
6. Residue calculus

Let z0 be an isolated singularity of f(z), then there exists a certain

deleted neighborhood Nε = {z : 0 < |z − z0| < ε} such that f is

analytic everywhere inside Nε. We define

Res (f, z0) =
1

2πi

∮

C
f(z) dz,

where C is any simple closed contour around z0 and inside Nε.
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Since f(z) admits a Laurent expansion inside Nε, where

f(z) =
∞∑

n=0

an(z − z0)
n +

∞∑

n=1

bn(z − z0)
−n,

then

b1 =
1

2πi

∮

C
f(z) dz = Res (f, z0).

Example

Res

(

1

(z − z0)k
, z0

)

=

{

1 if k = 1
0 if k 6= 1

Res (e1/z,0) = 1 since e1/z = 1 +
1

1!

1

z
+

2

2!

1

z2
+ · · · , |z| > 0

Res

(

1

(z − 1)(z − 2)
,1

)

=
1

1 − 2
by the Cauchy integral formula.
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Cauchy residue theorem

Let C be a simple closed contour inside which f(z) is analytic ev-

erywhere except at the isolated singularities z1, z2, · · · , zn.
∮

C
f(z) dz = 2πi[Res (f, z1) + · · · + Res (f, zn)].

This is a direct consequence of the Cauchy-Goursat Theorem.

3



Example

Evaluate the integral
∮

|z|=1

z + 1

z2
dz

using

(i) direct contour integration,

(ii) the calculus of residues,

(iii) the primitive function log z − 1

z
.

Solution

(i) On the unit circle, z = eiθ and dz = ieiθ dθ. We then have

∮

|z|=1

z + 1

z2
dz =

∫ 2π

0
(e−iθ+e−2iθ)ieiθ dθ = i

∫ 2π

0
(1+e−iθ) dθ = 2πi.
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(ii) The integrand (z + 1)/z2 has a double pole at z = 0. The

Laurent expansion in a deleted neighborhood of z = 0 is simply
1

z
+

1

z2
, where the coefficient of 1/z is seen to be 1. We have

Res

(
z + 1

z2
,0

)

= 1,

and so
∮

|z|=1

z + 1

z2
dz = 2πiRes

(
z + 1

z2
,0

)

= 2πi.

(iii) When a closed contour moves around the origin (which is the

branch point of the function log z) in the anticlockwise direction,

the increase in the value of arg z equals 2π. Therefore,
∮

|z|=1

z + 1

z2
dz = change in value of ln |z| + iarg z − 1

z in

traversing one complete loop around the origin

= 2πi.

5



Computational formula

Let z0 be a pole of order k. In a deleted neighborhood of z0,

f(z) =
∞∑

n=0

an(z − z0)
n +

b1
z − z0

+ · · · + bk

(z − z0)k
, bk 6= 0.

Consider

g(z) = (z − z0)
kf(z).

the principal part of g(z) vanishes since

g(z) = bk + bk−1(z − z0) + · · · b1(z − z0)
k−1 +

∞∑

n=0

an(z − z0)
n+k.

By differenting (k − 1) times, we obtain

b1 = Res (f, z0) =







g(k−1)(z0)
(k−1)!

if g(k−1)(z) is analytic at z0

lim
z→z0

dk−1

dzk−1

[

(z − z0)
kf(z)

(k − 1)!

]

if z0 is a removable

singularity of g(k−1)(z)
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Simple pole

k = 1 : Res (f, z0) = lim
z→z0

(z − z0)f(z).

Suppose f(z) =
p(z)

q(z)
where p(z0) 6= 0 but q(z0) = 0, q′(z0) 6= 0.

Res (f, z0) = lim
z→z0

(z − z0)f(z)

= lim
z→z0

(z − z0)
p(z0) + p′(z0)(z − z0) + · · ·

q′(z0)(z − z0) + q′′(z0)
2! (z − z0)2 + · · ·

=
p(z0)

q′(z0)
.
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Example
Find the residue of

f(z) =
e1/z

1 − z

at all isolated singularities.

Solution

(i) There is a simple pole at z = 1. Obviously

Res (f,1) = lim
z→1

(z − 1)f(z) = −e1/z

∣
∣
∣
∣
∣
z=1

= −e.

(ii) Since

e1/z = 1 +
1

z
+

1

2!z2
+ · · ·

has an essential singularity at z = 0, so does f(z). Consider

e1/z

1 − z
= (1+z+z2+ · · · )

(

1 +
1

z
+

1

2!z2
+ · · ·

)

, for 0 < |z| < 1,

the coefficient of 1/z is seen to be

1 +
1

2!
+

1

3!
+ · · · = e − 1 = Res (f,0).
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Example

Find the residue of

f(z) =
z1/2

z(z − 2)2

at all poles. Use the principal branch of the square root function

z1/2.

Solution

The point z = 0 is not a simple pole since z1/2 has a branch point

at this value of z and this in turn causes f(z) to have a branch point

there. A branch point is not an isolated singularity.

However, f(z) has a pole of order 2 at z = 2. Note that

Res (f,2) = lim
z→2

d

dz

(

z1/2

z

)

= lim
z→2

(

−z1/2

2z2

)

= − 1

4
√

2
,

where the principal branch of 21/2 has been chosen (which is
√

2).
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Example

Evaluate Res (g(z)f ′(z)/f(z), α) if α is a pole of order n of f(z), g(z)

is analytic at α and g(α) 6= 0.

Solution

Since α is a pole of order n of f(z), there exists a deleted neigh-

borhood {z : 0 < |z − α| < ε} such that f(z) admits the Laurent

expansion:

f(z) =
bn

(z − α)n
+

bn−1

(z − α)n−1
+· · ·+ b1

(z − α)
+

∞∑

n=0

an(z−α)n, bn 6= 0.

Within the annulus of convergence, we can perform termwise dif-

ferentiation of the above series
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f ′(z) =
−nbn

(z − α)n+1
− (n − 1)bn

(z − α)n
− · · · − b1

(z − α)2
+

∞∑

n=0

nan(z − α)n−1.

Provided that g(α) 6= 0, it is seen that

= lim
z→α

g(z)
(z − α)

[

−nbn
(z−α)n+1 − (n−1)bn

(z−α)n − · · · − b1
(z−α)2

+
∑∞

n=0 nan(z − α)n−1
]

bn
(z−α)n +

bn−1

(z−α)n−1 + · · · + b1
z−α +

∑∞
n=0 an(z − α)n

= −ng(α) 6= 0,

so that α is a simple pole of g(z)f ′(z)/f(z). Furthermore,

Res

(

g
f ′

f
, α

)

= −ng(α).

Remark

When g(α) = 0, α becomes a removable singularity of gf ′/f .
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Example

Suppose an even function f(z) has a pole of order n at α. Within the

deleted neighborhood {z : 0 < |z − α| < ε}, f(z) admits the Laurent

expansion

f(z) =
bn

(z − α)n
+ · · · + b1

(z − α)
+

∞∑

n=0

an(z − α)n, bn 6= 0.

Since f(z) is even, f(z) = f(−z) so that

f(z) = f(−z) =
bn

(−z − α)n
+ · · · + b1

(−z − α)
+

∞∑

n=0

an(−z − α)n,

which is valid within the deleted neighborhood {z : 0 < |z + α| < ε}.
Hence, −α is a pole of order n of f(−z). Note that

Res (f(z), α) = b1 and Res (f(z),−α) = −b1

so that Res (f(z), α) = −Res (f(z),−α). For an even function, if

z = 0 happens to be a pole, then Res (f, 0) = 0.
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Example

∮

|z|=2

tan z

z
dz = 2πi

[

Res

(
tan z

z
,
π

2

)

+ Res

(
tan z

z
,−π

2

)]

since the singularity at z = 0 is removable. Observe that
π

2
is a

simple pole and cos z = − sin

(

z − π

2

)

, we have

Res

(
tan z

z
,
π

2

)

= lim
z→π

2

(

z − π
2

)

tan z

z

= lim
z→π

2

(

z − π
2

)

sin z

z

[

−
(

z − π
2

)

+
(z−π

2)
3

6 + · · ·
]

=
1

−π
2

= −2

π
.
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As tan z/z is even, we deduce that Res

(
tan z

z
,−π

2

)

=
2

π
using the

result from the previous example. We then have
∮

|z|=2

tan z

z
dz = 0.

Remark

Let p(z) = sin z/z, q(z) = cos z, and observe that p

(
π

2

)

=
2

π
, q

(
π

2

)

=

0 and q′
(

π

2

)

= −1 6= 0, then

Res

(
tan z

z
,
π

2

)

= p

(
π

2

)/

q′
(

π

2

)

=
−2

π
.
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Example

Evaluate ∮

C

z2

(z2 + π2)2 sin z
dz.

Solution

lim
z→0

z

sin z

z

(z2 + π2)2
=

(

lim
z→0

z

sin z

)(

lim
z→0

z

(z2 + π2)2

)

= 0

so that z = 0 is a removable singularity.
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It is easily seen that z = iπ is a pole of order 2.

Res (f, iπ) = lim
z→iπ

d

dz
[(z − iπ)2f(z)]

= lim
z→iπ

d

dz

[

z2

(z + iπ)2 sin z

]

= lim
z→iπ

2z(z + iπ) sin z − z2[(z + iπ) cos z + 2sin z]

(z + iπ)3 sin2 z

=
2sinhπ + (−π coshπ − sinhπ)

−4π sinh2 π
= − 1

4π sinhπ
+

coshπ

4π sinh2 π
.

Recall that sin iπ = i sinhπ and cos iπ = coshπ. Hence,

∮

C

z2

(z2 + π2)2 sin z
dz = 2πiRes (f, iπ)

=
i

2

(

− 1

sinhπ
+

coshπ

sinh2 π

)

.
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Theorem

If a function f is analytic everywhere in the finite plane except for a

finite number of singularities interior to a positively oriented simple

closed contour C, then
∮

C
f(z) dz = 2πiRes

(
1

z2
f

(
1

z

)

,0

)

.
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We construct a circle |z| = R1 which is large enough so that C is

interior to it. If C0 denotes a positively oriented circle |z| = R0,

where R0 > R1, then

f(z) =
∞∑

n=−∞
cnzn, R1 < |z| < ∞, (A)

where

cn =
1

2πi

∮

C0

f(z)

zn+1
dz n = 0,±1,±2, · · · .

In particular,

2πic−1 =

∮

C0

f(z) dz.

How to find c−1? First, we replace z by 1/z in Eq. (A) such that

the domain of validity is a deleted neighborhood of z = 0.
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Now

1

z2
f

(
1

z

)

=
∞∑

n=−∞

cn

zn+2
=

∞∑

n=−∞

cn−2

zn
, 0 < |z| <

1

R1
,

so that

c−1 = Res

(
1

z2
f

(
1

z

)

,0

)

.

Remark

By convention, we may define the residue at infinity by

Res (f,∞) = − 1

2πi

∮

C
f(z) dz = −Res

(
1

z2
f

(
1

z

)

,0

)

,

where all singularities in the finite plane are included inside C. With

the choice of the negative sign, we have

∑

all

Res (f, zi) + Res (f,∞) = 0.
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Example

Evaluate
∮

|z|=2

5z − 2

z(z − 1)
dz.

Solution

Write f(z) =
5z − 2

z(z − 1)
. For 0 < |z| < 1,

5z − 2

z(z − 1)
=

5z − 2

z

−1

1 − z
=

(

5 − 2

z

)

(−1 − z − z2 − · · · )

so that

Res (f, 0) = 2.

20



For 0 < |z − 1| < 1,

5z − 2

z(z − 1)
=

5(z − 1) + 3

z − 1

1

1 + (z − 1)

=

(

5 +
3

z − 1

)

[1 − (z − 1) + (z − 1)2 − (z − 1)3 + · · · ]

so that

Res (f, 1) = 3.

Hence,
∮

|z|=2

5z − 2

z(z − 1)
dz = 2πi [Res (f,0) + Res (f,1)] = 10πi.
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On the other hand, consider

1

z2
f

(
1

z

)

=
5 − 2z

z(1 − z)
=

5 − 2z

z

1

1 − z

=

(
5

z
− 2

)

(1 + z + z2 + · · · )

=
5

z
+ 3 + 3z, 0 < |z| < 1,

so that
∮

|z|=2

5z − 2

z(z − 1)
dz = −2πiRes (f,∞)

= 2πiRes

(
1

z2
f

(
1

z

)

,0

)

= 10πi.
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Evaluation of integrals using residue methods

A wide variety of real definite integrals can be evaluated effectively

by the calculus of residues.

Integrals of trigonometric functions over [0,2π]

We consider a real integral involving trigonometric functions of the

form
∫ 2π

0
R(cos θ, sin θ) dθ,

where R(x, y) is a rational function defined inside the unit circle

|z| = 1, z = x+iy. The real integral can be converted into a contour

integral around the unit circle by the following substitutions:
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z = eiθ, dz = ieiθ dθ = iz dθ,

cos θ =
eiθ + e−iθ

2
=

1

2

(

z +
1

z

)

,

sin θ =
eiθ − e−iθ

2i
=

1

2i

(

z − 1

z

)

.

The above integral can then be transformed into
∫ 2π

0
R(cos θ, sin θ) dθ

=
∮

|z|=1

1

iz
R

(

z + z−1

2
,
z − z−1

2i

)

dz

= 2πi

[

sum of residues of
1

iz
R

(

z + z−1

2
,
z − z−1

2i

)

inside |z| = 1

]

.
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Example

Compute I =

∫ 2π

0

cos 2θ

2 + cos θ
dθ.

Solution

∫ 2π

0

cos 2θ

2 + cos θ
dθ = −i

∮

|z|=1

1
2

(

z2 + 1
z2

)

2 + 1
2

(

z + 1
z

)
dz

z

= −i
∮

|z|=1

z4 + 1

z2(z2 + 4z + 1)
dz.

The integrand has a pole of order two at z = 0. Also, the roots of

z2+4z+1 = 0, namely, z1 = −2−
√

3 and z2 = −2+
√

3, are simple

poles of the integrand.
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Write f(z) =
z4 + 1

z2(z2 + 4z + 1)
. Note that z1 is inside but z2 is outside

|z| = 1.
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Res (f, 0) = lim
z→0

d

dz

z4 + 1

z2 + 4z + 1

= lim
z→0

3z3(z2 + 4z + 1) − (z4 + 1)(2z + 4)

(z2 + 4z + 1)2
= −4

Res (f,−2 +
√

3) =
z4 + 1

z2

∣
∣
∣
∣
∣
z=−2+

√
3

/

d

dz
(z2 + 4z + 1)

∣
∣
∣
∣
∣
z=−2+

√
3

=
(−2 +

√
3)4 + 1

(−2 +
√

3)2
· 1

2(−2 +
√

3) + 4
=

7√
3

.

I = (−i)2πi
[

Res (f,0) + Res (f,−2 +
√

3)
]

= 2π

(

−4 +
7√
3

)

.
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Example

Evaluate the integral

I =

∫ π

0

1

a − b cos θ
dθ, a > b > 0.

Solution

Since the integrand is symmetric about θ = π, we have

I =
1

2

∫ 2π

0

1

a − b cos θ
dθ =

∫ 2π

0

eiθ

2aeiθ − b(e2iθ + 1)
dθ.

The real integral can be transformed into the contour integral

I = i
∮

|z|=1

1

bz2 − 2az + b
dz.

The integrand has two simple poles, which are given by the zeros

of the denominator.
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Let α denote the pole that is inside the unit circle, then the other

pole will be 1
α. The two poles are found to be

α =
a −

√

a2 − b2

b
and

1

α
=

a +
√

a2 − b2

b
.

Since a > b > 0, the two roots are distinct, and α is inside but 1
α is

outside the closed contour of integration. We then have

I = −1

ib

∮

|z|=1

1

(z − α) (z − 1
α)

dz

= −2πi

ib
Res




1

(z − α) (z − 1
α)

, α





= − 2πi

ib
(

α − 1
α

) =
π

√

a2 − b2
.
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Integral of rational functions
∫ ∞

−∞
f(x) dx,

where

1. f(z) is a rational function with no singularity on the real axis,

2. lim
z→∞ zf(z) = 0.

It can be shown that

∫ ∞

−∞
f(x) dx = 2πi [sum of residues at the poles of f in the upper

half-plane].
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Integrate f(z) around a closed contour C that consists of the upper

semi-circle CR and the diameter from −R to R.

By the Residue Theorem

∮

C
f(z) dz =

∫ R

−R
f(x) dx +

∫

CR

f(z) dz

= 2πi [sum of residues at the poles of f inside C].
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As R → ∞, all the poles of f in the upper half-plane will be enclosed

inside C. To establish the claim, it suffices to show that as R → ∞,

lim
R→∞

∮

CR

f(z) dz = 0.

The modulus of the above integral is estimated by the modulus

inequality as follows:
∣
∣
∣
∣
∣
∣

∫

CR

f(z) dz

∣
∣
∣
∣
∣
∣

≤
∫ π

0
|f(Reiθ)| R dθ

≤ max
0≤θ≤π

|f(Reiθ)| R
∫ π

0
dθ

= max
z∈CR

|zf(z)|π,

which goes to zero as R → ∞, since lim
z→∞ zf(z) = 0.
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Example

Evaluate the real integral

∫ ∞

−∞
x4

1 + x6
dx

by the residue method.

Solution

The complex function f(z) =
z4

1 + z6
has simple poles at i,

√
3 + i

2

and
−
√

3 + i

2
in the upper half-plane, and it has no singularity on

the real axis. The integrand observes the property lim
z→∞ zf(z) = 0.

We obtain

∫ ∞

−∞
f(x) dx = 2πi

[

Res(f, i) + Res

(

f,

√
3 + i

2

)

+ Res

(

f,
−
√

3 + i

2

)]

.
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The residue value at the simple poles are found to be

Res(f, i) =
1

6z

∣
∣
∣
∣
∣
∣
z=i

= − i

6
,

Res

(

f,

√
3 + i

2

)

=
1

6z

∣
∣
∣
∣
∣
∣
z=

√
3+i
2

=

√
3 − i

12
,

and

Res

(

f,
−
√

3 + i

2

)

=
1

6z

∣
∣
∣
∣
∣
∣
z=−

√
3+i
2

= −
√

3 + i

12
,

so that

∫ ∞

−∞
x4

1 + x6
dx = 2πi

(

− i

6
+

√
3 − i

12
−

√
3 + i

12

)

=
2π

3
.
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Integrals involving multi-valued functions

Consider a real integral involving a fractional power function

∫ ∞

0

f(x)

xα
dx, 0 < α < 1,

1. f(z) is a rational function with no singularity on the positive real

axis, including the origin.

2. lim
z→∞f(z) = 0.

We integrate φ(z) =
f(z)

zα
along the closed contour as shown.
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The closed contour C consists of an infinitely large circle and an

infinitesimal circle joined by line segments along the positive x-axis.
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(i) line segment from ε to R along the upper side of the positive

real axis: z = x, ε ≤ x ≤ R;

(ii) the outer large circle CR : z = Reiθ, 0 < θ < 2π;

(iii) line segment from R to ε along the lower side of the positive

real axis

z = xe2πi, ε ≤ x ≤ R;

(iv) the inner infinitesimal circle Cε in the clockwise direction

z = εeiθ, 0 < θ < 2π.
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Establish: lim
R→∞

∫

CR

φ(z) = 0 and lim
ε→0

∫

Cε
φ(z) = 0.

∣
∣
∣
∣
∣

∫

CR

φ(z) dz

∣
∣
∣
∣
∣

≤
∫ 2π

0
|φ(Reiθ)Reiθ| dθ ≤ 2π max

z∈CR

|zφ(z)|
∣
∣
∣
∣
∣

∫

Cε

φ(z) dz

∣
∣
∣
∣
∣

≤
∫ 2π

0
|φ(εeiθ)|ε dθ ≤ 2π max

z∈Cǫ
|zφ(z)|.

It suffices to show that zφ(z) → 0 as either z → ∞ or z → 0.

1. Since lim
z→∞f(z) = 0 and f(z) is a rational function,

deg (denominator of f(z)) ≥ 1 + deg (numerator of f(z)).

Further, 1 − α < 1, zφ(z) = z1−αf(z) → 0 as z → ∞.

2. Since f(z) is continuous at z = 0 and f(z) has no singularity at

the origin, zφ(z) = z1−αf(z) ∼ 0 · f(0) = 0 as z → 0.
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The argument of the principal branch of zα is chosen to be 0 ≤ θ <

2π, as dictated by the contour.
∮

C
φ(z) dz =

∫

CR

φ(z) dz +

∫

Cǫ

φ(z) dz

+
∫ R

ǫ

f(x)

xα
dx +

∫ ǫ

R

f(xe2πi)

xαe2απi
dx

= 2πi [sum of residues at all the isolated singularities

of f enclosed inside the closed contour C].

By taking the limits ǫ → 0 and R → ∞, the first two integrals vanish.

The last integral can be expressed as

−
∫ ∞

0

f(x)

xαe2απi
dx = −e−2απi

∫ ∞

0

f(x)

xα
dx.

Combining the results,

∫ ∞

0

f(x)

xα
dx =

2πi

1 − e−2απi
[sum of residues at all the isolated

singularities of f in the finite complex plane].
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Example

Evaluate

∫ ∞

0

1

(1 + x)xα
dx, 0 < α < 1.

Solution

f(z) =
1

(1 + z)zα
is multi-valued and has an isolated singularity at

z = −1. By the Residue Theorem,
∮

C

1

(1 + z)zα
dz

= (1 − e−2απi)

∫ R

ǫ

dx

(1 + x)xα
+

∫

CR

dz

(1 + z)zα
+

∫

Cǫ

dz

(1 + z)zα

= 2πi Res

(

1

(1 + z)zα
,−1

)

=
2πi

eαπi
.
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The moduli of the third and fourth integrals are bounded by
∣
∣
∣
∣
∣
∣

∫

CR

1

(1 + z)zα
dz

∣
∣
∣
∣
∣
∣

≤ 2πR

(R − 1)Rα
∼ R−α → 0 as R → ∞,

∣
∣
∣
∣
∣
∣

∫

Cǫ

1

(1 + z)zα
dz

∣
∣
∣
∣
∣
∣

≤ 2πǫ

(1 − ǫ)ǫα
∼ ǫ1−α → 0 as ǫ → 0.

On taking the limits R → ∞ and ǫ → 0, we obtain

(1 − e−2απi)

∫ ∞

0

1

(1 + x)xα
dx =

2πi

eαπi
;

so
∫ ∞

0

1

(1 + x)xα
dx =

2πi

eαπi (1 − e−2απi)
=

π

sinαπ
.
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Example

Evaluate the real integral
∫ ∞

−∞
eαx

1 + ex
dx, 0 < α < 1.

Solution

The integrand function in its complex extension has infinitely many

poles in the complex plane, namely, at z = (2k + 1)πi, k is any

integer. We choose the rectangular contour as shown

l1 : y = 0, −R ≤ x ≤ R,

l2 : x = R, 0 ≤ y ≤ 2π,

l3 : y = 2π, −R ≤ x ≤ R,

l4 : x = −R, 0 ≤ y ≤ 2π.
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The chosen closed rectangular contour encloses only one simple pole

at z = πi.
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The only simple pole that is enclosed inside the closed contour C is

z = πi. By the Residue Theorem, we have

∮

C

eαz

1 + ez
dz =

∫ R

−R

eαx

1 + ex
dx +

∫ 2π

0

eα(R+iy)

1 + eR+iy
idy

+

∫ −R

R

eα(x+2πi)

1 + ex+2πi
dx +

∫ 0

2π

eα(−R+iy)

1 + e−R+iy
idy

= 2πi Res

(

eαz

1 + ez
, πi

)

= 2πi
eαz

ez

∣
∣
∣
∣
∣
z=πi

= −2πieαπi.
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Consider the bounds on the moduli of the integrals as follows:
∣
∣
∣
∣
∣
∣

∫ 2π

0

eα(R+iy)

1 + eR+iy
idy

∣
∣
∣
∣
∣
∣

≤
∫ 2π

0

eαR

eR − 1
dy ∼ O(e−(1−α)R),

∣
∣
∣
∣
∣
∣

∫ 0

2π

eα(−R+iy)

1 + e−R+iy
idy

∣
∣
∣
∣
∣
∣

≤
∫ 2π

0

e−αR

1 − e−R
dy ∼ O(e−αR).

As 0 < α < 1, both e−(1−α)R and e−αR tend to zero as R tends to

infinity. Therefore, the second and the fourth integrals tend to zero

as R → ∞. On taking the limit R → ∞, the sum of the first and

third integrals becomes

(1 − e2απi)

∫ ∞

−∞
eαx

1 + ex
dx = −2πieαπi;

so
∫ ∞

−∞
eαx

1 + ex
dx =

2πi

eαπi − e−απi
=

π

sinαπ
.
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Example

Evaluate
∫ ∞

0

1

1 + x3
dx.

Solution

Since the integrand is not an even function, it serves no purpose to

extend the interval of integration to (−∞,∞). Instead, we consider

the branch cut integral
∮

C

Log z

1 + z3
dz,

where the branch cut is chosen to be along the positive real axis

whereby 0 ≤ Arg z < 2π. Now

∮

C

Log z

1 + z3
dz =

∫ R

ǫ

ln x

1 + x3
dx +

∫ ǫ

R

Log (xe2πi)

1 + (xe2πi)3
dx

+

∮

CR

Log z

1 + z3
dz +

∮

Cǫ

Log z

1 + z3
dz
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= 2πi
3∑

j=1

Res

(
Log z

1 + z3
, zj

)

,

where zj, j = 1,2,3 are the zeros of 1/(1 + z3). Note that
∣
∣
∣
∣
∣

∮

Cǫ

Log z

1 + z3
dz

∣
∣
∣
∣
∣

= O

(
ǫ ln ǫ

1

)

−→ 0 as ǫ → 0;

∣
∣
∣
∣
∣

∮

CR

Log z

1 + z3
dz

∣
∣
∣
∣
∣

= O

(
R lnR

R3

)

−→ 0 as R → ∞.

Hence

lim
R → ∞
ǫ → 0

∮

C

Log z

1 + z3
dz =

∫ ∞

0

ln x

1 + x3
dx +

∫ 0

∞
Log (xe2iπ)

1 + (xe2iπ)3
dx

= −2πi
∫ ∞

0

1

1 + x3
dx,

thus giving

∫ ∞

0

1

1 + x3
dx = −

3∑

j=1

Res

(
Log z

1 + z3
, zj

)

.
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The zeros of 1 + z3 are α = eiπ/3, β = eiπ and γ = e5πi/3. Sum of

residues is given by

Res

(
Log z

1 + z3
, α

)

+ Res

(
Log z

1 + z3
, β

)

+ Res

(
Log z

1 + z3
, γ

)

=
Log α

(α − β)(α − γ)
+

Log β

(β − α)(β − γ)
+

Log γ

(γ − α)(γ − β)

= −i

[
π
3(β − γ) + π(γ − α) + 5π

3 (α − β)
]

(α − β)(β − γ)(γ − α)
= − 2π

3
√

3
.

Hence,
∫ ∞

0

1

1 + x3
dx =

2π

3
√

3
.
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Evaluation of Fourier integrals

A Fourier integral is of the form
∫ ∞

−∞
eimx f(x) dx, m > 0,

1. lim
z→∞ f(z) = 0,

2. f(z) has no singularity along the real axis.

Remarks

1. The assumption m > 0 is not strictly essential. The evaluation

method works even when m is negative or pure imaginary.

2. When f(z) has singularities on the real axis, the Cauchy principal

value of the integral is considered.
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Jordan Lemma

We consider the modulus of the integral for λ > 0
∣
∣
∣
∣
∣
∣

∫

CR

f(z)eiλz dz

∣
∣
∣
∣
∣
∣

≤
∫ π

0
|f(Reiθ)| |eiλReiθ| R dθ

≤ max
z∈CR

|f(z)| R
∫ π

0
e−λR sin θ dθ

= 2R max
z∈CR

|f(z)|
∫ π

2

0
e−λR sin θ dθ

≤ 2R max
z∈CR

|f(z)|
∫ π

2

0
e−λR2θ

π dθ

= 2R max
z∈CR

|f(z)| π

2Rλ
(1 − e−λR),

which tends to 0 as R → ∞, given that f(z) → 0 as R → ∞.
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To evaluate the Fourier integral, we integrate eimzf(z) along the

closed contour C that consists of the upper half-circle CR and the

diameter from −R to R along the real axis. We then have

∮

C
eimzf(z) dz =

∫ R

−R
eimxf(x) dx +

∫

CR

eimzf(z) dz.

Taking the limit R → ∞, the integral over CR vanishes by virtue of

the Jordan Lemma.

Lastly, we apply the Residue Theorem to obtain
∫ ∞

−∞
eimxf(x) dx = 2πi [sum of residues at all the isolated

singularities of f in the upper half-plane]

since C encloses all the singularities of f in the upper half-plane as

R → ∞.
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Example

Evaluate the Fourier integral
∫ ∞

−∞
sin 2x

x2 + x + 1
dx.

Solution

It is easy to check that f(z) = 1
z2+z+1

has no singularity along

the real axis and lim
z→∞

1
z2+z+1

= 0. The integrand has two simple

poles, namely, z = e
2πi
3 in the upper half-plane and e−

2πi
3 in the lower

half-plane. By virtue of the Jordan Lemma, we have
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∫ ∞

−∞
sin 2x

x2 + x + 1
dx = Im

∫ ∞

−∞
e2ix

x2 + x + 1
dx = Im

∮

C

e2iz

z2 + z + 1
dz,

where C is the union of the infinitely large upper semi-circle and its

diameter along the real axis.

Note that

∮

C

e2iz

z2 + z + 1
dz = 2πi Res

(

e2iz

z2 + z + 1
, e

2πi
3

)

= 2πi
e2iz

2z + 1

∣
∣
∣
∣
∣
∣
z=e

2πi
3

= 2πi
e2ie

2πi
3

2e
2πi
3 + 1

.

Hence,

∫ ∞

−∞
sin 2x

x2 + x + 1
dx = Im






2πi

e2ie
2πi
3

2e
2πi
3 + 1







= − 2√
3

πe−
√

3 sin 1.
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Example

Show that
∫ ∞

0
sin x2 dx =

∫ ∞

0
cosx2 dx =

1

2

√
π

2
.

Solution
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0 =

∮

C
eiz2

dz =

∫ R

0
eix2

dx +

∫ π
4

0
eiR2e2iθ

iReiθ dθ

+
∫ 0

R
eir2eiπ/2

eiπ/4 dr.

Rearranging

∫ R

0
(cos x2+i sin x2) dx = eiπ/4

∫ R

0
e−r2 dr−

∫ π/4

0
eiR2 cos 2θ−R2 sin 2θiReiθ dθ.

Next, we take the limit R → ∞. We recall the well-known result

eiπ
4

∫ ∞

0
e−r2 dr =

√
π

2
eiπ/4 =

1

2

√
π

2
+

i

2

√
π

2
.

Also, we use the transformation 2θ = φ and observe sinφ ≥ 2φ

π
,0 ≤ φ ≤ π

2
,

to obtain
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∣
∣
∣
∣
∣

∫ π/4

0
eiR2 cos 2θ−R2 sin2 θiReiθ dθ

∣
∣
∣
∣
∣

≤
∫ π/4

0
e−R2 sin 2θR dθ

=
R

2

∫ π/2

0
e−R2 sinφ dφ

≤ R

2

∫ π/2

0
e−2R2φ/π dφ

=
π

4R
(1 − e−R2

) −→ 0 as R → ∞.

We then obtain
∫ ∞

0
(cos x2 + i sin x2) dx =

1

2

√
π

2
+ i

1

2

√
π

2

so that
∫ ∞

0
cos x2 dx =

∫ ∞

0
sinx2 dx =

1

2

√
π

2
.
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Example

Evaluate

∫ ∞

0

ln(x2 + 1)

x2 + 1
dx.

Hint: Use Log(i − x) + Log(i + x) = Log(i2 − x2) = ln(x2 + 1) + πi.

Solution

Consider

∮

C

Log(z + i)

z2 + 1
dz around C as shown.
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The only pole of
Log(z + i)

z2 + 1
in the upper half plane is the simple

pole z = i. Consider

2πiRes

(

Log(z + i)

z2 + 1
, i

)

= 2πi lim
z→i

(z − i)Log(z + i)

(z − i)(z + i)
= πLog 2i = π ln 2 +

π2

2
i.

∫

CR

Log(z + i)

z2 + 1
dz = O

(

(lnR)R

R2

)

→ 0 as R → ∞
∫ R

0

Log(i − x)

x2 + 1
dx +

∫ R

0

Log(x + i)

x2 + 1
dx +

∫

CR

Log(z + i)

z2 + 1
dz = π ln 2 +

π2

2
i

and Log(i − x) + Log(i + x) = ln(x2 + 1) + πi.

From

∫ ∞

0

ln(x2 + 1)

x2 + 1
dx +

∫ ∞

0

πi

x2 + 1
dx = π ln 2 +

π2

2
i and

∫ ∞

0

dx

1 + x2
=

π

2
so that

∫ ∞

0

ln(x2 + 1)

x2 + 1
dx = π ln 2.
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Cauchy principal value of an improper integral

Suppose a real function f(x) is continuous everywhere in the interval

[a, b] except at a point x0 inside the interval. The integral of f(x)

over the interval [a, b] is an improper integral, which may be defined

as
∫ b

a
f(x) dx = lim

ǫ1,ǫ2→0

[
∫ x0−ǫ1

a
f(x) dx +

∫ b

x0+ǫ2
f(x) dx

]

, ǫ1, ǫ2 > 0.

In many cases, the above limit exists only when ǫ1 = ǫ2, and does

not exist otherwise.
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Example

Consider the following improper integral
∫ 2

−1

1

x − 1
dx,

show that the Cauchy principal value of the integral exists, then find

the principal value.

Solution

Principal value of
∫ 2

1

1

x − 1
dx exists if the following limit exists.

lim
ǫ→0+

[
∫ 1−ǫ

−1

1

x − 1
dx +

∫ 2

1+ǫ

1

x − 1
dx

]

= lim
ǫ→0+



ln |x − 1|
∣
∣
∣
∣
∣

1−ǫ

−1

+ln |x − 1|
∣
∣
∣
∣
∣

2

1+ǫ





= lim
ǫ→0+

[(ln ǫ − ln 2) + (ln 1 − ln ǫ)] = − ln 2.

Hence, the principal value of

∫ 2

−1

1

x − 1
dx exists and its value is

− ln 2.
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Lemma

If f has a simple pole at z = c and Tr is the circular arc defined by

Tr : z = c + reiθ (θ1 ≤ θ ≤ θ2),

then

lim
r→0+

∫

Tr
f(z) dz = i(θ2 − θ1)Res (f, c).

In particular, for the semi-circular arc Sr

lim
r→0+

∫

Sr

f(z) dz = iπRes (f, c).
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Proof

Since f has a simple pole at c,

f(z) =
a−1

z − c
+

∞∑

k=0

ak(z − c)k

︸ ︷︷ ︸

g(z)

, 0 < |z − c| < R for some R.

For 0 < r < R,
∫

Tr

f(z) dz = a−1

∫

Tr

1

z − c
dz +

∫

Tr

g(z) dz.
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Since g(z) is analytic at c, it is bounded in some neighborhood of

z = c. That is,

|g(z)| ≤ M for |z − c| < r.

For 0 < r < R,
∣
∣
∣
∣
∣

∫

Tr

g(z) dz

∣
∣
∣
∣
∣
≤ M · arc length of Tr = Mr(θ2 − θ1)

and so

lim
r→0+

∫

Tr
g(z) dz = 0.

Finally,

∫

Tr

1

z − c
dz =

∫ θ2

θ1

1

reiθ
ireiθ dθ = i

∫ θ2

θ1
dθ = i(θ2 − θ1)

so that

lim
r→0+

∫

Tr

f(z) dz = a−1i(θ2 − θ1) = Res (f, c)i(θ2 − θ1).
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Example

Compute the principal value of

∫ ∞

−∞
xe2ix

x2 − 1
dx.

Solution

The improper integral has singularities at x = ±1. The principal

value of the integral is defined to be

lim
R→∞

r1,r2→0+

(
∫ −1−r1

−R
+
∫ 1−r2

−1+r1
+
∫ R

1+r2

)

xe2ix

x2 − 1
dx.
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Let

I1 =

∫

Sr1

ze2iz

z2 − 1
dz

I2 =

∫

Sr2

ze2iz

z2 − 1
dz

IR =

∫

CR

ze2iz

z2 − 1
dz.

Now, f(z) =
ze2iz

z2 − 1
is analytic inside the above closed contour.

By the Cauchy Integral Theorem
(
∫ −1−r1

−R
+
∫ 1−r2

−1+r1
+
∫ R

1+r2

)

xe2ix

x2 − 1
dx + I1 + I2 + IR = 0.
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By the Jordan Lemma, and since
z

z2 − 1
→ 0 as z → ∞, so

lim
R→∞

IR = 0.

Since z = ±1 are simple poles of f ,

lim
r1→0+

I1 = −iπRes (f,−1) = −iπ lim
z→−1

(z + 1)f(z)

= (−iπ)e−2i/2.

Similarly, lim
r2→0+

I2 = −iπRes (f, 1) =
−iπe2i

2
.

PV
∫ ∞

−∞
xe2ix

x2 − 1
dx =

iπe−2i

2
+

iπe2i

2
= iπ cos 2.
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Poisson integral formula

f(z) =
1

2πi

∮

C

f(s)

s − z
ds.

Here, C is the circle with radius r0 centered at the origin. Write

s = r0eiφ and z = reiθ, r > r0. We choose z1 such that |z1| |z| = r20
and both z1 and z lie on the same ray so that

z1 =
r20
r

eiθ =
r20
z

=
ss

z
.
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Since z1 lies outside C, we have

f(z) =
1

2πi

∮

C
f(s)

(

1

s − z
− 1

s − z1

)

ds

=
1

2π

∫ 2π

0

(

s

s − z
− s

s − z1

)

f(s) dφ.

The integrand can be expressed as

s

s − z
− 1

1 − s/z
=

s

s − z
+

z

s − z
=

r20 − r2

|s − z|2

and so f(reiθ) =
r20 − r2

2π

∫ 2π

0

f(r0eiθ)

|s − z|2
dφ.

69



Now |s − z|2 = r20 − 2r0r cos(φ − θ) + r2 > 0 (from the cosine rule).

Taking the real part of f , where f = u + iv, we obtain

u(r, θ) =
1

2π

∫ 2π

0

r20 − r2

r20 − 2r0r cos(φ − θ) + r2
︸ ︷︷ ︸

P (r0,r,φ−θ)

u(r0, φ) dφ, r < r0.

Knowing u(r0, φ) on the boundary, u(r, θ) is uniquely determined.

The kernel function P(r0, r, φ − θ) is called the Poisson kernel.

P(r0, r, φ − θ) =
r20 − r2

|s − z|2 = Re

(
s

s − z
+

z

s − z

)

= Re

(
s

s − z
+

z

s − z

)

= Re

(
s + z

s − z

)

which is harmonic for |z| < r0.
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