of x2 − y2 + x on the circle |z − i| = 2.

Solution

First, we observe that x2 − y2 + x = Re(z2 + z). The mean value

is defined by

1

2π

∫ 2π

0
u(i + 2eiθ) dθ,

where u(z) = Re(z2 + z). By Gauss’ mean value theorem,

1

2π

∫ 2π

0
u(i + 2eiθ) dθ = Re(z2 + z)

∣
∣
∣
∣
∣
∣
z=i

= Re(−1 + i) = −1.
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Maximum modulus theorem

If f(z) is analytic on and inside a domain D bounded by a simple

closed curve C, then the maximum value of |f(z)| occurs on C,

unless f(z) is a constant.

Example

Find the maximum value of |z2 + 3z − 1| in the disk |z| ≤ 1.

Solution

The triangle inequality gives

|z2 + 3z − 1| ≤ |z2| + 3|z| + 1 ≤ 5, for |z| ≤ 1.
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However, the maximum value is actually smaller than this, as the

following analysis shows.

The maximum of |z2+3z−1| must occur on the boundary of the disk

(|z| = 1). The latter can be parameterized as z = eit,0 ≤ t ≤ 2π;

whence

|z2 + 3z − 1|2 = (ei2t + 3eit − 1)(e−i2t + 3e−it − 1).

Expanding and gathering terms reduces this to (11−2 cos 2t), whose

maximum value is 13. The maximum value is obtained by taking

t = π/2 or t = 3π/2.

Thus the maximum value of |z2 + 3z − 1| is
√

13, which occurs at

z = ±i.
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Example

Let R denote the rectangular region:

0 ≤ x ≤ π, 0 ≤ y ≤ 1,

the modulus of the entire function

f(z) = sin z

has a maximum value in R that occurs on the boundary.

To verify the claim, consider

|f(z)| =
√

sin2 x + sinh2 y,

the term sin2 x is greatest at x = π/2 and the increasing function

sinh2 y is greatest when y = 1. The maximum value of |f(z)| in R
occurs at the boundary point

(
π

2
,1

)

and at no other point in R.
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Proof of the Maximum Modulus Theorem

Proof by contradiction. Suppose |f(z)| attains its maximum at α ∈
D. Using the Gauss Mean Value Theorem:

f(α) =
1

2π

∫ 2π

0
f(α + reiθ) dθ

where the neighborhood N(α; r) lies inside D. By the modulus in-

equality,

|f(α)| ≤ 1

2π

∫ 2π

0
|f(α + reiθ)| dθ.

Since |f(α)| is a maximum, then |f(α+reiθ)| ≤ |f(α)| for all θ, giving

1

2π

∫ 2π

0
|f(α + reiθ)| dθ ≤ 1

2π

∫ 2π

0
|f(α)| dθ = |f(α)|.

Combining the results, we obtain

∫ 2π

0
[|f(α)| − |f(α + reiθ)|]
︸ ︷︷ ︸

non-negative

dθ = 0.
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One then infer that |f(α)| = |f(α + reiθ)|. However, it may be

possible to have |f(α + reiθ)| < |f(α)| at isolated points. We argue

that this is not possible due to continuity of f(z).

If |f(α + reiθ)| < |f(α)| at a single point, then |f(α + reiθ)| < |f(α)|
for a finite arc on the circle, giving

1

2π

∫ 2π

0
|f(α + reiθ)| dθ < |f(α)|,

a contradiction. We can then deduce that

|f(α)| = |f(α + reiθ)|

for all points on the circle.

• Since r can be any value, |f(z)| is constant in any neighborhood

of α lying inside D.
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Finally, we need to show that |f(z)| is constant at any point in D.

Take any z ∈ D, we can join α to z by a curve lying completely

inside D. Taking a sequence of points z0 = α, z1, · · · , zn = z such

that each of these points is the center of a disc (plus its boundary)

lying completely inside D and zk is contained in the disk centered at

zk−1, k = 1,2, · · · , n.

We then have |f(z1)| = |f(α)|. Also z2 is contained inside the disc

centered at z1, so |f(z2)| = |f(z1)|, · · · , and deductively |f(z)| =

|f(α)|.

Lastly, we use the result that if |f(z)| = constant throughout D,

then f(z) = constant throughout D.
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Liouville’s Theorem

If f is entire and bounded in the complex plane, then f(z) is constant

throughout the plane.

Proof

It suffices to show that f ′(z) = 0 for all z ∈ C. We integrate
f(ζ)

(ζ − z)2

around CR : |ζ − z| = R. By the generalized Cauchy integral formula

f ′(z) =
1

2πi

∮

CR

f(ζ)

(ζ − z)2
dξ,

which remains valid for any sufficiently large R since f(z) is entire.

Since f(z) is bounded, so |f(z)| ≤ B for all z ∈ C,

|f ′(z)| = 1

2π

∣
∣
∣
∣
∣

∮

CR

f(ζ)

(ζ − z)2
dζ

∣
∣
∣
∣
∣
≤ 1

2π

B

R2
2πR =

B

R
.
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Now, B is independent of R and R can be arbitrarily large. The

inequality can hold for arbitrarily large values of R only if f ′(z) = 0.

Since the choice of z is arbitrary, this means that f ′(z) = 0 every-

where in the complex plane. Consequently, f is a constant function.

Remark

Non-constant entire functions must be unbounded. For example,

sin z and cos z are unbounded, unlike their real counterparts.
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