
2. Mean-variance portfolio theory

(2.1) Markowitz’s mean-variance formulation

(2.2) Two-fund theorem

(2.3) Inclusion of the riskfree asset
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2.1 Markowitz mean-variance formulation

Suppose there are N risky assets, whose rates of returns are given by the random
variables R1, · · · , RN , where

Rn =
Sn(1) − Sn(0)

Sn(0)
, n = 1,2, · · · , N.

Let w = (w1 · · ·wN)T , wn denotes the proportion of wealth invested in asset n,

with

N∑

n=1

wn = 1. The rate of return of the portfolio is

RP =

N∑

n=1

wnRn.

Assumptions

1. There does not exist any asset that is a combination of other assets in the
portfolio, that is, non-existence of redundant security.

2. µ = (R1 R2 · · ·RN) and 1 = (1 1 · · ·1) are linearly independent, otherwise
RP is a constant irrespective of any choice of portfolio weights.
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The first two moments of RP are

µP = E[RP ] =
N∑

n=1

E[wnRn] =
N∑

n=1

wnµn, where µn = Rn,

and

σ2
P = var(RP ) =

N∑

i=1

N∑

j=1

wiwjcov(Ri, Rj) =
N∑

i=1

N∑

j=1

wiσijwj.

Let Ω denote the covariance matrix so that

σ2
P = wTΩw.

For example when n = 2, we have

(w1 w2)

(

σ11 σ12
σ21 σ22

)(

w1
w2

)

= w2
1σ2

1 + w1w2(σ12 + σ21) + w2
2σ2

2.
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Remark

1. The portfolio risk of return is quantified by σ2
P . In mean-variance

analysis, only the first two moments are considered in the port-

folio model. Investment theory prior to Markowitz considered

the maximization of µP but without σP .

2. The measure of risk by variance would place equal weight on

the upside deviations and downside deviations.

3. In the mean-variance model, it is assumed that µi, σi and σij are

all known.
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Two-asset portfolio

Consider two risky assets with known means R1 and R2, variances

σ2
1 and σ2

2, of the expected rates of returns R1 and R2, together

with the correlation coefficient ρ.

Let 1 − α and α be the weights of assets 1 and 2 in this two-asset

portfolio.

Portfolio mean: RP = (1 − α)R1 + αR2,0 ≤ α ≤ 1

Portfolio variance: σ2
P = (1 − α)2σ2

1 + 2ρα(1 − α)σ1σ2 + α2σ2
2.
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We represent the two assets in a mean-standard deviation diagram

(recall: standard deviation =
√

variance)

As α varies, (σP , RP ) traces out a conic curve in the σ − R plane.

With ρ = −1, it is possible to have σ = 0 for some suitable choice of

weight. In general, putting two assets whose returns are negatively

correlated has the desirable effect of lowering the portfolio risk.
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In particular, when ρ = 1,

σP (α; ρ = 1) =
√

(1 − α)2σ2
1 + 2α(1 − α)σ1σ2 + α2σ2

2

= (1 − α)σ1 + ασ2.

This is the straight line joining P1(σ1, R1) and P2(σ2, R2).

When ρ = −1, we have

σP (α; ρ = −1) =
√

[(1 − α)σ1 − ασ2]
2 = |(1 − α)σ1 − ασ2|.

When α is small (close to zero), the corresponding point is close to

P1(σ1, R1). The line AP1 corresponds to

σP (α; ρ = −1) = (1 − α)σ1 − ασ2.

The point A (with zero σ) corresponds to α =
σ1

σ1 + σ2
.

The quantity (1 − α)σ1 − ασ2 remains positive until α =
σ1

σ1 + σ2
.

When α >
σ1

σ1 + σ2
, the locus traces out the upper line AP2.
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Suppose −1 < ρ < 1, the minimum variance point on the curve that

represents various portfolio combinations is determined by

∂σ2
P

∂α
= −2(1 − α)σ2

1 + 2ασ2
2 + 2(1 − 2α)ρσ1σ2 = 0

↑
set

giving

α =
σ2
1 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

.
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Mathematical formulation of Markowitz’s mean-variance analysis

minimize
1

2

N∑

i=1

N∑

j=1

wiwjσij

subject to
N∑

i=1

wiRi = µP and
N∑

i=1

wi = 1. Given the target expected

rate of return of portfolio µP , find the portfolio strategy that mini-

mizes σ2
P .

Solution

We form the Lagrangian

L =
1

2

N∑

i=1

N∑

j=1

wiwjσij − λ1





N∑

i=1

wi − 1



− λ2





N∑

i=1

wiRi − µP





where λ1 and λ2 are Lagrangian multipliers.
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We then differentiate L with respect to wi and the Lagrangian mul-

tipliers, and set the derivative to zero.

∂L

∂wi
=

N∑

j=1

σijwj − λ1 − λ2Ri = 0, i = 1,2, · · · , N. (1)

∂L

∂λ1
=

N∑

i=1

wi − 1 = 0; (2)

∂L

∂λ2
=

N∑

i=1

wiRi − µP = 0. (3)

From Eq. (1), the portfolio weight admits solution of the form

w∗ = Ω−1(λ11+ λ2µ) (4)

where 1 = (1 1 · · ·1)T and µ = (R1 R2 · · ·RN)T .
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To determine λ1 and λ2, we apply the two constraints

1 = 1T
Ω−1Ωw∗ = λ11

T
Ω−11+ λ21

T
Ω−1µ. (5)

µP = µTΩ−1Ωw∗ = λ1µTΩ−11+ λ2µTΩ−1µ. (6)

Write a = 1T
Ω−11, b = 1T

Ω−1µ and c = µTΩ−1µ, we have

1 = λ1a + λ2b and µP = λ1b + λ2c.

Solving for λ1 and λ2 : λ1 =
c − bµP

∆
and λ2 =

aµP − b

∆
, where

∆ = ac − b2.

Note that λ1 and λ2 have dependence on µP , which is the target

mean prescribed in the variance minimization problem.
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Assume µ 6= h1, and Ω−1 exists. Since Ω is positive definite, so

a > 0, c > 0. By virtue of the Cauchy-Schwarz inequality, ∆ > 0.

The minimum portfolio variance for a given value of µP is given by

σ2
P = w∗T

Ωw∗ = w∗T
Ω(λ1Ω

−11+ λ2Ω
−1µ)

= λ1 + λ2µP =
aµ2

P − 2bµP + c

∆
.

The set of minimum variance portfolios is represented by a parabolic

curve in the σ2
P − µP plane. The parabolic curve is generated by

varying the value of the parameter µP .
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Alternatively, when µP is plotted against σP , the set of minimum

variance portfolio is a hyperbolic curve.

What are the asymptotic values of lim
µ→±∞

dµP

dσP
?

dµP

dσP
=

dµP

dσ2
P

dσ2
P

dσP

=
∆

2aµP − 2b
2σP

=

√
∆

aµP − b

√

aµ2
P − 2bµP + c

so that

lim
µ→±∞

dµP

dσP
= ±

√

∆

a
.
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Summary

Given µP , we obtain λ1 =
c − bµP

∆
and λ2 =

aµP − b

∆
, and the optimal

weight w∗ = Ω−1(λ11+ λ2µ).

To find the global minimum variance portfolio, we set

dσ2
P

dµP
=

2aµP − 2b

∆
= 0

so that µP = b/a and σ2
P = 1/a. Correspondingly, λ1 = 1/a and

λ2 = 0. The weight vector that gives the global minimum variance

is found to be

wg =
Ω−11

a
=

Ω−11

1T
Ω−11

.
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Another portfolio that corresponds to λ1 = 0 is obtained when µP

is taken to be
c

b
. The value of the other Lagrangian multiplier is

given by

λ2 =
a
(

c
b

)

− b

∆
=

1

b
.

The weight vector of this particular portfolio is

w∗
d =

Ω−1µ

b
=

Ω−1µ

1T
Ω−1µ

.

Also, σ2
d =

a
(

c
b

)2 − 2b
(

c
b

)

+ c

∆
=

c

b2
.
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Feasible set

Given N risky assets, we form various portfolios from these N assets.

We plot the point (σP , RP ) representing the portfolios in the σ − R

diagram. The collection of these points constitutes the feasible set

or feasible region.
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Consider a 3-asset portfolio, the various combinations of assets 2

and 3 sweep out a curve between them (the particular curve taken

depends on the correlation coefficient ρ12).

A combination of assets 2 and 3 (labelled 4) can be combined with

asset 1 to form a curve joining 1 and 4. As 4 moves between 2 and

3, the curve joining 1 and 4 traces out a solid region.
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Properties of feasible regions

1. If there are at least 3 risky assets (not perfectly correlated

and with different means), then the feasible set is a solid two-

dimensional region.

2. The feasible region is convex to the left. That is, given any two

points in the region, the straight line connecting them does not

cross the left boundary of the feasible region. This is because the

minimum variance curve in the mean-variance plot is a parabolic

curve.
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Minimum variance set and efficient funds

The left boundary of a feasible region is called the minimum variance

set. The most left point on the minimum variance set is called the

minimum variance point. The portfolios in the minimum variance

set are called frontier funds.

For a given level of risk, only those portfolios on the upper half

of the efficient frontier are desired by investors. They are called

efficient funds.

A portfolio w∗ is said to be mean-variance efficient if there exists

no portfolio w with µP ≥ µ∗
P and σ2

P ≤ σ∗2
P , except itself. That is,

you cannot find a portfolio that has a higher return and lower risk

than those for an efficient portfolio.
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2.2 Two-fund theorem

Two frontier funds (portfolios) can be established so that any fron-

tier portfolio can be duplicated, in terms of mean and variance, as

a combination of these two. In other words, all investors seeking

frontier portfolios need only invest in combinations of these two

funds.

Remark

Any convex combination (that is, weights are non-negative) of ef-

ficient portfolios is an efficient portfolio. Let αi ≥ 0 be the weight

of Fund i whose rate of return is Ri
f . Since E

[

Ri
f

]

≥ b

a
for all i, we

have
n∑

i=1

αiE
[

Ri
f

]

≥
n∑

i=1

αi
b

a
=

b

a
.
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Proof

Let w1 = (w1
1 · · ·w1

n), λ
1
1, λ1

2 and w2 = (w2
1 · · ·w2

n)
T , λ2

1, λ2
2 are two

known solutions to the minimum variance formulation with expected

rates of return µ1
P and µ2

P , respectively.

n∑

j=1

σijwj − λ1 − λ2Ri = 0, i = 1,2, · · · , n (1)

n∑

i=1

wiri = µP (2)

n∑

i=1

wi = 1. (3)

It suffices to show that αw1 + (1 − α)w2 is a solution corresponds

to the expected rate of return αµ1
P + (1 − α)µ2

P .
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1. αw1 +(1−α)w2 is a legitimate portfolio with weights that sum

to one.

2. Eq. (1) is satisfied by αw1 + (1 − α)w2 since the system of

equations is linear.

3. Note that

n∑

i=1

[

αw1
i + (1 − α)w2

i

]

Ri

= α
n∑

i=1

w1
i Ri + (1 − α)

n∑

i=1

w2
i Ri

= αµ1
P + (1 − α)µ2

P .
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Proposition

Any minimum variance portfolio with target mean µP can be uniquely

decomposed into the sum of two portfolios

w∗
P = Awg + (1 − A)wd

where A =
c − bµP

∆
a.

Proof

For a minimum-variance portfolio whose solution of the Lagrangian

multipliers are λ1 and λ2, the optimal weight is

w∗
P = λ1Ω

−11+ λ2Ω
−1µ = λ1(awg) + λ2(bwd).

Observe that the sum of weights is

λ1a + λ2b = a
c − µP b

∆
+ b

µPa − b

∆
=

ac − b2

∆
= 1.

We set λ1a = A and λ2b = 1 − A, where

λ1 =
c − µP b

∆
and λ2 =

µPa − b

∆
.
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Indeed, any two minimum-variance portfolios can be used to substi-

tute for wg and wd. Suppose

wu = (1 − u)wg + uwd

wv = (1 − v)wg + vwd

we then solve for wg and wd in terms of wu and wv. Then

w∗
P = λ1awg + (1 − λ1a)wd

=
λ1a + v − 1

v − u
wu +

1 − u − λ1a

v − u
wv,

where sum of coefficients = 1.
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Example

Mean, variances and covariances of the rates of return of 5 risky

assets are listed:

Security covariance Ri
1 2.30 0.93 0.62 0.74 −0.23 15.1
2 0.93 1.40 0.22 0.56 0.26 12.5
3 0.62 0.22 1.80 0.78 −0.27 14.7
4 0.74 0.56 0.78 3.40 −0.56 9.02
5 −0.23 0.26 −0.27 −0.56 2.60 17.68
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Solution procedure to find the two funds in the minimum variance

set:

1. Set λ1 = 1 and λ2 = 0; solve the system of equations

5∑

j=1

σijv
1
j = 1, i = 1,2, · · · ,5.

The actual weights wi should be summed to one. This is done

by normalizing v1
k ’s so that they sum to one

w1
i =

v1
i

∑n
j=1 v1

j

.

After normalization, this gives the solution to wg, where λ1 =
1

a
and λ2 = 0.
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2. Set λ1 = 0 and λ2 = 1; solve the system of equations:

5∑

j=1

σijv
2
j = Ri, i = 1,2, · · · ,5.

Normalize v2
i ’s to obtain w2

i .

After normalization, this gives the solution to wd, where λ1 = 0

and λ2 =
1

b
.

The above procedure avoids the computation of a = 1T
Ω−11

and b = 1T
Ω−1µ.

28



security v1 v2 w1 w2

1 0.141 3.652 0.088 0.158
2 0.401 3.583 0.251 0.155
3 0.452 7.284 0.282 0.314
4 0.166 0.874 0.104 0.038
5 0.440 7.706 0.275 0.334

mean 14.413 15.202
variance 0.625 0.659

standard deviation 0.791 0.812

* Note that w1 corresponds to the global minimum variance point.
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We know that µg = b/a; how about µd?

µd = µTwd = µT Ω−1µ

b
=

c

b
.

Difference in expected returns = µd − µg =
c

b
− b

a
=

∆

ab
> 0.

Also, difference in variances = σ2
d − σ2

g =
c

b2
− 1

a
=

∆

ab2
> 0.

30



What is the covariance of portfolio returns for any two minimum

variance portfolios?

Write

Ru
P = wT

uR and Rv
P = wT

v R

where R = (R1 · · ·RN)T . Recall that wg =
Ω−11

a
and wd =

Ω−1µ

b
so that

σgd = cov




Ω−11

a
R,

Ω−1µ

b
R





=




Ω−11

a





T

Ω

(

Ω−1µ

b

)

=
1T

Ω−1µ

ab
=

1

a
since b = 1T

Ω−1µ.
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In general,

cov(Ru
P , Rv

P ) = (1 − u)(1 − v)σ2
g + uvσ2

d + [u(1 − v) + v(1 − u)]σgd

=
(1 − u)(1 − v)

a
+

uvc

b2
+

u + v − 2uv

a

=
1

a
+

uv∆

ab2
.

In particular,

cov(Rg, RP ) = wT
g ΩwP =

1Ω−1ΩwP

a
=

1

a
= var(Rg)

for any portfolio wP .

For any Portfolio u, we can find another Portfolio v such that these

two portfolios are uncorrelated. This can be done by setting

1

a
+

uv∆

ab2
= 0.
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The mean-variance criterion can be reconciled with the expected

utility approach in either of two ways: (1) using a quadratic utility

function, or (2) making the assumption that the random returns are

normal variables.

Quadratic utility

The quadratic utility function can be defined as U(x) = ax − b

2
x2,

where a > 0 and b > 0. This utility function is really meaningful

only in the range x ≤ a/b, for it is in this range that the function is

increasing. Note also that for b > 0 the function is strictly concave

everywhere and thus exhibits risk aversion.
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mean-variance analysis ⇔ maximum expected utility criterion

based on quadratic utility

Suppose that a portfolio has a random wealth value of y. Using the

expected utility criterion, we evaluate the portfolio using

E[U(y)] = E

[

ay − b

2
y2
]

= aE[y] − b

2
E[y2]

= aE[y] − b

2
(E[y])2 − b

2
var(y).

Note that we choose the range of the quadratic utility function such

that aE[y] − b

2
(E[y])2 is increasing in E[y]. Maximizing E[y] for a

given var(y) or minimizing var(y) for a given E[y] is equivalent to

maximizing E[U(y)].

34



Normal Returns

When all returns are normal random variables, the mean-variance

criterion is also equivalent to the expected utility approach for any

risk-averse utility function.

To deduce this, select a utility function U . Consider a random

wealth variable y that is a normal random variable with mean value

M and standard deviation σ. Since the probability distribution is

completely defined by M and σ, it follows that the expected utility

is a function of M and σ. If U is risk averse, then

E[U(y)] = f(M, σ), with
∂f

∂M
> 0 and

∂f

∂σ
< 0.
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• Now suppose that the returns of all assets are normal random

variables. Then any linear combination of these assets is a nor-

mal random variable. Hence any portfolio problem is therefore

equivalent to the selection of combination of assets that maxi-

mizes the function f(M, σ) with respect to all feasible combina-

tions.

• For a risky-averse utility, this again implies that the variance

should be minimized for any given value of the mean. In other

words, the solution must be mean-variance efficient.

• Portfolio problem is to find w∗ such that f(M, σ) is maximized

with respect to all feasible combinations.
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2.3 Inclusion of the riskfree asset

Consider a portfolio with weight α for a risk free asset and 1−α for

a risky asset. The mean of the portfolio is

RP = αRf + (1 − α)Rj (note that Rf = Rf).

The covariance σfj between the risk free asset and any risky asset

is zero since

E[(Rj − Rj) (Rf − Rf)
︸ ︷︷ ︸

zero

= 0.

Therefore, the variance of portfolio σ2
P is

σ2
P = α2 σ2

f
︸︷︷︸

zero

+(1 − α)2σ2
j + 2α(1 − α) σfj

︸︷︷︸

zero

so that σP = |1 − α|σj.
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The points representing (σP , RP ) for varying values of α lie on a

straight line joining (0, Rf) and (σj, Rj).

If borrowing of risk free asset is allowed, then α can be negative. In

this case, the line extends beyond the right side of (σj, Rj) (possibly

up to infinity).
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Consider a portfolio with N risky assets originally, what is the impact

of the inclusion of a risk free asset on the feasible region?

Lending and borrowing of risk free asset is allowed

For each original portfolio formed using the N risky assets, the new

combinations with the inclusion of the risk free asset trace out the

infinite straight line originating from the risk free point and passing

through the point representing the original portfolio.

The totality of these lines forms an infinite triangular feasible region

bounded by the two tangent lines through the risk free point to the

original feasible region.
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No shorting of the riskfree asset

The line originating from the risk free point cannot be extended

beyond points in the original feasible region (otherwise entail bor-

rowing of the risk free asset). The new feasible region has straight

line front edges.
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The new efficient set is the single straight line on the top of the

new triangular feasible region. This tangent line touches the original

feasible region at a point F , where F lies on the efficient frontier of

the original feasible set.

Here, Rf <
b

a
. This assumption is reasonable since the risk free

asset should earn a rate of return less than the expected rate of

return of the global minimum variance portfolio.

41



One fund theorem

Any efficient portfolio (any point on the upper tangent line) can be

expressed as a combination of the risk free asset and the portfolio

(or fund) represented by F .

“There is a single fund F of risky assets such that any efficient

portfolio can be constructed as a combination of the fund F and

the risk free asset.”

Under the assumptions that

• every investor is a mean-variance optimizer

• they all agree on the probabilistic structure of the assets

• unique risk free asset

Then everyone will purchase a single fund, which is the market

portfolio.
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Now, the proportion of wealth invested in the risk free asset is

1 −
N∑

i=1

wi.

Modified Lagrangian formulation

minimize
σ2

P

2
=

1

2
wTΩw

subject to wTµ + (1 − wT1)r = µP .

Define the Lagrangian: L =
1

2
wTΩw + λ[µP − r − (µ − r1)Tw]

∂L

∂wi
=

N∑

j=1

σijwj − λ(µ − r1) = 0, i = 1,2, · · · , N (1)

∂L

∂λ
= 0 giving (µ − r1)Tw = µP − r. (2)
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Solving (1): w∗ = λΩ−1(µ − r1). Substituting into (2)

µP − r = λ(µ − r1)TΩ−1(µ − r1) = λ(c − 2rb + r2a).

By eliminating λ, the relation between µP and σP is given by the

following pair of half lines

σ2
P = w∗T

Ωw∗ = λ(w∗T
µ − rw∗T

1)

= λ(µP − r) = (µP − r)2/(c − 2rb + r2a).
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With the inclusion of the riskfree asset, the set of minimum variance

portfolios are represented by portfolios on the two half lines

Lup : µP − r = σP

√

ar2 − 2br + c (3a)

Llow : µP − r = −σP

√

ar2 − 2br + c. (3b)

Recall that ar2−2br+ c > 0 for all values of r since ∆ = ac− b2 > 0.

The minimum variance portfolios without the riskfree asset lie on

the hyperbola

σ2
P =

aµ2
P − 2bµP + c

∆
.
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When r < µg =
b

a
, the upper half line is a tangent to the hyperbola.

The tangency portfolio is the tangent point to the efficient frontier

(upper part of the hyperbolic curve) through the point (0, r).
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The tangency portfolio M is represented by the point (σP,M , µM
P ),

and the solution to σP,M and µM
P are obtained by solving simultane-

ously

σ2
P =

aµ2
P − 2bµP + c

∆

µP = r + σP

√

c − 2rb + r2a.

Once µM
P is obtained, the corresponding values for λM and w∗

M are

λM =
µM

P − r

c − 2rb + r2a
and w∗

M = λMΩ−1(µ − r1).

The tangency portfolio M is shown to be

w∗
M =

Ω−1(µ − r1)

b − ar
, µM

P =
c − br

b − ar
and σ2

P,M =
c − 2rb + r2a

(b − ar)2
.
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When r <
b

a
, it can be shown that µM

P > r. Note that

(

µM
P − b

a

)(
b

a
− r

)

=

(
c − br

b − ar
− b

a

)
b − ar

a

=
c − br

a
− b2

a2
+

br

a

=
ca − b2

a2
=

∆

a2
> 0,

so we deduce that µM
P >

b

a
> r, where µg =

b

a
.

On the other hand, we can deduce that (σP,M , µM
P ) does not lie on

the upper half line if r ≥ b

a
.
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When r <
b

a
, we have the following properties on the minimum

variance portfolios.

1. Efficient portfolios

Any portfolio on the upper half line

µP = r + σP

√

ar2 − 2br + c

within the segment FM joining the two points (0, r) and M

involves long holding of the market portfolio and riskfree asset,

while those outside FM involves short selling of the riskfree asset

and long holding of the market portfolio.

2. Any portfolio on the lower half line

µP = r − σP

√

ar2 − 2br + c

involves short selling of the market portfolio and investing the

proceeds in the riskfree asset. This represents non-optimal in-

vestment strategy since the investor faces risk but gains no extra

expected return above r.
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What happens when r = b/a? The half lines become

µP = r ± σP

√

c − 2

(
b

a

)

b +
b2

a
= r ± σP

√

∆

a
,

which correspond to the asymptotes of the feasible region with risky

assets only.

Even when r =
b

a
, efficient funds still lie on the upper half line,

though µM
P does not exist. Recall that

w∗ = λΩ−1(µ − r1) so that

1T
w = λ(1Ω−1µ − r1Ω−11) = λ(b − ra).

When r = b/a,1T
w = 0 as λ is finite.

Any minimum variance portfolio involves investing everything in the

riskfree asset and holding a portfolio of risky assets whose weights

sum to zero.
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When r >
b

a
, the lower half line touches the feasible region with

risky assets only.

• Any portfolio on the upper half line involves short selling of

the tangency portfolio and investing the proceeds in the riskfree

asset.

• It makes sense to short sell the tangency portfolio since it has

an expected rate of return lower than the risk free asset.
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Interpretation of the tangency portfolio (market portfolio)

• One-fund theorem states that everyone will purchase a single

fund of risky assets and borrow or lend at the risk free rate.

• If everyone purchases the same fund of risky assets, what must

that fund be? This fund must equal the market portfolio.

• The market portfolio is the summation of all assets. If everyone

buys just one fund, and their purchases add up to the market,

then that one fund must be the market as well.

• In the situation where everyone follows the mean-variance method-

ology with the same estimates of parameters, the efficient fund

of risky assets will be the market portfolio.
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How does this happen? The answer is based on the equilibrium

argument.

• If everyone else (or at least a large number of people) solves the

problem, we do not need to. The return on an asset depends

on both its initial price and its final price. The other investors

solve the mean-variance portfolio problem using their common

estimates, and they place orders in the market to acquire their

portfolios.

• If orders placed do not match what is available, the prices must

change. The prices of assets under heavy demand will increase;

the prices of assets under light demand will decrease. These

price changes affect the estimates of asset returns directly, and

hence investors will recalculate their optimal portfolio.
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• This process continues until demand exactly matches supply;

that is, it continues until there is equilibrium.

Summary

• In the idealized world, where every investor is a mean-variance

investor and all have the same estimates, everyone buys the

same portfolio, and that must be equal to the market portfolio.

• Prices adjust to drive the market to efficiency. Then after other

people have made the adjustments, we can be sure that the

efficient portfolio is the market portfolio, so we need not make

any calculations.
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