6. Residue calculus

Let z_{0} be an isolated singularity of $f(z)$, then there exists a certain deleted neighborhood $N_{\varepsilon}=\left\{z: 0<\left|z-z_{0}\right|<\varepsilon\right\}$ such that f is analytic everywhere inside N_{ε}. We define

$$
\operatorname{Res}\left(f, z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} f(z) d z
$$

where C is any simple closed contour around z_{0} and inside N_{ε}.

Since $f(z)$ admits a Laurent expansion inside N_{ε}, where

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} b_{n}\left(z-z_{0}\right)^{-n}
$$

then

$$
b_{1}=\frac{1}{2 \pi i} \oint_{C} f(z) d z=\operatorname{Res}\left(f, z_{0}\right)
$$

Example

$\operatorname{Res}\left(\frac{1}{\left(z-z_{0}\right)^{k}}, z_{0}\right)= \begin{cases}1 & \text { if } k=1 \\ 0 & \text { if } k \neq 1\end{cases}$
$\operatorname{Res}\left(e^{1 / z}, 0\right)=1$ since $e^{1 / z}=1+\frac{1}{1!} \frac{1}{z}+\frac{2}{2!} \frac{1}{z^{2}}+\cdots \quad,|z|>0$
$\operatorname{Res}\left(\frac{1}{(z-1)(z-2)}, 1\right)=\frac{1}{1-2}$ by the Cauchy integral formula.

Cauchy residue theorem

Let C be a simple closed contour inside which $f(z)$ is analytic everywhere except at the isolated singularities $z_{1}, z_{2}, \cdots, z_{n}$.

$$
\oint_{C} f(z) d z=2 \pi i\left[\operatorname{Res}\left(f, z_{1}\right)+\cdots+\operatorname{Res}\left(f, z_{n}\right)\right]
$$

This is a direct consequence of the Cauchy-Goursat Theorem.

Example

Evaluate the integral

$$
\oint_{|z|=1} \frac{z+1}{z^{2}} d z
$$

using
(i) direct contour integration,
(ii) the calculus of residues,
(iii) the primitive function $\log z-\frac{1}{z}$.

Solution
(i) On the unit circle, $z=e^{i \theta}$ and $d z=i e^{i \theta} d \theta$. We then have

$$
\oint_{|z|=1} \frac{z+1}{z^{2}} d z=\int_{0}^{2 \pi}\left(e^{-i \theta}+e^{-2 i \theta}\right) i e^{i \theta} d \theta=i \int_{0}^{2 \pi}\left(1+e^{-i \theta}\right) d \theta=2 \pi i .
$$

(ii) The integrand $(z+1) / z^{2}$ has a double pole at $z=0$. The Laurent expansion in a deleted neighborhood of $z=0$ is simply $\frac{1}{z}+\frac{1}{z^{2}}$, where the coefficient of $1 / z$ is seen to be 1 . We have

$$
\operatorname{Res}\left(\frac{z+1}{z^{2}}, 0\right)=1
$$

and so

$$
\oint_{|z|=1} \frac{z+1}{z^{2}} d z=2 \pi i \operatorname{Res}\left(\frac{z+1}{z^{2}}, 0\right)=2 \pi i
$$

(iii) When a closed contour moves around the origin (which is the branch point of the function $\log z$) in the anticlockwise direction, the increase in the value of $\arg z$ equals 2π. Therefore,

$$
\begin{aligned}
\oint_{|z|=1} \frac{z+1}{z^{2}} d z= & \text { change in value of } \ln |z|+i \arg z-\frac{1}{z} \text { in } \\
& \text { traversing one complete loop around the origin } \\
= & 2 \pi i
\end{aligned}
$$

Computational formula

Let z_{0} be a pole of order k. In a deleted neighborhood of z_{0},

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\frac{b_{1}}{z-z_{0}}+\cdots+\frac{b_{k}}{\left(z-z_{0}\right)^{k}}, \quad b_{k} \neq 0
$$

Consider

$$
g(z)=\left(z-z_{0}\right)^{k} f(z)
$$

the principal part of $g(z)$ vanishes since

$$
g(z)=b_{k}+b_{k-1}\left(z-z_{0}\right)+\cdots b_{1}\left(z-z_{0}\right)^{k-1}+\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n+k}
$$

By differenting ($k-1$) times, we obtain

$$
b_{1}=\operatorname{Res}\left(f, z_{0}\right)= \begin{cases}\frac{g^{(k-1)}\left(z_{0}\right)}{(k-1)!} & \text { if } g^{(k-1)}(z) \text { is analytic at } z_{0} \\ \lim _{z \rightarrow z_{0}} \frac{d^{k-1}}{d z^{k-1}}\left[\frac{\left(z-z_{0}\right)^{k} f(z)}{(k-1)!}\right] & \text { if } z_{0} \text { is a removable } \\ \text { singularity of } g^{(k-1)}(z)\end{cases}
$$

Simple pole

$$
k=1: \quad \operatorname{Res}\left(f, z_{0}\right)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)
$$

Suppose $f(z)=\frac{p(z)}{q(z)}$ where $p\left(z_{0}\right) \neq 0$ but $q\left(z_{0}\right)=0, q^{\prime}\left(z_{0}\right) \neq 0$.

$$
\begin{aligned}
\operatorname{Res}\left(f, z_{0}\right) & =\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z) \\
& =\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) \frac{p\left(z_{0}\right)+p^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\cdots}{q^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\frac{q^{\prime \prime}\left(z_{0}\right)}{2!}\left(z-z_{0}\right)^{2}+\cdots} \\
& =\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)}
\end{aligned}
$$

Example

Find the residue of

$$
f(z)=\frac{e^{1 / z}}{1-z}
$$

at all isolated singularities.
Solution
(i) There is a simple pole at $z=1$. Obviously

$$
\operatorname{Res}(f, 1)=\lim _{z \rightarrow 1}(z-1) f(z)=-\left.e^{1 / z}\right|_{z=1}=-e
$$

(ii) Since

$$
e^{1 / z}=1+\frac{1}{z}+\frac{1}{2!z^{2}}+\cdots
$$

has an essential singularity at $z=0$, so does $f(z)$. Consider

$$
\frac{e^{1 / z}}{1-z}=\left(1+z+z^{2}+\cdots\right)\left(1+\frac{1}{z}+\frac{1}{2!z^{2}}+\cdots\right), \quad \text { for } 0<|z|<1
$$

the coefficient of $1 / z$ is seen to be

$$
1+\frac{1}{2!}+\frac{1}{3!}+\cdots=e-1=\operatorname{Res}(f, 0)
$$

Example

Find the residue of

$$
f(z)=\frac{z^{1 / 2}}{z(z-2)^{2}}
$$

at all poles. Use the principal branch of the square root function $z^{1 / 2}$.

Solution

The point $z=0$ is not a simple pole since $z^{1 / 2}$ has a branch point at this value of z and this in turn causes $f(z)$ to have a branch point there. A branch point is not an isolated singularity.

However, $f(z)$ has a pole of order 2 at $z=2$. Note that

$$
\operatorname{Res}(f, 2)=\lim _{z \rightarrow 2} \frac{d}{d z}\left(\frac{z^{1 / 2}}{z}\right)=\lim _{z \rightarrow 2}\left(-\frac{z^{1 / 2}}{2 z^{2}}\right)=-\frac{1}{4 \sqrt{2}},
$$

where the principal branch of $2^{1 / 2}$ has been chosen (which is $\sqrt{2}$).

Example

Evaluate $\operatorname{Res}\left(g(z) f^{\prime}(z) / f(z), \alpha\right)$ if α is a pole of order n of $f(z), g(z)$ is analytic at α and $g(\alpha) \neq 0$.

Solution

Since α is a pole of order n of $f(z)$, there exists a deleted neighborhood $\{z: 0<|z-\alpha|<\varepsilon\}$ such that $f(z)$ admits the Laurent expansion:
$f(z)=\frac{b_{n}}{(z-\alpha)^{n}}+\frac{b_{n-1}}{(z-\alpha)^{n-1}}+\cdots+\frac{b_{1}}{(z-\alpha)}+\sum_{n=0}^{\infty} a_{n}(z-\alpha)^{n}, \quad b_{n} \neq 0$.
Within the annulus of convergence, we can perform termwise differentiation of the above series

$$
f^{\prime}(z)=\frac{-n b_{n}}{(z-\alpha)^{n+1}}-\frac{(n-1) b_{n}}{(z-\alpha)^{n}}-\cdots-\frac{b_{1}}{(z-\alpha)^{2}}+\sum_{n=0}^{\infty} n a_{n}(z-\alpha)^{n-1} .
$$

Provided that $g(\alpha) \neq 0$, it is seen that

$$
\begin{aligned}
& =\lim _{z \rightarrow \alpha} g(z) \frac{(z-\alpha)\left[\frac{-n b_{n}}{(z-\alpha)^{n+1}}-\frac{(n-1) b_{n}}{(z-\alpha)^{n}}-\cdots-\frac{b_{1}}{(z-\alpha)^{2}}+\sum_{n=0}^{\infty} n a_{n}(z-\alpha)^{n-1}\right]}{\frac{b_{n}}{(z-\alpha)^{n}}+\frac{b_{n-1}}{(z-\alpha)^{n-1}}+\cdots+\frac{b_{1}}{z-\alpha}+\sum_{n=0}^{\infty} a_{n}(z-\alpha)^{n}} \\
& =-n g(\alpha) \neq 0,
\end{aligned}
$$

so that α is a simple pole of $g(z) f^{\prime}(z) / f(z)$. Furthermore,

$$
\operatorname{Res}\left(g \frac{f^{\prime}}{f}, \alpha\right)=-n g(\alpha)
$$

Remark

When $g(\alpha)=0, \alpha$ becomes a removable singularity of $g f^{\prime} / f$.

Example

Suppose an even function $f(z)$ has a pole of order n at α. Within the deleted neighborhood $\{z: 0<|z-\alpha|<\varepsilon\}, f(z)$ admits the Laurent expansion

$$
f(z)=\frac{b_{n}}{(z-\alpha)^{n}}+\cdots+\frac{b_{1}}{(z-\alpha)}+\sum_{n=0}^{\infty} a_{n}(z-\alpha)^{n}, \quad b_{n} \neq 0
$$

Since $f(z)$ is even, $f(z)=f(-z)$ so that

$$
f(z)=f(-z)=\frac{b_{n}}{(-z-\alpha)^{n}}+\cdots+\frac{b_{1}}{(-z-\alpha)}+\sum_{n=0}^{\infty} a_{n}(-z-\alpha)^{n}
$$

which is valid within the deleted neighborhood $\{z: 0<|z+\alpha|<\varepsilon\}$. Hence, $-\alpha$ is a pole of order n of $f(-z)$. Note that

$$
\operatorname{Res}(f(z), \alpha)=b_{1} \quad \text { and } \quad \operatorname{Res}(f(z),-\alpha)=-b_{1}
$$

so that $\operatorname{Res}(f(z), \alpha)=-\operatorname{Res}(f(z),-\alpha)$. For an even function, if $z=0$ happens to be a pole, then $\operatorname{Res}(f, 0)=0$.

Example

$$
\oint_{|z|=2} \frac{\tan z}{z} d z=2 \pi i\left[\operatorname{Res}\left(\frac{\tan z}{z}, \frac{\pi}{2}\right)+\operatorname{Res}\left(\frac{\tan z}{z},-\frac{\pi}{2}\right)\right]
$$

since the singularity at $z=0$ is removable. Observe that $\frac{\pi}{2}$ is a simple pole and $\cos z=-\sin \left(z-\frac{\pi}{2}\right)$, we have

$$
\begin{aligned}
\operatorname{Res}\left(\frac{\tan z}{z}, \frac{\pi}{2}\right) & =\lim _{z \rightarrow \frac{\pi}{2}} \frac{\left(z-\frac{\pi}{2}\right) \tan z}{z} \\
& =\lim _{z \rightarrow \frac{\pi}{2}} \frac{\left(z-\frac{\pi}{2}\right) \sin z}{z\left[-\left(z-\frac{\pi}{2}\right)+\frac{\left(z-\frac{\pi}{2}\right)^{3}}{6}+\cdots\right]} \\
& =\frac{1}{-\frac{\pi}{2}}=-\frac{2}{\pi} .
\end{aligned}
$$

As $\tan z / z$ is even, we deduce that $\operatorname{Res}\left(\frac{\tan z}{z},-\frac{\pi}{2}\right)=\frac{2}{\pi}$ using the result from the previous example. We then have

$$
\oint_{|z|=2} \frac{\tan z}{z} d z=0
$$

Remark
Let $p(z)=\sin z / z, q(z)=\cos z$, and observe that $p\left(\frac{\pi}{2}\right)=\frac{2}{\pi}, q\left(\frac{\pi}{2}\right)=$ 0 and $q^{\prime}\left(\frac{\pi}{2}\right)=-1 \neq 0$, then

$$
\operatorname{Res}\left(\frac{\tan z}{z}, \frac{\pi}{2}\right)=p\left(\frac{\pi}{2}\right) / q^{\prime}\left(\frac{\pi}{2}\right)=\frac{-2}{\pi}
$$

Example

Evaluate

$$
\oint_{C} \frac{z^{2}}{\left(z^{2}+\pi^{2}\right)^{2} \sin z} d z
$$

Solution

$$
\lim _{z \rightarrow 0} \frac{z}{\sin z} \frac{z}{\left(z^{2}+\pi^{2}\right)^{2}}=\left(\lim _{z \rightarrow 0} \frac{z}{\sin z}\right)\left(\lim _{z \rightarrow 0} \frac{z}{\left(z^{2}+\pi^{2}\right)^{2}}\right)=0
$$

so that $z=0$ is a removable singularity.

It is easily seen that $z=i \pi$ is a pole of order 2 .

$$
\begin{aligned}
\operatorname{Res}(f, i \pi) & =\lim _{z \rightarrow i \pi} \frac{d}{d z}\left[(z-i \pi)^{2} f(z)\right] \\
& =\lim _{z \rightarrow i \pi} \frac{d}{d z}\left[\frac{z^{2}}{(z+i \pi)^{2} \sin z}\right] \\
& =\lim _{z \rightarrow i \pi} \frac{2 z(z+i \pi) \sin z-z^{2}[(z+i \pi) \cos z+2 \sin z]}{(z+i \pi)^{3} \sin ^{2} z} \\
& =\frac{2 \sinh \pi+(-\pi \cosh \pi-\sinh \pi)}{-4 \pi \sinh ^{2} \pi}=-\frac{1}{4 \pi \sinh \pi}+\frac{\cosh \pi}{4 \pi \sinh ^{2} \pi} .
\end{aligned}
$$

Recall that $\sin i \pi=i \sinh \pi$ and $\cos i \pi=\cosh \pi$. Hence,

$$
\begin{aligned}
\oint_{C} \frac{z^{2}}{\left(z^{2}+\pi^{2}\right)^{2} \sin z} d z & =2 \pi i \operatorname{Res}(f, i \pi) \\
& =\frac{i}{2}\left(-\frac{1}{\sinh \pi}+\frac{\cosh \pi}{\sinh ^{2} \pi}\right)
\end{aligned}
$$

Theorem

If a function f is analytic everywhere in the finite plane except for a finite number of singularities interior to a positively oriented simple closed contour C, then

$$
\oint_{C} f(z) d z=2 \pi i \operatorname{Res}\left(\frac{1}{z^{2}} f\left(\frac{1}{z}\right), 0\right) .
$$

We construct a circle $|z|=R_{1}$ which is large enough so that C is interior to it. If C_{0} denotes a positively oriented circle $|z|=R_{0}$, where $R_{0}>R_{1}$, then

$$
\begin{equation*}
f(z)=\sum_{n=-\infty}^{\infty} c_{n} z^{n}, \quad R_{1}<|z|<\infty \tag{A}
\end{equation*}
$$

where

$$
c_{n}=\frac{1}{2 \pi i} \oint_{C_{0}} \frac{f(z)}{z^{n+1}} d z \quad n=0, \pm 1, \pm 2, \cdots
$$

In particular,

$$
2 \pi i c_{-1}=\oint_{C_{0}} f(z) d z
$$

How to find c_{-1} ? First, we replace z by $1 / z$ in Eq. (A) such that the domain of validity is a deleted neighborhood of $z=0$.

Now

$$
\frac{1}{z^{2}} f\left(\frac{1}{z}\right)=\sum_{n=-\infty}^{\infty} \frac{c_{n}}{z^{n+2}}=\sum_{n=-\infty}^{\infty} \frac{c_{n-2}}{z^{n}}, \quad 0<|z|<\frac{1}{R_{1}}
$$

so that

$$
c_{-1}=\operatorname{Res}\left(\frac{1}{z^{2}} f\left(\frac{1}{z}\right), 0\right) .
$$

Remark

By convention, we may define the residue at infinity by

$$
\operatorname{Res}(f, \infty)=-\frac{1}{2 \pi i} \oint_{C} f(z) d z=-\operatorname{Res}\left(\frac{1}{z^{2}} f\left(\frac{1}{z}\right), 0\right)
$$

where all singularities in the finite plane are included inside C. With the choice of the negative sign, we have

$$
\sum_{\text {all }} \operatorname{Res}\left(f, z_{i}\right)+\operatorname{Res}(f, \infty)=0
$$

Example

Evaluate

$$
\oint_{|z|=2} \frac{5 z-2}{z(z-1)} d z .
$$

Solution
Write $f(z)=\frac{5 z-2}{z(z-1)}$. For $0<|z|<1$,

$$
\frac{5 z-2}{z(z-1)}=\frac{5 z-2}{z} \frac{-1}{1-z}=\left(5-\frac{2}{z}\right)\left(-1-z-z^{2}-\cdots\right)
$$

so that

$$
\operatorname{Res}(f, 0)=2
$$

For $0<|z-1|<1$,

$$
\begin{aligned}
\frac{5 z-2}{z(z-1)} & =\frac{5(z-1)+3}{z-1} \frac{1}{1+(z-1)} \\
& =\left(5+\frac{3}{z-1}\right)\left[1-(z-1)+(z-1)^{2}-(z-1)^{3}+\cdots\right]
\end{aligned}
$$

so that

$$
\operatorname{Res}(f, 1)=3
$$

Hence,

$$
\oint_{|z|=2} \frac{5 z-2}{z(z-1)} d z=2 \pi i[\operatorname{Res}(f, 0)+\operatorname{Res}(f, 1)]=10 \pi i .
$$

On the other hand, consider

$$
\begin{aligned}
\frac{1}{z^{2}} f\left(\frac{1}{z}\right) & =\frac{5-2 z}{z(1-z)}=\frac{5-2 z}{z} \frac{1}{1-z} \\
& =\left(\frac{5}{z}-2\right)\left(1+z+z^{2}+\cdots\right) \\
& =\frac{5}{z}+3+3 z, \quad 0<|z|<1
\end{aligned}
$$

so that

$$
\begin{aligned}
\oint_{|z|=2} \frac{5 z-2}{z(z-1)} d z & =-2 \pi i \operatorname{Res}(f, \infty) \\
& =2 \pi i \operatorname{Res}\left(\frac{1}{z^{2}} f\left(\frac{1}{z}\right), 0\right)=10 \pi i
\end{aligned}
$$

Evaluation of integrals using residue methods

A wide variety of real definite integrals can be evaluated effectively by the calculus of residues.

Integrals of trigonometric functions over [$0,2 \pi$]

We consider a real integral involving trigonometric functions of the form

$$
\int_{0}^{2 \pi} R(\cos \theta, \sin \theta) d \theta
$$

where $R(x, y)$ is a rational function defined inside the unit circle $|z|=1, z=x+i y$. The real integral can be converted into a contour integral around the unit circle by the following substitutions:

$$
\begin{aligned}
z & =e^{i \theta}, d z=i e^{i \theta} d \theta=i z d \theta \\
\cos \theta & =\frac{e^{i \theta}+e^{-i \theta}}{2}=\frac{1}{2}\left(z+\frac{1}{z}\right) \\
\sin \theta & =\frac{e^{i \theta}-e^{-i \theta}}{2 i}=\frac{1}{2 i}\left(z-\frac{1}{z}\right)
\end{aligned}
$$

The above integral can then be transformed into

$$
\begin{aligned}
& \int_{0}^{2 \pi} R(\cos \theta, \sin \theta) d \theta \\
= & \oint_{|z|=1} \frac{1}{i z} R\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2 i}\right) d z \\
= & 2 \pi i\left[\text { sum of residues of } \frac{1}{i z} R\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2 i}\right) \text { inside }|z|=1\right] .
\end{aligned}
$$

Example

Compute $I=\int_{0}^{2 \pi} \frac{\cos 2 \theta}{2+\cos \theta} d \theta$.
Solution

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{\cos 2 \theta}{2+\cos \theta} d \theta & =-i \oint_{|z|=1} \frac{\frac{1}{2}\left(z^{2}+\frac{1}{z^{2}}\right)}{2+\frac{1}{2}\left(z+\frac{1}{z}\right)} \frac{d z}{z} \\
& =-i \oint_{|z|=1} \frac{z^{4}+1}{z^{2}\left(z^{2}+4 z+1\right)} d z
\end{aligned}
$$

The integrand has a pole of order two at $z=0$. Also, the roots of $z^{2}+4 z+1=0$, namely, $z_{1}=-2-\sqrt{3}$ and $z_{2}=-2+\sqrt{3}$, are simple poles of the integrand.

Write $f(z)=\frac{z^{4}+1}{z^{2}\left(z^{2}+4 z+1\right)}$. Note that z_{1} is inside but z_{2} is outside $|z|=1$.

$$
\begin{aligned}
\operatorname{Res}(f, 0) & =\lim _{z \rightarrow 0} \frac{d}{d z} \frac{z^{4}+1}{z^{2}+4 z+1} \\
& =\lim _{z \rightarrow 0} \frac{3 z^{3}\left(z^{2}+4 z+1\right)-\left(z^{4}+1\right)(2 z+4)}{\left(z^{2}+4 z+1\right)^{2}}=-4
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Res}(f,-2+\sqrt{3}) & =\left.\frac{z^{4}+1}{z^{2}}\right|_{z=-2+\sqrt{3}} /\left.\frac{d}{d z}\left(z^{2}+4 z+1\right)\right|_{z=-2+\sqrt{3}} \\
& =\frac{(-2+\sqrt{3})^{4}+1}{(-2+\sqrt{3})^{2}} \cdot \frac{1}{2(-2+\sqrt{3})+4}=\frac{7}{\sqrt{3}} \\
I= & (-i) 2 \pi i[\operatorname{Res}(f, 0)+\operatorname{Res}(f,-2+\sqrt{3})] \\
& =2 \pi\left(-4+\frac{7}{\sqrt{3}}\right) .
\end{aligned}
$$

Example

Evaluate the integral

$$
I=\int_{0}^{\pi} \frac{1}{a-b \cos \theta} d \theta, \quad a>b>0
$$

Solution

Since the integrand is symmetric about $\theta=\pi$, we have

$$
I=\frac{1}{2} \int_{0}^{2 \pi} \frac{1}{a-b \cos \theta} d \theta=\int_{0}^{2 \pi} \frac{e^{i \theta}}{2 a e^{i \theta}-b\left(e^{2 i \theta}+1\right)} d \theta
$$

The real integral can be transformed into the contour integral

$$
I=i \oint_{|z|=1} \frac{1}{b z^{2}-2 a z+b} d z
$$

The integrand has two simple poles, which are given by the zeros of the denominator.

Let α denote the pole that is inside the unit circle, then the other pole will be $\frac{1}{\alpha}$. The two poles are found to be

$$
\alpha=\frac{a-\sqrt{a^{2}-b^{2}}}{b} \quad \text { and } \quad \frac{1}{\alpha}=\frac{a+\sqrt{a^{2}-b^{2}}}{b} .
$$

Since $a>b>0$, the two roots are distinct, and α is inside but $\frac{1}{\alpha}$ is outside the closed contour of integration. We then have

$$
\begin{aligned}
I & =-\frac{1}{i b} \oint_{|z|=1} \frac{1}{(z-\alpha)\left(z-\frac{1}{\alpha}\right)} d z \\
& =-\frac{2 \pi i}{i b} \operatorname{Res}\left(\frac{1}{(z-\alpha)\left(z-\frac{1}{\alpha}\right)}, \alpha\right) \\
& =-\frac{2 \pi i}{i b\left(\alpha-\frac{1}{\alpha}\right)}=\frac{\pi}{\sqrt{a^{2}-b^{2}}}
\end{aligned}
$$

Integral of rational functions

$$
\int_{-\infty}^{\infty} f(x) d x
$$

where

1. $f(z)$ is a rational function with no singularity on the real axis,
2. $\lim _{z \rightarrow \infty} z f(z)=0$.

It can be shown that
$\int_{-\infty}^{\infty} f(x) d x=2 \pi i$ [sum of residues at the poles of f in the upper half-plane].

Integrate $f(z)$ around a closed contour C that consists of the upper semi-circle C_{R} and the diameter from $-R$ to R.

By the Residue Theorem

$$
\begin{aligned}
\oint_{C} f(z) d z & =\int_{-R}^{R} f(x) d x+\int_{C_{R}} f(z) d z \\
& =2 \pi i[\text { sum of residues at the poles of } f \text { inside } C] .
\end{aligned}
$$

As $R \rightarrow \infty$, all the poles of f in the upper half-plane will be enclosed inside C. To establish the claim, it suffices to show that as $R \rightarrow \infty$,

$$
\lim _{R \rightarrow \infty} \oint_{C_{R}} f(z) d z=0
$$

The modulus of the above integral is estimated by the modulus inequality as follows:

$$
\begin{aligned}
\left|\int_{C_{R}} f(z) d z\right| & \leq \int_{0}^{\pi}\left|f\left(R e^{i \theta}\right)\right| R d \theta \\
& \leq \max _{0 \leq \theta \leq \pi}\left|f\left(R e^{i \theta}\right)\right| R \int_{0}^{\pi} d \theta \\
& =\max _{z \in C_{R}}|z f(z)| \pi
\end{aligned}
$$

which goes to zero as $R \rightarrow \infty$, since $\lim _{z \rightarrow \infty} z f(z)=0$.

Example

Evaluate the real integral

$$
\int_{-\infty}^{\infty} \frac{x^{4}}{1+x^{6}} d x
$$

by the residue method.

Solution

The complex function $f(z)=\frac{z^{4}}{1+z^{6}}$ has simple poles at $i, \frac{\sqrt{3}+i}{2}$ and $\frac{-\sqrt{3}+i}{2}$ in the upper half-plane, and it has no singularity on the real axis. The integrand observes the property $\lim _{z \rightarrow \infty} z f(z)=0$. We obtain
$\int_{-\infty}^{\infty} f(x) d x=2 \pi i\left[\operatorname{Res}(f, i)+\operatorname{Res}\left(f, \frac{\sqrt{3}+i}{2}\right)+\operatorname{Res}\left(f, \frac{-\sqrt{3}+i}{2}\right)\right]$.

The residue value at the simple poles are found to be

$$
\begin{gathered}
\operatorname{Res}(f, i)=\left.\frac{1}{6 z}\right|_{z=i}=-\frac{i}{6} \\
\operatorname{Res}\left(f, \frac{\sqrt{3}+i}{2}\right)=\left.\frac{1}{6 z}\right|_{z=\frac{\sqrt{3}+i}{2}}=\frac{\sqrt{3}-i}{12}
\end{gathered}
$$

and

$$
\operatorname{Res}\left(f, \frac{-\sqrt{3}+i}{2}\right)=\left.\frac{1}{6 z}\right|_{z=\frac{-\sqrt{3}+i}{2}}=-\frac{\sqrt{3}+i}{12}
$$

so that

$$
\int_{-\infty}^{\infty} \frac{x^{4}}{1+x^{6}} d x=2 \pi i\left(-\frac{i}{6}+\frac{\sqrt{3}-i}{12}-\frac{\sqrt{3}+i}{12}\right)=\frac{2 \pi}{3}
$$

Integrals involving multi-valued functions

Consider a real integral involving a fractional power function

$$
\int_{0}^{\infty} \frac{f(x)}{x^{\alpha}} d x, \quad 0<\alpha<1
$$

1. $f(z)$ is a rational function with no singularity on the positive real axis, including the origin.
2. $\lim _{z \rightarrow \infty} f(z)=0$.

We integrate $\phi(z)=\frac{f(z)}{z^{\alpha}}$ along the closed contour as shown.

The closed contour C consists of an infinitely large circle and an infinitesimal circle joined by line segments along the positive x-axis.
(i) line segment from ε to R along the upper side of the positive real axis: $z=x, \varepsilon \leq x \leq R$;
(ii) the outer large circle $C_{R}: z=R e^{i \theta}, \quad 0<\theta<2 \pi$;
(iii) line segment from R to ε along the lower side of the positive real axis

$$
z=x e^{2 \pi i}, \quad \varepsilon \leq x \leq R
$$

(iv) the inner infinitesimal circle C_{ε} in the clockwise direction

$$
z=\varepsilon e^{i \theta}, \quad 0<\theta<2 \pi
$$

Establish: $\lim _{R \rightarrow \infty} \int_{C_{R}} \phi(z)=0$ and $\lim _{\varepsilon \rightarrow 0} \int_{C_{\varepsilon}} \phi(z)=0$.

$$
\begin{aligned}
& \left|\int_{C_{R}} \phi(z) d z\right| \leq \int_{0}^{2 \pi}\left|\phi\left(R e^{i \theta}\right) R e^{i \theta}\right| d \theta \leq 2 \pi \max _{z \in C_{R}}|z \phi(z)| \\
& \left|\int_{C_{\varepsilon}} \phi(z) d z\right| \leq \int_{0}^{2 \pi}\left|\phi\left(\varepsilon e^{i \theta}\right)\right| \varepsilon d \theta \leq 2 \pi \max _{z \in C_{\epsilon}}|z \phi(z)| .
\end{aligned}
$$

It suffices to show that $z \phi(z) \rightarrow 0$ as either $z \rightarrow \infty$ or $z \rightarrow 0$.

1. Since $\lim _{z \rightarrow \infty} f(z)=0$ and $f(z)$ is a rational function, deg (denominator of $f(z)$) $\geq 1+$ deg (numerator of $f(z)$).
Further, $1-\alpha<1, z \phi(z)=z^{1-\alpha} f(z) \rightarrow 0$ as $z \rightarrow \infty$.
2. Since $f(z)$ is continuous at $z=0$ and $f(z)$ has no singularity at the origin, $z \phi(z)=z^{1-\alpha} f(z) \sim 0 \cdot f(0)=0$ as $z \rightarrow 0$.

The argument of the principal branch of z^{α} is chosen to be $0 \leq \theta<$ 2π, as dictated by the contour.

$$
\begin{aligned}
\oint_{C} \phi(z) d z= & \int_{C_{R}} \phi(z) d z+\int_{C_{\epsilon}} \phi(z) d z \\
& +\int_{\epsilon} \frac{f(x)}{x^{\alpha}} d x+\int_{R}^{\epsilon} \frac{f\left(x e^{2 \pi i}\right)}{x^{\alpha} e^{2 \alpha \pi i}} d x
\end{aligned}
$$

$=2 \pi i$ [sum of residues at all the isolated singularities of f enclosed inside the closed contour C].

By taking the limits $\epsilon \rightarrow 0$ and $R \rightarrow \infty$, the first two integrals vanish. The last integral can be expressed as

$$
-\int_{0}^{\infty} \frac{f(x)}{x^{\alpha} e^{2 \alpha \pi i}} d x=-e^{-2 \alpha \pi i} \int_{0}^{\infty} \frac{f(x)}{x^{\alpha}} d x
$$

Combining the results,

$$
\int_{0}^{\infty} \frac{f(x)}{x^{\alpha}} d x=\frac{2 \pi i}{1-e^{-2 \alpha \pi i}} \text { [sum of residues at all the isolated }
$$

Example

Evaluate $\int_{0}^{\infty} \frac{1}{(1+x) x^{\alpha}} d x, \quad 0<\alpha<1$.

Solution

$f(z)=\frac{1}{(1+z) z^{\alpha}}$ is multi-valued and has an isolated singularity at
$z=-1$. By the Residue Theorem,

$$
\begin{aligned}
& \oint_{C} \frac{1}{(1+z) z^{\alpha}} d z \\
= & \left(1-e^{-2 \alpha \pi i}\right) \int_{\epsilon}^{R} \frac{d x}{(1+x) x^{\alpha}}+\int_{C_{R}} \frac{d z}{(1+z) z^{\alpha}}+\int_{C_{\epsilon}} \frac{d z}{(1+z) z^{\alpha}} \\
= & 2 \pi i \operatorname{Res}\left(\frac{1}{(1+z) z^{\alpha}},-1\right)=\frac{2 \pi i}{e^{\alpha \pi i}} .
\end{aligned}
$$

The moduli of the third and fourth integrals are bounded by

$$
\begin{aligned}
& \left|\int_{C_{R}} \frac{1}{(1+z) z^{\alpha}} d z\right| \leq \frac{2 \pi R}{(R-1) R^{\alpha}} \sim R^{-\alpha} \rightarrow 0 \quad \text { as } \quad R \rightarrow \infty \\
& \left|\int_{C_{\epsilon}} \frac{1}{(1+z) z^{\alpha}} d z\right| \leq \frac{2 \pi \epsilon}{(1-\epsilon) \epsilon^{\alpha}} \sim \epsilon^{1-\alpha} \rightarrow 0 \quad \text { as } \quad \epsilon \rightarrow 0
\end{aligned}
$$

On taking the limits $R \rightarrow \infty$ and $\epsilon \rightarrow 0$, we obtain

$$
\left(1-e^{-2 \alpha \pi i}\right) \int_{0}^{\infty} \frac{1}{(1+x) x^{\alpha}} d x=\frac{2 \pi i}{e^{\alpha \pi i}}
$$

so

$$
\int_{0}^{\infty} \frac{1}{(1+x) x^{\alpha}} d x=\frac{2 \pi i}{e^{\alpha \pi i}\left(1-e^{-2 \alpha \pi i}\right)}=\frac{\pi}{\sin \alpha \pi}
$$

Example

Evaluate the real integral

$$
\int_{-\infty}^{\infty} \frac{e^{\alpha x}}{1+e^{x}} d x, \quad 0<\alpha<1
$$

Solution

The integrand function in its complex extension has infinitely many poles in the complex plane, namely, at $z=(2 k+1) \pi i, k$ is any integer. We choose the rectangular contour as shown

$$
\begin{array}{ll}
l_{1}: & y=0, \\
l_{2}: & -R=R, \\
l_{3}: & 0 \leq y \leq 2 \pi \\
l_{4}: & x=2 \pi, \\
l_{4}=-R, & -R \leq y \leq 2 \pi \\
\end{array}
$$

The chosen closed rectangular contour encloses only one simple pole at $z=\pi i$.

The only simple pole that is enclosed inside the closed contour C is $z=\pi i$. By the Residue Theorem, we have

$$
\begin{aligned}
\oint_{C} \frac{e^{\alpha z}}{1+e^{z}} d z= & \int_{-R}^{R} \frac{e^{\alpha x}}{1+e^{x}} d x+\int_{0}^{2 \pi} \frac{e^{\alpha(R+i y)}}{1+e^{R+i y}} i d y \\
& +\int_{R}^{-R} \frac{e^{\alpha(x+2 \pi i)}}{1+e^{x+2 \pi i}} d x+\int_{2 \pi}^{0} \frac{e^{\alpha(-R+i y)}}{1+e^{-R+i y}} i d y \\
= & 2 \pi i \operatorname{Res}\left(\frac{e^{\alpha z}}{1+e^{z}}, \pi i\right) \\
= & \left.2 \pi i \frac{e^{\alpha z}}{e^{z}}\right|_{z=\pi i}=-2 \pi i e^{\alpha \pi i}
\end{aligned}
$$

Consider the bounds on the moduli of the integrals as follows:

$$
\begin{aligned}
& \left|\int_{0}^{2 \pi} \frac{e^{\alpha(R+i y)}}{1+e^{R+i y}} i d y\right| \leq \int_{0}^{2 \pi} \frac{e^{\alpha R}}{e^{R}-1} d y \sim O\left(e^{-(1-\alpha) R}\right) \\
& \left|\int_{2 \pi}^{0} \frac{e^{\alpha(-R+i y)}}{1+e^{-R+i y}} i d y\right| \leq \int_{0}^{2 \pi} \frac{e^{-\alpha R}}{1-e^{-R}} d y \sim O\left(e^{-\alpha R}\right)
\end{aligned}
$$

As $0<\alpha<1$, both $e^{-(1-\alpha) R}$ and $e^{-\alpha R}$ tend to zero as R tends to infinity. Therefore, the second and the fourth integrals tend to zero as $R \rightarrow \infty$. On taking the limit $R \rightarrow \infty$, the sum of the first and third integrals becomes

$$
\left(1-e^{2 \alpha \pi i}\right) \int_{-\infty}^{\infty} \frac{e^{\alpha x}}{1+e^{x}} d x=-2 \pi i e^{\alpha \pi i}
$$

so

$$
\int_{-\infty}^{\infty} \frac{e^{\alpha x}}{1+e^{x}} d x=\frac{2 \pi i}{e^{\alpha \pi i}-e^{-\alpha \pi i}}=\frac{\pi}{\sin \alpha \pi}
$$

Example

Evaluate

$$
\int_{0}^{\infty} \frac{1}{1+x^{3}} d x
$$

Solution

Since the integrand is not an even function, it serves no purpose to extend the interval of integration to $(-\infty, \infty)$. Instead, we consider the branch cut integral

$$
\oint_{C} \frac{\log z}{1+z^{3}} d z
$$

where the branch cut is chosen to be along the positive real axis whereby $0 \leq \operatorname{Arg} z<2 \pi$. Now

$$
\begin{aligned}
\oint_{C} \frac{\log z}{1+z^{3}} d z= & \int_{\epsilon}^{R} \frac{\operatorname{Ln} x}{1+x^{3}} d x+\int_{R}^{\epsilon} \frac{\log \left(x e^{2 \pi i}\right)}{1+\left(x e^{2 \pi i}\right)^{3}} d x \\
& +\oint_{C_{R}} \frac{\log z}{1+z^{3}} d z+\oint_{C_{\epsilon}} \frac{\log z}{1+z^{3}} d z
\end{aligned}
$$

$$
=2 \pi i \sum_{j=1}^{3} \operatorname{Res}\left(\frac{\log z}{1+z^{3}}, z_{j}\right)
$$

where $z_{j}, j=1,2,3$ are the zeros of $1 /\left(1+z^{3}\right)$. Note that

$$
\begin{aligned}
\left|\oint_{C_{\epsilon}} \frac{\log z}{1+z^{3}} d z\right| & =O\left(\frac{\epsilon \ln \epsilon}{1}\right) \longrightarrow 0 \text { as } \epsilon \rightarrow 0 \\
\left|\oint_{C_{R}} \frac{\log z}{1+z^{3}} d z\right| & =O\left(\frac{R \ln R}{R^{3}}\right) \longrightarrow 0 \text { as } R \rightarrow \infty
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lim _{\substack{R \rightarrow \infty \\
\epsilon \rightarrow 0}} \oint_{C} \frac{\log z}{1+z^{3}} d z & =\int_{0}^{\infty} \frac{\ln x}{1+x^{3}} d x+\int_{\infty}^{0} \frac{\log \left(x e^{2 i \pi}\right)}{1+\left(x e^{2 i \pi}\right)^{3}} d x \\
& =-2 \pi i \int_{0}^{\infty} \frac{1}{1+x^{3}} d x
\end{aligned}
$$

thus giving

$$
\int_{0}^{\infty} \frac{1}{1+x^{3}} d x=-\sum_{j=1}^{3} \operatorname{Res}\left(\frac{\log z}{1+z^{3}}, z_{j}\right)
$$

The zeros of $1+z^{3}$ are $\alpha=e^{i \pi / 3}, \beta=e^{i \pi}$ and $\gamma=e^{5 \pi i / 3}$. Sum of residues is given by

$$
\begin{aligned}
& \operatorname{Res}\left(\frac{\log z}{1+z^{3}}, \alpha\right)+\operatorname{Res}\left(\frac{\log z}{1+z^{3}}, \beta\right)+\operatorname{Res}\left(\frac{\log z}{1+z^{3}}, \gamma\right) \\
= & \frac{\log \alpha}{(\alpha-\beta)(\alpha-\gamma)}+\frac{\log \beta}{(\beta-\alpha)(\beta-\gamma)}+\frac{\log \gamma}{(\gamma-\alpha)(\gamma-\beta)} \\
= & -i \frac{\left[\frac{\pi}{3}(\beta-\gamma)+\pi(\gamma-\alpha)+\frac{5 \pi}{3}(\alpha-\beta)\right]}{(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)}=-\frac{2 \pi}{3 \sqrt{3}} .
\end{aligned}
$$

Hence,

$$
\int_{0}^{\infty} \frac{1}{1+x^{3}} d x=\frac{2 \pi}{3 \sqrt{3}}
$$

Evaluation of Fourier integrals

A Fourier integral is of the form

$$
\int_{-\infty}^{\infty} e^{i m x} f(x) d x, \quad m>0
$$

1. $\lim _{z \rightarrow \infty} f(z)=0$,
2. $f(z)$ has no singularity along the real axis.

Remarks

1. The assumption $m>0$ is not strictly essential. The evaluation method works even when m is negative or pure imaginary.
2. When $f(z)$ has singularities on the real axis, the Cauchy principal value of the integral is considered.

Jordan Lemma

We consider the modulus of the integral for $\lambda>0$

$$
\begin{aligned}
\left|\int_{C_{R}} f(z) e^{i \lambda z} d z\right| & \leq \int_{0}^{\pi}\left|f\left(R e^{i \theta}\right)\right|\left|e^{i \lambda R e^{i \theta}}\right| R d \theta \\
& \leq \max _{z \in C_{R}}|f(z)| R \int_{0}^{\pi} e^{-\lambda R \sin \theta} d \theta \\
& =2 R \max _{z \in C_{R}}|f(z)| \int_{0}^{\frac{\pi}{2}} e^{-\lambda R \sin \theta} d \theta \\
& \leq 2 R \max _{z \in C_{R}}|f(z)| \int_{0}^{\frac{\pi}{2}} e^{-\lambda R \frac{2 \theta}{\pi}} d \theta \\
& =2 R \max _{z \in C_{R}}|f(z)| \frac{\pi}{2 R \lambda}\left(1-e^{-\lambda R}\right)
\end{aligned}
$$

which tends to 0 as $R \rightarrow \infty$, given that $f(z) \rightarrow 0$ as $R \rightarrow \infty$.

To evaluate the Fourier integral, we integrate $e^{i m z} f(z)$ along the closed contour C that consists of the upper half-circle C_{R} and the diameter from $-R$ to R along the real axis. We then have

$$
\oint_{C} e^{i m z} f(z) d z=\int_{-R}^{R} e^{i m x} f(x) d x+\int_{C_{R}} e^{i m z} f(z) d z
$$

Taking the limit $R \rightarrow \infty$, the integral over C_{R} vanishes by virtue of the Jordan Lemma.

Lastly, we apply the Residue Theorem to obtain $\int_{-\infty}^{\infty} e^{i m x} f(x) d x=2 \pi i$ [sum of residues at all the isolated singularities of f in the upper half-plane]
since C encloses all the singularities of f in the upper half-plane as $R \rightarrow \infty$.

Example

Evaluate the Fourier integral

$$
\int_{-\infty}^{\infty} \frac{\sin 2 x}{x^{2}+x+1} d x
$$

Solution

It is easy to check that $f(z)=\frac{1}{z^{2}+z+1}$ has no singularity along the real axis and $\lim _{z \rightarrow \infty} \frac{1}{z^{2}+z+1}=0$. The integrand has two simple poles, namely, $z=e^{\frac{2 \pi i}{3}}$ in the upper half-plane and $e^{-\frac{2 \pi i}{3}}$ in the lower half-plane. By virtue of the Jordan Lemma, we have
$\int_{-\infty}^{\infty} \frac{\sin 2 x}{x^{2}+x+1} d x=\operatorname{Im} \int_{-\infty}^{\infty} \frac{e^{2 i x}}{x^{2}+x+1} d x=\operatorname{Im} \oint_{C} \frac{e^{2 i z}}{z^{2}+z+1} d z$, where C is the union of the infinitely large upper semi-circle and its diameter along the real axis.

Note that

$$
\begin{aligned}
\oint_{C} \frac{e^{2 i z}}{z^{2}+z+1} d z & =2 \pi i \operatorname{Res}\left(\frac{e^{2 i z}}{z^{2}+z+1}, e^{\frac{2 \pi i}{3}}\right) \\
& =\left.2 \pi i \frac{e^{2 i z}}{2 z+1}\right|_{z=e^{\frac{2 \pi i}{3}}}=2 \pi i \frac{e^{2 i e^{\frac{2 \pi i}{3}}}}{2 e^{\frac{2 \pi i}{3}}+1}
\end{aligned}
$$

Hence,

$$
\int_{-\infty}^{\infty} \frac{\sin 2 x}{x^{2}+x+1} d x=\operatorname{Im}\left(2 \pi i \frac{e^{2 i e^{\frac{2 \pi i}{3}}}}{2 e^{\frac{2 \pi i}{3}}+1}\right)=-\frac{2}{\sqrt{3}} \pi e^{-\sqrt{3}} \sin 1
$$

Example

Show that

$$
\int_{0}^{\infty} \sin x^{2} d x=\int_{0}^{\infty} \cos x^{2} d x=\frac{1}{2} \sqrt{\frac{\pi}{2}}
$$

Solution

$$
\begin{aligned}
0=\oint_{C} e^{i z^{2}} d z= & \int_{0}^{R} e^{i x^{2}} d x+\int_{0}^{\frac{\pi}{4}} e^{i R^{2} e^{2 i \theta}} i R e^{i \theta} d \theta \\
& +\int_{R}^{0} e^{i r^{2} e^{i \pi / 2}} e^{i \pi / 4} d r
\end{aligned}
$$

Rearranging

$$
\int_{0}^{R}\left(\cos x^{2}+i \sin x^{2}\right) d x=e^{i \pi / 4} \int_{0}^{R} e^{-r^{2}} d r-\int_{0}^{\pi / 4} e^{i R^{2} \cos 2 \theta-R^{2} \sin 2 \theta} i R e^{i \theta} d \theta
$$

Next, we take the limit $R \rightarrow \infty$. We recall the well-known result

$$
e^{i \frac{\pi}{4}} \int_{0}^{\infty} e^{-r^{2}} d r=\frac{\sqrt{\pi}}{2} e^{i \pi / 4}=\frac{1}{2} \sqrt{\frac{\pi}{2}}+\frac{i}{2} \sqrt{\frac{\pi}{2}}
$$

Also, we use the transformation $2 \theta=\phi$ and observe $\sin \phi \geq \frac{2 \phi}{\pi}, 0 \leq \phi \leq \frac{\pi}{2}$, to obtain

$$
\begin{aligned}
\left|\int_{0}^{\pi / 4} e^{i R^{2} \cos 2 \theta-R^{2} \sin ^{2} \theta} i R e^{i \theta} d \theta\right| & \leq \int_{0}^{\pi / 4} e^{-R^{2} \sin 2 \theta} R d \theta \\
& =\frac{R}{2} \int_{0}^{\pi / 2} e^{-R^{2} \sin \phi} d \phi \\
& \leq \frac{R}{2} \int_{0}^{\pi / 2} e^{-2 R^{2} \phi / \pi} d \phi \\
& =\frac{\pi}{4 R}\left(1-e^{-R^{2}}\right) \longrightarrow 0 \text { as } R \rightarrow \infty
\end{aligned}
$$

We then obtain

$$
\int_{0}^{\infty}\left(\cos x^{2}+i \sin x^{2}\right) d x=\frac{1}{2} \sqrt{\frac{\pi}{2}}+i \frac{1}{2} \sqrt{\frac{\pi}{2}}
$$

so that

$$
\int_{0}^{\infty} \cos x^{2} d x=\int_{0}^{\infty} \sin x^{2} d x=\frac{1}{2} \sqrt{\frac{\pi}{2}}
$$

Example

Evaluate $\int_{0}^{\infty} \frac{\ln \left(x^{2}+1\right)}{x^{2}+1} d x$.
Hint: Use $\log (i-x)+\log (i+x)=\log \left(i^{2}-x^{2}\right)=\ln \left(x^{2}+1\right)+\pi i$.

Solution

Consider $\oint_{C} \frac{\log (z+i)}{z^{2}+1} d z$ around C as shown.

The only pole of $\frac{\log (z+i)}{z^{2}+1}$ in the upper half plane is the simple pole $z=i$. Consider

$$
\begin{aligned}
& \quad 2 \pi i \operatorname{Res}\left(\frac{\log (z+i)}{z^{2}+1}, i\right) \\
& =\quad 2 \pi i \lim _{z \rightarrow i} \frac{(z-i) \log (z+i)}{(z-i)(z+i)}=\pi \log 2 i=\pi \ln 2+\frac{\pi^{2}}{2} i . \\
& \int_{C_{R}} \frac{\log (z+i)}{z^{2}+1} d z=O\left(\frac{(\ln R) R}{R^{2}}\right) \rightarrow 0 \quad \text { as } \quad R \rightarrow \infty \\
& \int_{0}^{R} \frac{\log (i-x)}{x^{2}+1} d x+\int_{0}^{R} \frac{\log (x+i)}{x^{2}+1} d x+\int_{C_{R}} \frac{\log (z+i)}{z^{2}+1} d z=\pi \ln 2+\frac{\pi^{2}}{2} i \\
& \text { and } \quad \log (i-x)+\log (i+x)=\ln \left(x^{2}+1\right)+\pi i .
\end{aligned}
$$

From $\int_{0}^{\infty} \frac{\ln \left(x^{2}+1\right)}{x^{2}+1} d x+\int_{0}^{\infty} \frac{\pi i}{x^{2}+1} d x=\pi \ln 2+\frac{\pi^{2}}{2} i$ and $\int_{0}^{\infty} \frac{d x}{1+x^{2}}=\frac{\pi}{2}$ so that

$$
\int_{0}^{\infty} \frac{\ln \left(x^{2}+1\right)}{x^{2}+1} d x=\pi \ln 2 .
$$

Cauchy principal value of an improper integral

Suppose a real function $f(x)$ is continuous everywhere in the interval $[a, b]$ except at a point x_{0} inside the interval. The integral of $f(x)$ over the interval $[a, b]$ is an improper integral, which may be defined as

$$
\int_{a}^{b} f(x) d x=\lim _{\epsilon_{1}, \epsilon_{2} \rightarrow 0}\left[\int_{a}^{x_{0}-\epsilon_{1}} f(x) d x+\int_{x_{0}+\epsilon_{2}}^{b} f(x) d x\right], \quad \epsilon_{1}, \epsilon_{2}>0
$$

In many cases, the above limit exists only when $\epsilon_{1}=\epsilon_{2}$, and does not exist otherwise.

Example

Consider the following improper integral

$$
\int_{-1}^{2} \frac{1}{x-1} d x
$$

show that the Cauchy principal value of the integral exists, then find the principal value.

Solution
Principal value of $\int_{1}^{2} \frac{1}{x-1} d x$ exists if the following limit exists.

$$
\begin{aligned}
& \lim _{\epsilon \rightarrow 0^{+}}\left[\int_{-1}^{1-\epsilon} \frac{1}{x-1} d x+\int_{1+\epsilon}^{2} \frac{1}{x-1} d x\right] \\
= & \lim _{\epsilon \rightarrow 0^{+}}\left[\left.\ln |x-1|\right|_{-1} ^{1-\epsilon}+\left.\ln |x-1|\right|_{1+\epsilon} ^{2}\right] \\
= & \lim _{\epsilon \rightarrow 0^{+}}[(\ln \epsilon-\ln 2)+(\ln 1-\ln \epsilon)]=-\ln 2 .
\end{aligned}
$$

Hence, the principal value of $\int_{-1}^{2} \frac{1}{x-1} d x$ exists and its value is - In 2.

Lemma

If f has a simple pole at $z=c$ and T_{r} is the circular arc defined by

$$
T_{r}: z=c+r e^{i \theta} \quad\left(\theta_{1} \leq \theta \leq \theta_{2}\right)
$$

then

$$
\lim _{r \rightarrow 0^{+}} \int_{T_{r}} f(z) d z=i\left(\theta_{2}-\theta_{1}\right) \operatorname{Res}(f, c)
$$

In particular, for the semi-circular arc S_{r}

$$
\lim _{r \rightarrow 0^{+}} \int_{S_{r}} f(z) d z=i \pi \operatorname{Res}(f, c)
$$

Proof

Since f has a simple pole at c,

$$
f(z)=\frac{a_{-1}}{z-c}+\underbrace{\sum_{k=0}^{\infty} a_{k}(z-c)^{k}}_{g(z)}, \quad 0<|z-c|<R \quad \text { for some } R \text {. }
$$

For $0<r<R, \int_{T_{r}} f(z) d z=a_{-1} \int_{T_{r}} \frac{1}{z-c} d z+\int_{T_{r}} g(z) d z$.

Since $g(z)$ is analytic at c, it is bounded in some neighborhood of $z=c$. That is,

$$
|g(z)| \leq M \quad \text { for } \quad|z-c|<r .
$$

For $0<r<R$,

$$
\left|\int_{T_{r}} g(z) d z\right| \leq M \cdot \text { arc length of } T_{r}=M r\left(\theta_{2}-\theta_{1}\right)
$$

and so

$$
\lim _{r \rightarrow 0^{+}} \int_{T_{r}} g(z) d z=0
$$

Finally,

$$
\int_{T_{r}} \frac{1}{z-c} d z=\int_{\theta_{1}}^{\theta_{2}} \frac{1}{r e^{i \theta}} i r e^{i \theta} d \theta=i \int_{\theta_{1}}^{\theta_{2}} d \theta=i\left(\theta_{2}-\theta_{1}\right)
$$

so that

$$
\lim _{r \rightarrow 0^{+}} \int_{T_{r}} f(z) d z=a_{-1} i\left(\theta_{2}-\theta_{1}\right)=\operatorname{Res}(f, c) i\left(\theta_{2}-\theta_{1}\right) .
$$

Example

Compute the principal value of

$$
\int_{-\infty}^{\infty} \frac{x e^{2 i x}}{x^{2}-1} d x
$$

Solution

The improper integral has singularities at $x= \pm 1$. The principal value of the integral is defined to be

$$
\lim _{\substack{R \rightarrow \infty \\ r_{1}, r_{2} \rightarrow 0^{+}}}\left(\int_{-R}^{-1-r_{1}}+\int_{-1+r_{1}}^{1-r_{2}}+\int_{1+r_{2}}^{R}\right) \frac{x e^{2 i x}}{x^{2}-1} d x
$$

Let

$$
\begin{aligned}
I_{1} & =\int_{S_{r_{1}}} \frac{z e^{2 i z}}{z^{2}-1} d z \\
I_{2} & =\int_{S_{r_{2}}} \frac{z e^{2 i z}}{z^{2}-1} d z \\
I_{R} & =\int_{C_{R}} \frac{z e^{2 i z}}{z^{2}-1} d z
\end{aligned}
$$

Now, $f(z)=\frac{z e^{2 i z}}{z^{2}-1}$ is analytic inside the above closed contour.
By the Cauchy Integral Theorem

$$
\left(\int_{-R}^{-1-r_{1}}+\int_{-1+r_{1}}^{1-r_{2}}+\int_{1+r_{2}}^{R}\right) \frac{x e^{2 i x}}{x^{2}-1} d x+I_{1}+I_{2}+I_{R}=0
$$

By the Jordan Lemma, and since $\frac{z}{z^{2}-1} \rightarrow 0$ as $z \rightarrow \infty$, so

$$
\lim _{R \rightarrow \infty} I_{R}=0
$$

Since $z= \pm 1$ are simple poles of f,

$$
\begin{aligned}
\lim _{r_{1} \rightarrow 0^{+}} I_{1} & =-i \pi \operatorname{Res}(f,-1)=-i \pi \lim _{z \rightarrow-1}(z+1) f(z) \\
& =(-i \pi) e^{-2 i} / 2
\end{aligned}
$$

Similarly, $\lim _{r_{2} \rightarrow 0^{+}} I_{2}=-i \pi \operatorname{Res}(f, 1)=\frac{-i \pi e^{2 i}}{2}$.

$$
P V \int_{-\infty}^{\infty} \frac{x e^{2 i x}}{x^{2}-1} d x=\frac{i \pi e^{-2 i}}{2}+\frac{i \pi e^{2 i}}{2}=i \pi \cos 2
$$

Poisson integral formula

$$
f(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f(s)}{s-z} d s
$$

Here, C is the circle with radius r_{0} centered at the origin. Write $s=r_{0} e^{i \phi}$ and $z=r e^{i \theta}, r>r_{0}$. We choose z_{1} such that $\left|z_{1}\right||z|=r_{0}^{2}$ and both z_{1} and z lie on the same ray so that

$$
z_{1}=\frac{r_{0}^{2}}{r} e^{i \theta}=\frac{r_{0}^{2}}{\bar{z}}=\frac{s \bar{s}}{\bar{z}}
$$

Since z_{1} lies outside C, we have

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \oint_{C} f(s)\left(\frac{1}{s-z}-\frac{1}{s-z_{1}}\right) d s \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\frac{s}{s-z}-\frac{s}{s-z_{1}}\right) f(s) d \phi
\end{aligned}
$$

The integrand can be expressed as

$$
\frac{s}{s-z}-\frac{1}{1-\bar{s} / \bar{z}}=\frac{s}{s-z}+\frac{\bar{z}}{\bar{s}-\bar{z}}=\frac{r_{0}^{2}-r^{2}}{|s-z|^{2}}
$$

and so $f\left(r e^{i \theta}\right)=\frac{r_{0}^{2}-r^{2}}{2 \pi} \int_{0}^{2 \pi} \frac{f\left(r_{0} e^{i \theta}\right)}{|s-z|^{2}} d \phi$.

Now $|s-z|^{2}=r_{0}^{2}-2 r_{0} r \cos (\phi-\theta)+r^{2}>0$ (from the cosine rule). Taking the real part of f, where $f=u+i v$, we obtain

$$
u(r, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \underbrace{\frac{r_{0}^{2}-r^{2}}{r_{0}^{2}-2 r_{0} r \cos (\phi-\theta)+r^{2}}}_{P\left(r_{0}, r, \phi-\theta\right)} u\left(r_{0}, \phi\right) d \phi, \quad r<r_{0}
$$

Knowing $u\left(r_{0}, \phi\right)$ on the boundary, $u(r, \theta)$ is uniquely determined.

The kernel function $P\left(r_{0}, r, \phi-\theta\right)$ is called the Poisson kernel.

$$
\begin{aligned}
P\left(r_{0}, r, \phi-\theta\right) & =\frac{r_{0}^{2}-r^{2}}{|s-z|^{2}}=\operatorname{Re}\left(\frac{s}{s-z}+\frac{\bar{z}}{\overline{s-\bar{z}}}\right) \\
& =\operatorname{Re}\left(\frac{s}{s-z}+\frac{z}{s-z}\right) \\
& =\operatorname{Re}\left(\frac{s+z}{s-z}\right) \text { which is harmonic for }|z|<r_{0}
\end{aligned}
$$

