
Homework for Math 6050E: PDEs, Fall 2016

Tianling Jin

December 1, 2016

Deadline: 3pm on 19 December, 2016.

Set 3

In this homework set, we always assume the coefficients of the various PDEs are smooth and
satisfy the uniform ellipticity condition. Also, Ω ⊂ Rn is always an open, bounded set with
smooth boundary ∂Ω.

Almost all the problems below are from Evans’ book.

1. Consider the Laplacian equation with potential function c(x):

−∆u+ cu = 0, (1)

and the equation in divergence form

− div(a∇u) = 0, (2)

where the function a(x) is positive.
(a): Show that if u solves (1) and w > 0 also solves (1), then v := u/w solves (2) for a := w2.
(b): Conversely, show that if v solves (2), then u := va1/2 solves (1) for some potential c.

2.A function u ∈ H2
0 (Ω) is a weak solution of this boundary value problem for the biharmonic

equation {
∆2u = f in Ω

u = ∂u
∂ν = 0 on ∂Ω

(3)

provided ∫
Ω

∆u∆vdx =

∫
Ω
fvdx for all v ∈ H2

0 (Ω).

Given f ∈ L2(Ω), prove that there exists a unique weak solution of (3).

3. Assume Ω is connected. A function u ∈ H1(Ω) is a weak solution of the Neumann’s problem{
∆u = f in Ω
∂u
∂ν = 0 on ∂Ω

(4)
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if ∫
Ω
∇u∇vdx =

∫
Ω
fvdx for all v ∈ H1(Ω).

Suppose f ∈ L2(Ω). Prove that (4) has a weak solution if and only if∫
Ω
fdx = 0.

4. Let u ∈ H1(Rn) have compact support and be a weak solution of the semilinear PDE

−∆u+ c(u) = f in Rn,

where f ∈ L2(Rn) and c : R→ R is smooth with c(0) = 0 and c′ ≥ 0. Prove u ∈ H2(Rn).

5. Let u be a smooth solution of Lu := −
∑n

i,j=1 a
ijuij = 0 in Ω. Assume all the coefficients aij

are smooth and have bounded derivatives. Set v := |∇u|2 + λu2. Show that Lv ≤ 0 in Ω if λ is
large enough. Then prove that

‖∇u‖L∞(Ω) ≤ C(‖∇u‖L∞(∂Ω) + ‖u‖L∞(∂Ω)).

6. Assume Ω is connected. Use (a) energy methods and (b) the maximum principle to show that
the only smooth solutions of the Neumann boundary value problem{

∆u = 0 in Ω
∂u
∂ν = 0 on ∂Ω

are constant functions.

7. Assume u ∈ H1(Ω) is a bounded weak solution of

−
n∑

i,j=1

(aijui)j = 0 in Ω.

Let φ : R → R be a convex and smooth function. Set w = φ(u). Show that w is a weak
subsolution, that is,

B[w, v] ≤ 0 for all v ∈ H1(Ω), v ≥ 0.

8. We say that the uniformly elliptic operator

Lu := −
n∑

i,j=1

aijuij + biui + cu

satisfies the weak maximum principle if for all u ∈ C2(Ω) ∩ C(Ω){
Lu ≤ 0 in Ω

u ≤ 0 on ∂Ω
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implies that u ≤ 0 in Ω. Suppose that there exists a function v ∈ C2(Ω)∩C(Ω) such that Lv ≥ 0
in Ω and v > 0 in Ω. Show that L satisfies the weak maximum principle. Note that we do NOT
have sign assumption on c.

Hint: Find an elliptic operator M with no zeroth order term such that w := u/v satisfies Mw ≤ 0
in the region {u > 0}. To do this, first compute (v2wi)j . See also the first problem here.

9. Let u ∈ C2(Ω) ∩ C1(Ω) satisfy ∆u = 0 in Ω. Assume that u = ∂u
∂ν = 0 on an open, smooth

portion of ∂Ω. Prove that u is identically zero.

Set 2

1. Let 0 < α < 1, 0 < β ≤ 1 and K > 0 be constants. Let u ∈ L∞([−1, 1]) satisfy
‖u‖L∞([−1,1]) ≤ K. Define, for h ∈ R with 0 < |h| ≤ 1,

vβ,h(x) =
u(x+ h)− u(x)

|h|β
, x ∈ Ih,

where Ih = [−1, 1− h] if h > 0 and Ih = [−1− h, 1] if h < 0. Assume that vβ,h ∈ Cα(Ih) and
‖vβ,h‖Cα(Ih) ≤ K for every 0 < |h| ≤ 1. Prove that

(i): If α+ β < 1 then u ∈ Cα+β([−1, 1]) and ‖u‖Cα+β([−1,1]) ≤ CK;

(ii): If α+ β > 1 then u ∈ C0,1([−1, 1]) and ‖u‖C0,1([−1,1]) ≤ CK,

where the constants C in (i) and (ii) depend only on α+ β.

2. Let Ω ⊂ Rn be an open set. Suppose u ∈ L1
loc(Ω) is a very weak solution of the Laplacian

equation in the sense that ∫
Ω
u(x)∆ϕ(x)dx = 0 for all ϕ ∈ C∞c (Ω).

Prove that (up to redefinition on a set of measure zero) u is smooth in Ω and satisfies ∆u = 0
pointwise in Ω.

Hint: use mollifiers to smooth u and pass to the limit.

3. Assume 0 < β < γ ≤ 1 and Ω is an open set. Prove the interpolation inequality

‖u‖C0,γ(Ω) ≤ ‖u‖
1−γ
1−β
C0,β(Ω)

‖u‖
γ−β
1−β
C0,1(Ω)

.

4. Prove directly that if u ∈ W 1,p(0, 1) for some 1 ≤ p < ∞, where (0, 1) in the open interval
on the real line, then u is equal a.e. to an absolutely contnuous function, and u′ (which exists a.e.)
belongs to Lp(0, 1).
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5. Use integration by part to prove the interpolation inequality:∫
Ω
|∇u|2dx ≤ C

(∫
Ω
u2dx

)1/2(∫
Ω
|∇2u|2dx

)1/2

for all u ∈ C∞c (Ω). Assume Ω is bounded and ∂Ω is smooth, prove this inequality for u ∈
H2(Ω) ∩H1

0 (Ω).

6. Suppose Ω is open and connected, and u ∈W 1,p(Ω) with 1 ≤ p ≤ ∞ satisfies that

∇u = 0 in Ω.

Prove that u is constant in Ω.

7. (Chain rule) Assume F : R → R is C1, with F ′ bounded. Suppose Ω is bounded and
u ∈W 1,p(Ω) for some 1 ≤ p ≤ ∞. Show that

v := F (w) ∈W 1,p(Ω) and vxi = F ′(u)uxi , i = 1, · · · , n.

8. Fix α > 0 and let Ω = B(0, 1) the unit ball centered at the origin. Show that there exists a
constant C depending only on n, α such that∫

Ω
u2dx ≤ C

∫
Ω
|∇u|2dx

for all those u ∈ H1(Ω) satisfying

|x ∈ Ω : u(x) = 0| ≥ α.

9. Assume 1 ≤ p ≤ ∞ and Ω is bounded and open. Let u ∈ W 1,p(Ω). Define u+ = max(u, 0)
and u− = −min(u, 0). Prove that u+, u−, |u| ∈W 1,p(Ω). Moreover,

∇u+ =

{
∇u a.e. on {u > 0}
0 a.e. on {u ≤ 0},

∇u− =

{
0 a.e. on {u ≥ 0}
−∇u a.e. on {u < 0}.

Also, prove that∇u = 0 a.e. on the set {u = 0}.

Note that the above problems 3-9 are from the main reference book: PDEs by L.C. Evans.

10. Let Ω be a non-empty open set in Rn. Let 1 < p <∞. Prove that W 1,p(Ω) is reflexive.

11. (Hardy-Sobolev inequality) Let n ≥ 3 and s ∈ (0, 2]. Prove that there exists a constant C > 0
depending only n and s such that∫

Rn

|u|
2(n−s)
n−2

|x|s

n−2
n−s

≤ C
∫
Rn
|∇u|2dx

for all u ∈ C∞c (Rn).
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Set 1

1. Write down an explicit formula for the solution of the following initial-value problem:{
ut + b · ∇u+ cu = 0 in Rn × (0,∞)

u = g on Rn × {t = 0}.

Here c ∈ R and b ∈ Rn are constants.

2. Prove that Laplacian equation ∆u = 0 is rotational invariant, that is, ifO is an orthogonal n×n
matrix and we define

v(x) = u(Ox) x ∈ Rn

then ∆v = 0.

3. Let φ : R→ R be smooth and convex. Assume that u is harmonic and v := φ(u). Prove that v
is subharmonic. Also, prove that w := |∇u|2 is subharmonic.

4. Let B be the unit ball centered at the origin in Rn. Let u be a smooth solution of{
−∆u = f in B
u = g on ∂B.

Prove that there exists a positive constant C, which depends only on n, such that

max
B
|u| ≤ C(max

∂B
|g|+ max

B
|f |).

5. Let B+ denote the open half-ball {x ∈ Rn : |x| < 1, xn > 0}. Assume that u ∈ C(B+) is
harmonic in B+ and u = 0 on ∂B+ ∩ {xn = 0}. For every x ∈ B, set

v(x) :=

{
u(x) if xn > 0

−u(x1, . . . , xn−1,−xn) if xn < 0.

Prove that v is harmonic in B.

Note that the above 5 problems are from the main reference book: PDEs by L.C. Evans.

6. Prove that every positive harmonic function in the whole space Rn has to be a constant function.

7. Let u be a harmonic function in an open set Ω ⊂ Rn with n ≥ 3. Let ξ ∈ Rn and λ > 0. Define

uξ,λ(x) :=

(
λ

|x− ξ|

)n−2

u

(
ξ +

λ2(x− ξ)
|x− ξ|2

)
.

This uξ,λ is called the Kelvin transform of u. Prove that uξ,λ is also harmonic in its domain.
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8. Let B be the unit ball in Rn centered at the origin. Let u be a positive harmonic function in
B \ {0}. Prove that there exist a harmonic function v in B and a constant c ≥ 0 such that

u(x) =

{
c|x|2−n + v(x), when n ≥ 3

c| log |x||+ v(x), when n = 2
for all x ∈ B \ {0}.

This theorem can be stated as: Every positive harmonic function in the punctured ball with isolated
singularity has to be a fundamental solution plus a harmonic function in the whole ball.
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