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1 Variational methods

We discuss an example of the use of variational methods in obtaining existence of solutions.

Theorem 1.1. Let Ω ⊂ Rn be a smooth bounded open set, with n ≥ 3. Let 1 < p < n+2
n−2 . Then

there exists a positive function u ∈ C3(Ω) satisfies{
−∆u = up in Ω

u = 0 on ∂Ω
(1)

Proof. For u ∈ H1
0 (Ω), define the energy functional

I[u] =

∫
Ω |∇u|

2(∫
Ω |u|p+1

) 2
p+1

and
m = inf

u∈H1
0 (Ω)

I[u].

Clearly, m ≥ 0.
We will show in the below that m is attained by some function in H1

0 (Ω), which will be called
a minimizer. Moreover, we will show that this minimizer will be a desired solution of (1).

Let {uk} be a sequence in H1
0 (Ω) such that

I[uk]→ m as k →∞.

By a normalization, we may assume that∫
Ω
|uk|p+1 = 1.

Consequently, uk is a bounded sequence in H1
0 (Ω). Therefore, there exists u ∈ H1

0 (Ω) such that

uk ⇀ u weakly in H1
0 (Ω).

Consequently, ∫
Ω
|∇u|2 ≤ lim inf

k→∞

∫
Ω
|∇uk|2 ≤ m.
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Meanwhile, since p+ 1 < 2n
n−2 , it follows from the Rellich compactness theorem that

uk → u strongly in Lp+1(Ω).

So, ∫
Ω
|u|p+1 = 1.

Therefore,
I[u] ≤ m,

and thus,
I[u] = m.

Since I[|u|] ≤ I[u], we have that u ≥ 0 or u ≤ 0. So we assume that u ≥ 0. Since
∫

Ω |u|
p+1 = 1,

u 6≡ 0.
So we have found a minimizer u for m. This implies that for every ϕ ∈ H1

0 (Ω),

0 =
d

dt

∣∣∣∣
t=0

I[u+ tϕ].

A calculation yield

0 = 2

∫
Ω
∇u · ∇ϕ− 2m

∫
Ω
upϕ,

that is ∫
Ω
∇u · ∇ϕ−m

∫
Ω
upϕ = 0

So u is weak solution of (1) (in the distribution sense) after a scaling (ũ = cu by some proper
positive constant c).

Two regularity theory:
1. W 2,p theory, that is for q ∈ (1,∞), if −∆u = f , where f ∈ Lq, then u ∈W 2,q

loc .
2. Schauder theory, that is for α ∈ (0, 1), if f ∈ Cα, then u ∈ C2,α

loc .
These two theories plus Sobolev embedding implies that the solutions of (1) u ∈ C3. This is

called bootstrap arguments. Note that such bootstrap arguments will NOT work when p = n+2
n−2 .

Finally, u is positive in Ω by the strong maximum principle.

Next, we will show that the equation (1) does not have non-trivial solutions when p ≥ n+2
n−2

and when the domain Ω is strictly star-shaped with respect to zero, that is x · ν > 0 everywhere
on ∂Ω. Here, ν is the outer normal of Ω

Theorem 1.2 (Pohozaev). Let p > n+2
n−2 and Ω is strictly star-shaped with respect to zero. Suppose

u ∈ C2(Ω) is a solution of {
−∆u = |u|p−1u in Ω

u = 0 on ∂Ω.
(2)

Then
u ≡ 0 in Ω.
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Proof. Multiplying x · ∇u on the both sides of (2) and doing some calculations, we have(
n− 2

2

)∫
Ω
|∇u|2 +

1

2

∫
∂Ω
|∇u|2(ν · x) =

n

p+ 1

∫
Ω
|u|p+1.

This is usually called the Pohozaev identity.
Multiplying u on the both sides of (2) and integrating by parts, we have∫

Ω
|∇u|2 =

∫
Ω
|u|p+1.

Thus,

0 ≤ 1

2

∫
∂Ω
|∇u|2(ν · x) =

(
n

p+ 1
− n− 2

2

)∫
Ω
|u|p+1 ≤ 0, (3)

where we used the fact that p > n+2
n−2 in the last inequality. Therefore, u ≡ 0.

Remark 1.3. Theorem 1.2 also holds for p = n+2
n−2 . In this case, it follows from (3) that∇u = 0 on

∂Ω, since x ·ν > 0. Then by a unique continuation property, u ≡ 0, which is slightly complicated.
However, if one additionally assumes that u ≥ 0 in Ω, then

0 =

∫
Ω
−∆u =

∫
Ω
up,

from which u ≡ 0 follows.

Remark 1.4. The assumption that Ω is star shaped is necessary in Theorem 1.2. For example, if
Ω is an annulus, then there exists a positive radial solution of{

−∆u = u
n+2
n−2 in Ω

u = 0 on ∂Ω

2 Method of subsolutions and supersolutions

We will investigate the boundary -value problem for the nonlinear Poisson equation{
−∆u = f(u) in Ω

u = 0 on ∂Ω,
(4)

where f : R→ R is smooth and ‖f ′‖L∞(R) ≤ C for some constant C.

Definition 2.1. (i). We say that ū ∈ H1(Ω) is a weak supersolution of (4) if∫
Ω
∇ū · ∇vdx ≥

∫
Ω
f(ū)vdx for every v ∈ H1

0 (Ω), v ≥ 0 a.e.

(ii). Similarly, we say that u ∈ H1(Ω) is a weak subsolution of (4) if∫
Ω
∇ū · ∇vdx ≤

∫
Ω
f(ū)vdx for every v ∈ H1

0 (Ω), v ≥ 0 a.e.
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(ii). We say that u ∈ H1
0 (Ω) is a weak solution of (4) if∫
Ω
∇ū · ∇vdx =

∫
Ω
f(ū)vdx for every v ∈ H1

0 (Ω).

Note that if ū, u ∈ C2(Ω), then we have

−∆ū ≥ f(ū), −∆u ≤ f(u).

Theorem 2.2. Assume there exist a weak supersolution ū and a weak subsolution u of (4) satis-
fying

u ≤ 0, ū ≥ 0 on ∂Ω in the trace sense , u ≤ ū a.e. in Ω.

Then there exists a weak solution u of (4) such that

u ≤ u ≤ ū a.e. in Ω.

Proof. Since ‖f ′‖L∞(R) ≤ C for some constant C, we can choose a large λ > 0 such that

g(z) := f(z) + λz

is an increasing function.
Now we denote u0 = u. Given uk, k = 0, 1, · · · ,, we are going to inductively define uk+1 be

the unique weak solution of the following liner boundary-value problem{
−∆uk+1 + λuk+1 = f(uk) + λuk in Ω

u = 0 on ∂Ω.

We claim that
u = u0 ≤ u1 ≤ u2 ≤ · · · ≤ uk ≤ uk+1 ≤ · · · ≤ ū. (5)

To prove this claim, we first note that for k = 0,∫
Ω
∇(u0 − u1) · ∇v + λ(u0 − u1)v ≤ 0 for every v ∈ H1

0 (Ω), v ≥ 0 a.e.

Choose v = (u0 − u1)+, we obtain∫
Ω
∇(u0 − u1) · ∇(u0 − u1)+ + λ(u0 − u1)(u0 − u1)+ ≤ 0

This implies that (u0 − u1)+ = 0, that is, u0 ≤ u1. Now we assume inductively that

uk−1 ≤ uk.

Then we have∫
Ω
∇(uk − uk+1) · ∇v + λ(uk − uk+1)v

= (f(uk−1 + λuk−1 − f(uk)− λuk))v for every v ∈ H1
0 (Ω), v ≥ 0 a.e.
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Choosing v = (uk − uk+1)+ will lead to that (uk − uk+1)+ = 0, that is uk ≤ uk+1. This proves
the claim on the monotonicity of the sequence {uk}.

Then we show that uk ≤ ū for all k. This is true for k = 0. Assume the induction that uk ≤ ū,
then we have ∫

Ω
∇(uk+1 − ū) · ∇v + λ(uk+1 − ū)v

= (f(uk + λuk − f(ū)− λū))v for every v ∈ H1
0 (Ω), v ≥ 0 a.e.

and let v = (uk+1 − ū)+, we have (uk+1 − ū)+ = 0, that is uk+1 ≤ ū.
Now, let

u = lim
k→∞

uk.

By dominated convergence theorem, uk → u in L2(Ω). Since ‖f(uk)‖L2(Ω) ≤ C(‖uk‖L2 + 1) ≤
C(‖ū‖L2 + 1), we have that

sup
k
‖uk‖H1

0 (Ω) <∞.

Therefore, subject to a subsequence which is still denoted as {uk},we have uk ⇀ u weakly in
H1

0 (Ω). To verify that u is a weak solution of (4), we notice that∫
Ω
∇ūk+1 · ∇v + λuk+1vdx =

∫
Ω

(f(uk) + λuk)vdx for every v ∈ H1
0 (Ω).

Sending k →∞ and cancelling the term with λ, we have the confirm∫
Ω
∇ū · ∇vdx =

∫
Ω
f(u)vdx for every v ∈ H1

0 (Ω).

Note that the monotonicity (5) can also be proved by maximum principle if ū, u are smooth.
Then by the Schauder estimate, we have that every uk is smooth. Then

−∆(uk − uk+1) + λ(uk − uk+1) = f(uk−1) + λuk−1 − f(uk)− λuk ≤ 0

in the classical sense. Since uk ≤ uk+1 on ∂Ω, we have uk ≤ uk+1 in Ω.

3 The Dirichlet problem: Perron’s method

In this section, we will discuss the solvability of{
−∆u = 0 in Ω,

u = ϕ on ∂Ω.
(6)

Theorem 3.1. Let Ω ⊂ Rn be a bounded open set. Suppose ∂Ω ∈ C2. Let ϕ be a continuous
function on ∂Ω. Then there exists a solution u ∈ C2(Ω) ∩ C0(Ω) of (6).

Remark: That ∂Ω satisfies the exterior ball condition at every point on ∂Ω would be sufficient.
That is, for every ξ ∈ ∂Ω, there exists a ball Br(y) such that Br(y) ∩ Ω = {ξ}.

We need some generalized subharmonic functions first.
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Definition 3.2. A C0(Ω) function u is called subharmonic (or superharmonic) in Ω if for every
ball B ⊂⊂ Ω and every harmonic function h in B satisfying u ≤ (≥)h on ∂B, we also have
u ≤ (≥)h in B.

Such subharmonic functions have several useful properties:

1. If u is subharmonic in a connected domain in Ω, then it satisfies the strong maximum
principle in Ω. That is, if v is super harmonic in Ω with v ≥ u on ∂Ω, then either u > v in Ω or
v ≡ u. To prove this, we suppose the contrary that at some point x0 ∈ Ω, we have

(u− v)(x0) = sup
Ω

(u− v) = M ≥ 0,

but there is a ball B = Br(x0) such that u − v 6≡ M on ∂B. Let ū, v̄ be the harmonic functions
respectively equal to u, v on ∂B (this is can be achieved by Green’s representation). Then one
sees that

M ≥ sup
∂B

(ū− v̄) ≥ (ū− v̄)(x0) ≥ (u− v)(x0) = M.

Therefore, every inequality in the above has to be an equality. By the strong maximum principle
for harmonic functions, it follows that ū− v̄ ≡M . Thus u− v ≡M , which is a contradiction.

2. Let u be subharmonic in Ω andB is a ball strictly contained in Ω. Denote ū as the harmonic
function in B satisfying ū = u on ∂B. We define in Ω he harmonic lifting of u by

U(x) =

{
ū(x), x ∈ B,
u(x), x ∈ Ω \B.

Then the function U is also subharmonic in Ω. This can be proved as follows. Let B′ ⊂ Ω be an
arbitrary ball. Let h be harmonic in B such that h = U on ∂B′. Then h ≥ u on ∂B′, and thus,
h ≥ u in B′. So h ≥ U in B′ \ B. Since U is harmonic in B, by maximum principle, we have
h ≥ U in B ∩B′. Hence, U ≤ h in B′, and thus, U is subharmonic in Ω.

3. Let u1, u2, · · · , uk be subharmonic in Ω. Then the function u(x) = max(u1, · · · , uk) is
also subharmonic which is a trivial consequence of the definition of subharmonic functions.

Now let us prove Theorem 3.1. A C0(Ω) function u is called a subsolution of (6) if u is
subharmonic, and u ≤ ϕ on ∂Ω. Similarly, a C0(Ω) function v is called a supersolution of (6) if
v is subharmonic, and v ≥ ϕ on ∂Ω. Denote S be the set of all subsolutions of (6). S 6= ∅ since
the constant function inf∂Ω ϕ is a subsolution.

Proposition 3.3. The function u(x) = supv∈S y(x) is harmonic in Ω.

Proof. Since sup∂Ω ϕ is a super solution, we know that v ≤ sup∂Ω ϕ for every v ∈ S. Thus, u is
well-defined.

Let y ∈ Ω be a fixed point. There exists vk ∈ S such that

vk(y)→ u(y).

By replacing vk with max(vk, inf ϕ), we may assume that the sequence {vk} is bounded. Choose
R > 0 such that B = BR(y) ⊂⊂ Ω, and define Vk as the harmonic lifting of vk in B. Then Vk ∈
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S. By Harnack inequality and gradient estimate, there exists a subsequence {Vnk} converging
uniformly in every ball Bρ(y) with ρ < R to a harmonic function in B. Clearly, v ≤ u in B and
v(y) = u(y).

We are going to show that v = u in B. Suppose v(z) < u(z) for some z ∈ B. Then there
exists w ∈ S such that v(z) < w(z). Let wk = max(Vnk , w) and Wk be its harmonic lifting in
B. As before, by Harnack and gradient estimate, a subsequence of Wk converges to a harmonic
function w in B satisfying v ≤ w ≤ u. Since v(y) = u(y), we have v(y) = w(y), and by strong
maximum principle. v ≡ w, which contradicts with v(z) < w(z) ≤ w(z).

Therefore, the u obtained in the above proposition is a candidate solution of (6). In the below,
we will show that this u indeed satisfies the boundary condition u = ϕ on ∂Ω, which will finish
the proof of Theorem 3.1. As along as the boundary ∂Ω satisfies the exterior boundary, we can
construct some barrier functions for your purpose.

Proof of Theorem 3.1. For ξ ∈ ∂Ω, there exists a ball B = BR(y) such that B ∩Ω = {ξ}. Define

w(x) :=

{
R2−n − |x− y|2−n, n ≥ 3

− logR+ log |x− y|, n = 2.

Note that w(ξ) = 0, w(x) > 0 in Ω \ {ξ}, and w is harmonic.
Let M = sup∂ ϕ. Since ϕ is a continuous function, for ε > 0, there exists δ > 0 such that

|ϕ(x)− ϕ(ξ)| < ε, |x− ξ| < δ.

Choose κ large enough such that

κw(x) ≥ 2M |x− ξ| ≥ δ.

Then ϕ(ξ) + ε + κw and ϕ(ξ) − ε − κw are respectively supersolution and subsolutions of (6).
Therefore,

ϕ(ξ)− ε− κw(x) ≤ u(x) ≤ ϕ(ξ) + ε+ κw(x).

Hence
|u(x)− ϕ(ξ)| ≤ ε+ κw(x).

Since w(ξ) = 0, we obtain that

u(x)→ ϕ(ξ) as x→ ξ.

4 Schauder estimates

We first prove the following Schauder estimates for Possion’s equation.
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Theorem 4.1. Let α ∈ (0, 1), f ∈ Cα(B1), and u ∈ C2(B1) be a solution of

−∆u = f in B1.

Then there exists C > 0 depending only on α and the dimension n such that

‖u‖C2,α(B1/2) ≤ C(‖u‖L∞(B1) + ‖f‖Cα(B1))

Proof. First of all, by multiplying some proper constant, we can assume that ‖u‖L∞(B1)+‖f‖Cα(B1) ≤
1. Let ρ = 1/2. For k = 1, 2, 3, · · · , let vk be the solution of{

−∆vk = f(0) in Bk,
vk = u on ∂Bk,

where Bk = Bρk centered at the origin.
Claim 1: ‖vk − v‖L∞(Bk) ≤ Cρ(2+α)k.
This claim can be proved as follows. Let ṽk(x) = ρ−2k(vk − u)(ρkx), where x ∈ B1. Then{

−∆ṽk = f(0)− f(ρk) in B1,

ṽk = 0 on ∂B1,

By the maximum principle (one of the homework problem), we have

‖ṽk‖L∞(B1) ≤ C(‖u‖L∞(∂B1) + ‖f(0)− f(ρkx)‖L∞(B1)) ≤ Cραk,
from which the claim follows.

Claim 2: ‖vk − vk+1‖L∞(Bk+1) ≤ Cρ(2+α)k.
This is because vk − vk+1 is harmonic in Bk+1, and therefore,

‖vk − vk+1‖L∞(Bk+1) = ‖vk − vk+1‖L∞(∂Bk+1) ≤ ‖vk − u‖L∞(∂Bk+1) ≤ Cρ(2+α)k,

where in the last inequality, we use Claim 1.
Let wk = vk+1 − vk, w0 = v1. Then we know that from Claim 2 that, for every x ∈ Bk+2 we

have
|∇jwk(x)| ≤ Cρ(2+α−j)k.

for ρi+3 ≤ |x| < ρi+2,

|u(x)−
∞∑
`=0

w`(0)−
∞∑
`=0

Dw`(0) · x−
∞∑
`=0

1

2
xTD2w`(0)x|

≤ |u(x)−
i∑

`=0

w`(x)|+ |
i∑

`=0

w`(x)−
i∑

`=0

w`(0)−
i∑

`=0

Dw`(0) · x−
i∑

`=0

1

2
xTD2w`(0)x|

+ |
∞∑

`=i+1

w`(0)|+ |
∞∑

l=i+1

Dw`(0) · x|+ 1

2
|
∞∑

`=i+1

xTD2w`(0)x|

≤ ρ(2+α)(i+1) + 2c2|x|3
i∑

`=0

ρ(α−1)` +
∞∑

`=i+1

ρ(2+α)` + |x|
∞∑

`=i+1

c2ρ
(1+α)`

+ |x|2
∞∑

`=i+1

c2ρ
α`

≤ C3|x|2+α.
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So we have proved that there exists a second order polynomial P such that

|u(x)− P (x)| ≤ C|x|2+α

where all the coefficients of the polynomial are universally bounded.
This leads to the conclusion of the theorem.

Theorem 4.2. Let α ∈ (0, 1), f ∈ Cα(B1), aij(x) ∈ Cα(B1), and u ∈ C2(B1) be a solution of

−aij(x)uij(x) = f in B1,

where λI ≤ (aij(x)) ≤ λ−1I in B1. Then there exists C > 0 depending only on α, λ and the
dimension n such that

‖u‖C2,α(B1/2) ≤ C(‖u‖L∞(B1) + ‖f‖Cα(B1)).

Proof. Let ρ = 1/2. For k = 1, 2, 3, · · · , let vk be the solution of{
−aij(0)∂ijvk = f(0) in Bk,
vk = u on ∂Bk,

where Bk = Bρk centered at the origin. Then for ṽk = vk − u, we have

−aij(0)∂ij ṽk = f(0)− f(x) + (aij(0)− aij(x))uij(x) in Bk,

Following the proof in Theorem 4.1, we can show that

[∇2u]Cα(B1/4) ≤ C(‖f‖Cα(B1/2) + ‖u‖L∞(B1/2) + ‖∇2u‖L∞(B1/2)), (7)

where the constant C depends only on α, n, λ. Now that the domain on the two sides of the
inequality are DIFFERENT. Then the conclusion follows from the next iteration lemma.

M. Giaquinta and E. Giusti, On the regularity of the minima of variational integrals. Acta
Math. 148 (1982), 31–46. Lemma 1.1.

Lemma 4.3. Let h(t) be a nonnegative bounded function defined for 0 ≤ T0 ≤ t ≤ T1. Suppose
that for T0 ≤ t < s ≤ T1 we have

h(t) ≤ A(s− t)−α +B + θh(s)

where A,B, α, θ are nonnegative constants, and θ < 1. Then there exists a constant C > 0,
depending only on α, θ such that for every ρ,R, T0 ≤ ρ < R ≤ T1, we have

h(ρ) ≤ C(A(R− ρ)−α +B).

Proof. Consider the sequence {tj} defined by

t0 = ρ, tj+1 − tj = (1− τ)τ j(R− ρ)

with τ ∈ (0, 1). By iteration

h(t0) ≤ θkh(tk) +

(
A

(1− τ)α
(R− ρ)−α +B

) k−1∑
i=0

θjτ−jα.

We choose now τ such that τ−αθ < 1 and let k →∞. Then the conclusion follows.
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Proof of Theorem 4.2 continued. Let

h(t) = [∇2u]Cα(Bt).

We will show that this h will satisfies Lemma 4.3. Let 0 ≤ t < s ≤ 1. For every z ∈ Bt, choose
r = s− t. For x ∈ B1, let

ur(x) = u(z + rx), ãij(x) = aij(z + rx), fr(x) = r2f(z + rx).

Then
−ãij∂ijur(x) = fr(x) in B1.

Therefore, the estimate (7) holds for ur, i.e.,

[∇2ur]Cα(B1/4) ≤ C(‖fr‖Cα(B1/2) + ‖ur‖L∞(B1/2) + ‖∇2ur‖L∞(B1/2)),

Scaling back, we have

[∇2u]Cα(Br/4(z)) ≤ Cr−2−α(‖f‖Cα(B1) + ‖u‖L∞(B1)) + Cr−α‖∇2u‖L∞(Br/2(z)).

By a covering, we have

[∇2u]Cα(Bt) ≤ Cr
−3(‖f‖Cα(B1) + ‖u‖L∞(B1)) + Cr−1‖∇2u‖L∞(B(s+t)/2).

(From Gilbarg-Trudinger’s book)We have the following interpolation lemma (the following is not
sharp): there exists C > 0 independent of s, t such that for all ε > 0,

‖∇2u‖L∞(B(s+t)/2) ≤ εr−2[∇2u]Cα(Bs) + Cε−
2+α
α r−2‖u‖L∞(Bs).

Choose ε = r3/2C, we have for some β > 0

[∇2u]Cα(Bt) ≤
1

2
[∇2u]Cα(Bs) + Cr−β(‖f‖Cα(B1) + ‖u‖L∞(B1)).

Then the conclusion from from Lemma 4.3.

5 De Giorgi estimates

Let aij ∈ L∞(B1) and uniformly elliptic, that is

λI ≤ aij(x) ≤ ΛI in B1

for some λ,Λ > 0.

Theorem 5.1 (De Giorgi, 1958). Let u ∈ H1(B1) be a weak solution of

− ∂j(aij∂iu) = 0 in B1 (8)

Then there exists α ∈ (0, 1) and C > 0, both of which depends only on n, λ and Λ, such that

‖u‖Cα(B1/2) ≤ C‖u‖L2(B1).
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The proof of this theorem consists of two steps: from L2 to L∞, and from L∞ to Cα.

Proposition 5.2 (from L2 to L∞). Let u ∈ H1(B1) be a weak subsolution of (8), that is,

−∂j(aij∂iu) ≤ 0 in B1.

Then there exists a constant δ = δ(n, λ,Λ) such that if ‖u+‖L2(B1) < δ, then we have

‖u+‖L∞(B1/2) ≤ 1.

Applying this proposition to (
√
δ/‖u+‖L2(B1))u, we obtain the following theorem:

Theorem 5.3 (from L2 to L∞). Let u ∈ H1(B1) be a weak subsolution of (8), that is,

−∂j(aij∂iu) ≤ 0 in B1.

Then
‖u+‖L∞(B1/2) ≤ C(n, λ,Λ)‖u+‖L2(B1)

Consequently, if u ∈ H1(B1) is a weak solution of (8), then

‖u‖L∞(B1/2) ≤ C(n, λ,Λ)‖u‖L2(B1)

To prove Proposition 5.2, we shall use the following Caccioppoli inequality (or energy esti-
mate)

Lemma 5.4 (Caccioppoli inequality). Let u ∈ H1(B1) be a weak subsolution of (8) and ϕ ∈
C∞c (B1), we have ∫

B1

(∇(ϕu+))2 ≤ C(n, λ,Λ)

∫
B1

(u+)2(∇ϕ)2.

Proof. Since u is a subsolution, we have∫
B1

aij∂iu∂j(ϕ
2u+) ≤ 0.

That is ∫
B1

aijϕ
2∂iu

+∂ju
+ + 2

∫
B1

aijϕu
+∂iu

+∂jϕ ≤ 0.

Then
1

λ

∫
B1

(∇(ϕu+))2 ≤
∫
B1

aij∂i(ϕu
+)∂j(ϕu

+)

≤ C
∫
B1

|∇ϕ|2(u+)2 +

∫
B1

aijϕ
2∂iu

+∂ju
+ +

∫
B1

aijϕu
+∂iu

+∂jϕ

+

∫
B1

aijϕu
+∂iu∂jϕ

≤ C
∫
B1

|∇ϕ|2(u+)2 + 3(aij + aji)ϕu
+∂iu

+∂jϕ

≤ C
∫
B1

|∇ϕ|2(u+)2 + |u+∂i(u
+ϕ)∂jϕ|

≤ C
∫
B1

|∇ϕ|2(u+)2 +
1

2λ
(∇(ϕu+))2,

where in the last inequality we have used Holder’s inequality.
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Lemma 5.5. Let u ∈ H1(B1) be a weak solution of (8). Then u+ is a weak subsolution of (8).

Proof. Exercise.

Now we can prove Proposition 5.2.

Proof of Proposition 5.2. We will work on a family of ball

Bk = {|x| ≤ 1/2 + 2−k}

and the family of truncated functions

uk = (u− (1− 2−k))+.

Define
Uk =

∫
Bk

u2
k.

Let ϕk be a sequence of nonnegative shrinking cut-off functions: ϕk = 1 in Bk and ϕ = 0 in
Bc
k−1. Also, |ϕk| ≤ C2k.

Note that where uk+1 > 0, then u > 1− 2−k−1 = 1− 2−k + 2−k−1, and thus, uk > 2−k−1.
Therefore,

{x : ϕk+1uk+1 > 0} ⊂ {x ∈ Bk : uk > 2−k−1}.

We have from the Sobolev inequality with p = 2n
n−2 (or any p if n = 2)(∫

|ϕk+1uk+1|p
)2/p

≤ C
∫
|∇(ϕk+1uk+1)|2.

From Holder inequality∫
|ϕk+1uk+1|2 ≤

(∫
|ϕk+1uk+1|p

)2/p

· |{x : ϕk+1uk+1 > 0}|
2
n .

Therefore,

Uk+1 ≤ C
∫
|∇(ϕk+1uk+1)|2 · |{x : ϕk+1uk+1 > 0}|

2
n .

Using Lemma 5.4, we have

Uk+1 ≤ C22k

∫
supp(ϕk+1)

(uk+1)2 · |{x : ϕk+1uk+1 > 0}|
2
n .

The support of ϕk+1 in contained in Bk and uk+1 ≤ uk, we have

Uk+1 ≤ C22k

∫
Bk

u2
k · |{x : ϕk+1uk+1 > 0}|

2
n .

Since
{x : ϕk+1uk+1 > 0} ⊂ {x ∈ Bk : uk > 2−k−1}.
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we have

|{x : ϕk+1uk+1 > 0}|
2
n ≤ |{x ∈ Bk : uk > 2−k−1}| ≤ 2

4k
n

(∫
Bk

u2
k

) 2
N

= 2
4k
n U

2
n
k .

where the Chebyshev inequality was used in the last inequality.
Therefore, we have

Uk+1 ≤ C24k(Uk)
1+ 2

n .

The as long as U0 = δ is small enough, we will have Uk → 0 as k →∞. This proves that u+ ≤ 1
in B1/2. In fact, Uk decays faster than geometric sequences.

The next step is to prove the regularit from L∞ to Cα. The kep step is this oscillation lemma.

Proposition 5.6. Let u ∈ H1(B2) be a weak subsolution of (8) in B2. Suppose that u ≤ 1 in
B2. Assume that |B1 ∩ {v ≤ 0}| ≥ µ(> 0). Then u ≤ 1 − γ in B1/2, where γ depends only on
λ,Λ, n, µ.

In other words, if u is a subsolution and smaller than one, and is “far from 1” in a set of
non-trivial measure, then u cannot get too close to 1 in B1/2.

Let us postpone the proof to the end, we shall first use this proposition to prove the following
Holder estimate.

Theorem 5.7. Let u ∈ H1(B3) be a weak solution of (8) in B3. Then u ∈ Cα(B1/2). Moreover,

‖u‖Cα(B1/2) ≤ C‖u‖L2(B3).

Here, each of the constants α and C depend only on n, λ,Λ.

Proof. First of all, we know from Theorem 5.3 that

‖u‖L∞(B2) < C‖u‖L2(B3).

Denote
osc Ωu = sup

Ω
u− inf

Ω
u.

Consider the function

v(x) =
2

osc B2u

(
u(x)−

supB2
u+ infB2 u

2

)
,

We have that −1 ≤ v ≤ 1 in B2.
Assume that |B1 ∩ {v ≤ 0}| ≥ |B1|/2, then we can apply Proposition 5.6 on v to obtain

osc B1/2
u ≤ 2− γ. Hence, osc B1/2

u ≤ (1− γ/2)osc B2u.
If |B1 ∩ {v ≥ 0}| ≥ |B1|/2, then the same result holds by working with −v.
Therefore, we have proved that

osc B1/2
u ≤ γ̃osc B2u (9)

with γ̃ = 1− γ/2 < 1 depends only on n, λ,Λ.

13



Take any x0 in B1/2, and introduce the rescaled functions

uk(y) = u(x0 + y/2n), a
(k)
ij (y) = aij(x0 + y/2n).

Then a(k)
ij satisfies the same assumptions as aij , and uk is a weak solution of (8) with aij replaced

by a(k)
ij . We apply recursively (9) to uk to obtain

sup
|x−x0|≤2−k

|u(x0)− u(x)| ≤ 2‖u‖L∞(B2)γ̃
k.

Then for y such that 2−k−1 ≤ |x− x0| < 2−k, we have

|u(x0)− u(x)| ≤ 2‖u‖L∞(B2)γ̃
k ≤ ‖u‖L∞(B2)2 · 2−(k+1)α2(k+1)αγ̃k ≤ C‖u‖L∞(B2)|x− x0|α,

as long as the α is chosen by 2αγ̃ = 1, that is,

α = − log γ̃

log 2
> 0.

Note that this estimate is independent of the choice of x0. Then the conclusion follows.

Now we are going to prove Proposition 5.6. We first note that if the set

|{u ≤ 0} ∩B1| ≥ |B1| − δ/4

then
‖u+‖L2(B1) ≤

√
δ/2,

and thus, by Proposition 5.2, we have
u ≤ 1/2.

So we much bridge the gap between knowing that |{u ≤ 0} ∩ B1| ≥ µ and knowing |{u ≤
0} ∩ B1| ≥ |B1| − δ/4. The main tool is the so-called De Giorgi isoperimetric inequality, which
rough says that for an H1 function u, it must pay in measure to increase from u = 0 to u = 1.

Lemma 5.8. Consider a function w such that
∫
B1
|∇w+|2 ≤ C0. Define

|A| = |{w ≤ 0} ∩B1|,
|E| = |{w ≥ 1} ∩B1|,
|D| = |{0 < w < 1} ∩B1|.

Then there exists a constant C1 depends only on n such that

C0|D| ≥ C1(|A||E|1−
1
n )2.
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Proof. Consider w̄ = sup(0, inf(w, 1)). Note that∇w̄ = ∇w+χ{0≤w≤1}.
For x0 ∈ E we integrate over lines in to x ∈ A

−1 = −w̄(x0) =

∫ 1

0

d

dt
w̄(tx+ (1− t)x0)

=

∫ 1

0
∇w̄(tx+ (1− t)x0) · (x− x0)

Integrating over A, we obtain that

|A| ≤ |
∫ 1

0
dt

∫
A
∇w̄(tx+ (1− t)x0) · (x− x0)|dx

≤
∫ 1

0
dt

∫ 2

0
rn−1dr

∫
∂Br(x0)∩B1

|∇w̄(tx+ (1− t)x0)|rdS(x)

≤ |
∫ 1

0
dt

∫ 2

0
rndr

∫
∂Btr(x0)∩B1

|∇w̄(z)|dS(z)

≤ |
∫ 2

0
rn−1dr

∫ r

0
dt

∫
∂Bt(x0)∩B1

|∇w̄(z)|dS(z)

≤ |
∫ 2

0
rn−1dr

∫ r

0
tn−1dt

∫
∂Bt(x0)∩B1

|∇w̄(z)|
|z − x0|n−1

dS(z)|

≤ C
∫
B1

|∇w̄(z)|
|z − x0|n−1

dz

≤ C
∫
D

|∇w̄(z)|
|z − x0|n−1

dz

Integrating x0 ∈ E, we have

|A||E| ≤ C
∫
D
|∇w̄(z)|dz

∫
E

1

|z − x0|n−1
dx0

Note that ∫
E

1

|z − x0|n−1
dx0 ≤

∫
B

1

|x|n−1
dx = C|E|1/n,

where B is the ball centered at the origin such that |B| = |E|.
Therefore, by Holder inequality,

|A||E| ≤ C|E|1/n|D|1/2(

∫
D
|∇w̄(z)|2dz)1/2.

Proof of Proposition 5.6. We consider the following new sequence of truncation

wk = 2k(u− (1− 2−k))
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Note that wk ≤ 1 in B2 and is also a subsolution. From the Caccippolli inequality, we have∫
B1

|∇w+|2 ≤ C0.

We also have |{wk ≤ 0} ∩B1| ≥ µ. We will apply Lemma 5.8 recursevely on 2wk as long as∫
B1

(w+
k+1)2 ≥ δ.

Note that
|{2wk ≥ 1} ∩B1| = |{wk+1 ≥ 0} ∩B1| ≥

∫
B1

(w+
k+1)2 ≥ δ.

From Lemma 5.8, there exists a positive constant β independent of k such that

|{0 < wk < 1/2} ∩B1| ≥ β.

Therefore,

|{wk+1 ≤ 0} ∩B1| = |{2wk ≤ 1} ∩B1| ≥ |{wk ≤ 0} ∩B1|+ β ≥ · · · ≥ µ+ kα.

This clearly fails after a finite number of k. At this k0, we have for sure that∫
B1

(w+
k0+1)2 ≤ δ.

Then Proposition 5.2 implies that

wk0+1 ≤ 1/2 in B1/2.

Rescaling back, we have

u ≤ 1− 2k0+1 + 2k0+2 = 1− 2k0+2 in B1/2.
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