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1 Introduction

Let 0 < λ ≤ Λ < +∞. For M ∈ S := the set of n× n real symmetric matrices, we define

M−(M,λ,Λ) =M−(M) = λ
∑
ei>0

ei + Λ
∑
ei<0

ei,

M+(M,λ,Λ) =M+(M) = Λ
∑
ei>0

ei + λ
∑
ei<0

ei,

where ei(M) are the eigenvalues of M . Note that suppose u is a (say, C1,1) solution of

aij(x)uij(x) = c(x) in Ω,

where Ω ⊂ Rn is an open set, aij are merely measurable, bounded and satisfying the uniformly
elliptic condition

λI ≤ aij(x) ≤ ΛI in Ω,

and c(x) satisfies ‖c‖L∞(Ω) ≤ C0, then

M−(D2u) = inf
λI≤A≤ΛI

tr(AD2u) ≤ aij(x)uij(x) = c(x) ≤ C0 in Ω,

and
M+(D2u) = sup

λI≤A≤ΛI
tr(AD2u) ≥ aij(x)uij(x) = c(x) ≥ −C0 in Ω.

This note is devoted to regularity estimates for viscosity solutions of fully nonlinear elliptic
equation

F (D2u, x) = 0 in Ω,
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where F is uniformly elliptic, i.e., for every M ∈ S and every x ∈ Ω

λ‖N‖ ≤ F (M +N, x)− F (M,x) ≤ Λ‖N‖ ∀ N ≥ 0.

The regularity estimates we are going to show include: Harnack inequality, Hölder estimates,
C1,α estimates, the Evans-Krylov theorem, Schauder estimates and W 2,p estimates.

• Harnack inequality and Hölder estimates as in the theory of Krylov and Safonov: their
proofs will be presented by following those in [6] without using the ABP estimates, which
is of more freedom, and can be adapted to certain degenerate elliptic equations [6]. More-
over, we will prove Hölder estimates without using the Harnack inequality. The method
of proving the key growth lemma was used before in [2, 11].

• C1,α estimates: their proof follows from the usual Jensen approximation and the differ-
ence quotient method as in [3], which is a quite standard technique as soon as we have the
above Hölder estimate.

• the Evans-Krylov theorem: its proof will be presented as those in [4, 5], which can be
adapted to nonlocal fully nonlinear equations in [5].

• Schauder estimates: their proof will be modified or re-organized compared to those in [3].
With extra work, it can be adapted to nonlocal fully nonlinear equation as in [7].

We say that a constant is universal if it depends only on the ellipticity constants λ,Λ and the
dimension n. All the solutions in this note are understood in the viscosity sense.

2 Hölder regularity and Harnack inequality

Unlike the usual case, we will prove the following Hölder regularity without using the ABP
estimates or the Harnack inequality.

Theorem 2.1. Let u be a continuous function such that

M−(D2u) ≤ C0 in B1,

M+(D2u) ≥ −C0 in B1,

‖u‖L∞(B1) ≤ C0,

then u ∈ Cα(B1/2), and there holds

‖u‖Cα(B1/2) ≤ CC0,

where α ∈ (0, 1) and C > 0 are both universal constants.
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Of course, we can also prove the Harnack inequality without using the ABP estimates.

Theorem 2.2. Let u be a nonnegative continuous function such that

M−(D2u) ≤ C0 in B1,

M+(D2u) ≥ −C0 in B1

Then there holds
sup
B1/2

u ≤ C( inf
B1/2

u+ C0),

where C > 0 is a universal constant.

2.1 A growth lemma

Lemma 2.3. There exists a small universal constant δ > 0 such that for every lower semi-
continuous function u satisfying

u ≥ 0 in B1,

M−(D2u) ≤ 1 in B1,

|{u > 2} ∩B1| > (1− δ)|B1|,

then u > 1 in B1/4.

The proof of Lemma 2.3 is easier to understand when u is a smooth function. Thus, we
will first describe the proof in this case, and then show how this proof works for lower semi-
continuous viscosity super-solution in general.

Proposition 2.4. Lemma 2.3 holds if we assume that u ∈ C2.

Proof. To prove Lemma 2.3, we only need to show that if

u ≥ 0 in B1,

M−(D2u) ≤ 1 in B1,

inf
B1/4

u ≤ 1,
(2.1)

then
|{u ≤ 2} ∩B1| ≥ δ|B1|. (2.2)

Let x0 ∈ B1/4 be such that u(x0) ≤ 1. For every x ∈ B1/4, let y ∈ B1 be a point where the
minimum of u(z) + 4|z − x|2, which is a function of z, is achieved. This is the same as that we
slide the parabola −4|z − x|2 from the below of u until they touch and y is a touch point. Note
that
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• When z ∈ ∂B1, then u(z) + 4|z − x|2 ≥ 0 + 4|1− 1/4|2 = 9/4.

• u(x0) + 4|x0 − x|2 ≤ 1 + 4|1/4 + 1/4|2 = 2 < 9/4.

Therefore, for every x ∈ B1/4, such minimum point y ∈ B1, and u(y) + 4|y − x|2 ≤ u(x0) +
4|x0 − x|2 ≤ 2. In particular, u(y) ≤ 2. Note that for one value of x, there could be more than
one point y where the minimum is achieved. However, the value of y uniquely determines x,
since we must have

∇u(y) + 8(y − x) = 0, D2u(y) + 8I ≥ 0. (2.3)

Thus,

x = y +
∇u(y)

8
.

We define this as a map x = m(y) = y + ∇u(y)
8 , which is onto B1/4. Consequently, we have

that

∇m(y) = I +
D2u(y)

8

Since for each y we know u(y) ≤ 2, the domain U of the map m satisfies that U ⊂ {y ∈ B1 :
u(y) ≤ 2}. Thus, we have

|B1/4| ≤
∫
U
|det∇m(y)|dy ≤

∫
U
| det(I +

D2u(y)

8
)|

On the other hand, from the inequalityD2u(y)+8I ≥ 0 in (2.3) and the equationM−(D2u) ≤
1 it follows that

|D2u| ≤ C

for some positive constant C depending only on λ,Λ, n. Thus, we have

|B1/4| ≤ C|U | ≤ C|{y ∈ B1 : u(y) ≤ 2}|.

We can choose δ universally small such that (2.2) holds.

Remark 2.5. Here we slide a function, which is the parabola −4|z − x|2 in uniformly elliptic
case as in [11], from the below of u until they touch. The choice of this function is one freedom
point of the proof, which may vary from cases to cases. In [2], the square of the distance function
was used, while in [6], the cusp −|z − x|1/2 was used.

Proposition 2.6. Lemma 2.3 holds if we assume that u is semi-concave.
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Proof. We say that u is semi-concave ifD2u ≤ A0 in the sense that u(x)−A0|x|2/2 is concave
for some constant A0. This means that for every point x0 ∈ B1 there exists a vector p ∈ Rn (a
vector in the super-gradient set), which is p = ∇u(x0) in case u is differentiable at x0, so that

u(x) ≤ u(x0) + p · (x− x0) +
A0

2
|x− x0|2. (2.4)

for all x ∈ B1. Basically, a function is semi-concave means that the function can be touched by
a parabola from above.

We also recall that by Alexandrov theorem, the semi-concave function u is pointwise second
differentiable almost everywhere. That means that there exists a set of measure zero E ⊂ B1,
so that at every point x ∈ B1 \ E, the function u is differentiable and there exists a symmetric
matrix, which is denoted as D2u(x), such that

u(y) = u(x) + (y − x) · ∇u(x) +
1

2
〈D2u(x) (y − x), (y − x)〉+ o(|x− y|2).

Moreover, we also have from [8, 10] that

∇u(y) = ∇u(x) +D2u(x) (y − x) + o(|x− y|),

where∇u(y) is any vector in the super-gradient set of u at y.
We are going to show that if u is semi-concave and satisfies (2.1), then (2.2) holds. The proof

will be similar to that of Proposition 2.4 with extra work dealing with semi-concavity instead of
C2.

Let x0 ∈ B1/4 be such that u(x0) ≤ 1. For every x ∈ B1/4, let y ∈ B1 be a point where
the minimum of u(z) + 4|z − x|2, which is a function of z, is achieved. As before, for every
x ∈ B1/4, such minimum point y ∈ B1, and u(y) + 4|y − x|2 ≤ u(x0) + 4|x0 − x|2 ≤ 2. In
particular, u(y) ≤ 2.

Since u is semi-concave, u can be touched by a parabola from above everywhere. At the
point y, u is touched by the parabola −4|z − x|2 + constant at y from below. Therefore, u is
differentiable at y. Consequently, we must have

∇u(y) + 8(y − x) = 0.

Thus,

x = y +
∇u(y)

8
.

We define this as a map x = m(y) = y + ∇u(y)
8 , which is onto B1/4. Moreover, since for each

y we know u(y) ≤ 2, the domain U of the map m satisfies that U ⊂ {y ∈ B1 : u(y) ≤ 2}.
Again, note that at every point in U , the function u can be touched both from below and

from above by two (uniform) parabola. From this it is elementary to check that ∇u is Lipschitz
on U , and thus∇u is differentiable a.e. in U .
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Consequently, we have m is a Lipschitz map and it satisfies that

∇m(y) = I +
D2u(y)

8
a.e. in U.

Thus, we have

|B1/4| ≤
∫
U
|det∇m(y)|dy ≤

∫
U
|det(I +

D2u(y)

8
)|.

On the other hand, since y is a minimum point of u(z) + 4|z−x|2 and∇u is Lipschitz in U , we
have

D2u(y) + 8I ≥ 0 a.e. in U.

Together with the equationM−(D2u) ≤ 1 it follows that

|D2u| ≤ C a.e. in U

for some positive constant C depending only on λ,Λ, n. Thus, we have

|B1/4| ≤ C|U | ≤ C|{y ∈ B1 : u(y) ≤ 2}|.

We can choose δ universally small such that (2.2) holds.

Notice that in the above proof, we only use the property that u is semi-concave, and we
didn’t use the constant A0 in (2.4). Now by Jensen approximation, we are able to prove Lemma
2.3.

Proof of Lemma 2.3. This time we only assume that u is a merely lower semi-continuous super-
solution in B1.

Let v := min(u, 4). Note that v is still a super-solution because it is the minimum of two
super-solutions. We have 0 ≤ v ≤ 4.

Consider the inf-convolution of v of parameter ε > 0:

vε(x) = inf
y∈B1

(v(y) + (2ε)−1|y − x|2).

It is classical (here we may refer to [3]) to prove that vε is still a super-solution at x ∈ B1−η for
η > 0 which will be determined as follows. Let yx ∈ B1 be such that

vε(x) = v(yx) + (2ε)−1|yx − x|2 ≤ v(x).

Then
|yx − x| ≤ 2

√
‖v‖∞ε = 4

√
ε. (2.5)

Thus, for any η > 0, vε is a super-solution in B1−η provided that 4
√
ε < η.

Note that
v(y0) + (2ε)−1|y0 − x|2 ≤ vε(x).

with equality holds for x = 0. Thus, vε is semi-concave.
Since v is lower semicontinuous, it is classical to show that vε Γ-converges to v, i.e.,
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• for every sequence xk → x, lim infk→∞ vk(xk) ≥ v(x);

• for every x there exists a sequence xk → x such that lim supk→∞ vk(xk) = v(x);

We claim that with η = 5
√
ε,

{x ∈ B1 : v > 2} =
⋃
ε>0

{x ∈ B1−δ : vε > 2}.

Indeed, on one hand, we know that v ≥ vε, from which it follows that⋃
ε>0

{x ∈ B1−η : vε > 2} ⊂ {x ∈ B1 : v > 2}.

Now we are going to show that

{x ∈ B1 : v > 2} ⊂
⋃
ε>0

{x ∈ B1−η : vε > 2}.

Let x be such that v(x) > 2. Then v(x) > 2 + h for some h > 0. Also

vε(x)− v(x) ≥ v(yx)− v(x).

Since u is lower semi-continuous, v is lower semi-continuous as well. Then it follows from (2.5)
that when ε is sufficiently small, we have

v(yx)− v(x) > −h.

It follows that
vε(x) > v(x)− h > 2.

This finishes the claim.
Note that

{x ∈ B1 : u > 2} = {x ∈ B1 : v > 2},

and as ε→ 0, the sets {x ∈ B1−η : vε > 2} is an increasing nested collection. Therefore

|{x ∈ B1 : u > 2}| = |{x ∈ B1 : v > 2}| = lim
ε→0
|{x ∈ B1−η : vε > 2}|.

For ε sufficiently small, we can apply Proposition 2.6 (appropriately scaled to the ball B1−η
instead of B1) and obtain that vε ≥ 1 in B(1−η)/4. Since u ≥ vε and η is arbitrarily small, the
proof is finished.
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2.2 A doubling property

Consider the barrier function b(x) = |x|−p. We compute, for x ∈ B2 \ {0},

M−(D2b) = λp(p+ 1)|x|−p−2 − Λ(d− 1)p|x|−p−2

= p|x|−p−2 (λ(p+ 1)− Λ(d− 1))

≥ p|x|−p−2 if p is large enough.

Thus, the function b(x) = |x|−p is a sub-solution of the Pucci equationM−(D2b) ≥ p2−p−2 in
B2 \ {0}.

Using this barrier function, we prove the following doubling property for lower bounds of
super-solutions.

Lemma 2.7 (Doubling property for super-solutions). There exists a large universal constant
M1 > 1 such that if u is a nonnegative lower semi-continuous function satisfyingM−(D2u) ≤
1 in B2 and u > M1 in B1/4, then u > 1 in B1.

Proof. We compare the function u with

ϕ(x) := M1
(|x|−p − 2−p)

2 · 4p
.

We choose M1 ≥ 1 sufficiently large so that ϕ > 1 in B3/2. In B2 \ {0}, we have

M−(D2ϕ) =
M1

2 · 4p
M−(D2b) ≥ M1

2 · 4p
p2−p−2 ≥ 2 for M large enough.

Moreover, ϕ = 0 on ∂B2 and ϕ < M1 in ∂B1/4. Therefore, ϕ ≤ u in B2 \ B1/4 (this is the
comparison principle between the viscosity super-solution u and the classical sub-solution B,
which follows directly from the definition of viscosity solution).

Therefore, we have u > 1 in B3/2.

Combining Lemma 2.3 and Lemma 2.7, we obtain the following corollary

Corollary 2.8. There exists a small universal constant δ > 0 and a large universal constant
M > 0 so that for every lower semi-continuous function u : B2 → R satisfying

u ≥ 0 in B2,

M−(D2u) ≤ 1 in B2,

|{u > M} ∩B1| > (1− δ)|B1|,

we have u > 1 in B3/2.
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Proof. Let M1 ≥ 1 be the one in Lemma 2.7 and let M = 2M1. Then the function v = u/M1

satisfies the assumption of Lemma 2.3. We conclude that v > 1 in B1/4, i.e. u > M1 in B1/4.
We then can apply Lemma 2.7 to obtain u > 1 in B3/2.

The following corollary is just a scaled version of the above result.

Corollary 2.9. There exists a small universal constant δ > 0 and a large universal constant
M > 0 so that for every r ≤ 1, every κ ≥ 1 and every lower semi-continuous function u :
Br → R such that

u ≥ 0 in B2r,

M−(D2u) ≤ κ in B2r,

|{u > κM} ∩Br| > (1− δ)|Br|,

then u > κ in B3r/2.

Proof. The scaled function ur(x) = u(rx)/κ satisfies the scaled equation

M−(D2ur) ≤ r2 ≤ 1 in B2.

Moreover, ur ≥ 0 in B2 and |{ur > M} ∩ B1| > (1 − δ)|B1|. So we can apply Corollary 2.8
to ur and have ur > 1 in B3/2. Hence, u > κ in B3r/2.

2.3 The Lε estimate

To obtain the so-called Lε estimate, we first need the following growing ink-spots which was
first introduced by E.M. Landis. We will prove it by using Vitali’s covering lemma instead of
the usual Caldéron-Zygmund decomposition.

Lemma 2.10 (Growing ink-spots lemma). Let E ⊂ F ⊂ B1 be two open sets. Suppose the
following two assumptions hold for some constant δ ∈ (0, 1):

• |E| ≤ (1− δ)|B1|. (This means that there is room for E to grow.)

• If any ball B ⊂ B1 satisfies |B ∩ E| > (1− δ)|B|, then B ⊂ F . (This is a way that how
E grows to F .)

Then |E| ≤ (1− cδ)|F | for some constant c depending on n only. Indeed, c = 5−n will do.

Proof. For every x ∈ F , since F is open, we define

rx = sup{r > 0 : Br(x) ⊂ F.}
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There exists some maximal ball, called Bx, which is contained in F and contains Brx(x). This
means that for any ball B such that Bx ⊂ B ⊂ F then there holds Bx = B. One way to choose
such a maximal ball is that if we let

R = sup{r : there is a ball Dr of radius r such that Brx(x) ⊂ Dr ⊂ F},

then that ball of radius R is one maximal ball. We choose one of those maximal balls for each
x ∈ F .

If Bx = B1 for some x ∈ F , then the result of the theorem follows immediately since
|E| ≤ (1− δ)|B1|, so let us assume that it is not the case.

We claim that |Bx ∩ E| ≤ (1 − δ)|Bx|. Otherwise, we could find a slightly larger ball B̃
containing Bx such that |B̃ ∩ E| > (1− δ)|B̃| and B̃ 6⊂ F , contradicting the first hypothesis.

The family of balls Bx covers the set F . By the Vitali covering lemma, we can select a
subcollection of at most countable disjoint balls Bj := Bxj such that F ⊂

⋃K
j=1 5Bj , where

K ∈ N ∪ {∞}.
By construction,Bj ⊂ F and |Bj∩E| ≤ (1−δ)|Bj |. Thus, we have that |Bj∩F\E| ≥ δ|B|.

Therefore

|F \ E| ≥
K∑
j=1

|Bj ∩ F \ E| ≥
K∑
j=1

δ|Bj | =
δ

5n

K∑
j=1

|5Bj | ≥
δ

5n
|F |.

The proof is finished with c = 1/5n.

Combining Corollary 2.8 with Lemma 2.10, we obtain the Lε estimate.

Theorem 2.11 (Lε estimate). There exists a small universal constant ε > 0 and a large universal
constant C > 0 so that for every lower semi-continuous function u : B2 → R such that

u ≥ 0 in B2,

M−(D2u) ≤ 1 in B2,

inf
B3/2

u ≤ 1,

then
|{u ≥ t} ∩B1| ≤ Ct−ε

for all t > 0.

Proof. In order to prove the result, we will prove the equivalent expression

|{u > Mk} ∩B1| ≤ C̃M−εk, (2.6)

where M is the constant from Corollary 2.9 and ε > 0 will be properly chosen.
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Let Ak := {u > Mk} ∩ B1, which are open sets. Since infB3/2
u ≤ 1, from Corollary 2.8,

|A1| ≤ (1− δ)|B1|. Since Ak ⊂ A1 for all k > 1, then we also have |Ak| ≤ (1− δ)|B1| for all
k.

We note that Corollary 2.9, with κ = Mk, says that every time a ball B ⊂ B1 satisfies
|B ∩Ak+1| > (1− δ)|B|, then B ⊂ Ak. Using Lemma2.10 with c = 5−n, we obtain

|Ak+1| ≤ (1− cδ)|Ak|,

and therefore, by induction, |Ak| ≤ (1 − cδ)k−1(1 − δ)|B1| = C̃M−εk, where −ε = log(1 −
cδ)/ logM and C̃ = (1− cδ)−1(1− δ)|B1|.

For all t > 1, there exists k such that Mk < t ≤Mk+1. Then from (2.6) we have

|{u ≥ t} ∩B1| ≤ |{u > Mk} ∩B1| ≤ C̃M−εk ≤ C̃M εM−ε(k+1) ≤ C̃Mt−ε.

On the other hand, the conclusion for t ≤ 1 is trivial. This finishes the proof.

The following is the rescaled Lε estimate.

Lemma 2.12. There exists a small universal constant ε1 > 0 so that for every r ≤ 1, θ ≥ r2,
and every lower semi-continuous function u : B2r → R such that

u ≥ 0 in B2r,

M−(D2u) ≤ ε1 in B2r,

|{u ≥ θ} ∩Br| ≥
1

2
|Br|,

then u > ε1θ in B3r/2.

Proof. Let τ be a universal large constant such that Cτ−ε < |B1|/2, where C and ε are the
constants in Theorem 2.11. Consider the function ũ(x) = τθ−1u(rx). It satisfies the properties

ũ ≥ 0 in B2,

M−(D2ũ) ≤ τθ−1r2ε1 in B2,

|{ũ ≥ τ} ∩B1| ≥
1

2
|B1| > Cτ−ε.

Let us choose ε1 = τ−1. Since θ ≥ r2, we have

M−(D2ũ) ≤ 1 in B2.

We now apply Theorem 2.11 and obtain that ũ > 1 in B3/2. Scaling back, we obtain u > ε1θ in
B3r/2.
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2.4 Hölder continuity

In this section, we derive the Hölder estimates of Theorem 2.1 from the (scaled) Lε estimate.

Proof of Theorem 2.1. We start by normalizing the solution u. Let

v(x) =
u(x)

C0(1 + ε−1
1 )

,

where ε1 is the constant from Lemma 2.12. The function v satisfies the estimates

M−(D2v) ≤ ε1 in B1,

M+(D2v) ≥ −ε1 in B1,

‖v‖L∞(B1) ≤ 1,

Let ak = minB
2−k

v and bk = maxB
2−k

v. We will prove that for some α ∈ (0, 1),

bk − ak ≤ 2× 2−αk. (2.7)

For k = 0, the statement is obvious since b0 ≤ ‖v‖L∞(B1) and a0 ≥ −‖v‖L∞(B1), thus b0−a0 ≤
2. Now we proceed by induction.

Assume that bk − ak ≤ 2 × 2−αk and let us prove that bk+1 − ak+1 ≤ 2 × 2−α(k+1). If
bk−ak ≤ 2× 2−α(k+1), then we are done since bk+1−ak+1 ≤ bk−ak. Hence, we can assume
that bk−ak2 > 2−α(k+1).

Letmk = (ak+bk)/2. We have two alternatives. Either |{v > mk}∩B2−k−1 | ≥ |B2−k−1 |/2
or |{v ≤ mk} ∩ B2−k−1 | ≥ |B2−k−1 |/2. In the first case we will prove that ak+1 is larger than
ak, whereas in the second case we will show that bk+1 is smaller than bk.

Let us assume the first case, i.e. |{v > mk} ∩ B2−k−1 | ≥ |B2−k−1 |/2. Now consider the
function v − ak in B2−k . We have

v − ak ≥ 0 in B2−k since ak is the minimum of v in B2−k ,

M−(D2(v − ak)) ≤ ε1 in B2−k .

Notice that since bk−ak
2 > 2−α(k+1), if v(x) > mk for some x ∈ B2−k−1 , then we have

v(x)− ak > mk − ak =
bk − ak

2
> 2−α(k+1).

Thus,
{v > mk} ⊂ {v − ak > 2−α(k+1)}.

It follows that

|{v − ak > 2−α(k+1)} ∩B2−k−1 | ≥ |{v > mk} ∩B2−k−1 | ≥ |B2−k−1 |/2.
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We apply Lemma 2.12 to v − ak with r = 2−k−1 and θ = rα > r2 to obtain that v − ak ≥
ε12−(k+1)α in B2−k−1 for some ε1 > 0 universal. Therefore, we have that ak+1 ≥ ak +
ε12−(k+1)α. In particular

bk+1 − ak+1 ≤ bk − ak − ε12−(k+1)α ≤ (2α+1 − ε1)2−(k+1)α ≤ 2× 2−(k+1)α

provided that α is chosen universally small enough so that 2α+1 ≤ 2 + ε1.
Let us assume the second case, i.e. |{v ≤ mk} ∩ B2−k−1 | ≥ |B2−k−1 |/2. This time we

consider the function bk − v in B2−k . We have

bk − v ≥ 0 in B2−k since bk is the maximum of v in B2−k ,

M−(D2(bk − v)) ≤ ε1 in B2−k .

Notice that since bk−ak
2 > 2−α(k+1), if v(x) ≤ mk for some x ∈ B2−k−1 , then we have

bk − v(x) ≥ bk −mk =
bk − ak

2
> 2−α(k+1).

Thus,
{v ≤ mk} ⊂ {bk − v > 2−α(k+1)}.

It follows that

|{bk − v > 2−α(k+1)} ∩B2−k−1 | ≥ |{v ≤ mk} ∩B2−k−1 | ≥ |B2−k−1 |/2.

We apply Lemma 2.12 to bk−v with r = 2−k−1 and θ = rα to obtain that bk−v ≥ ε12−(k+1)α

in B2−k−1 . Therefore, we have that bk+1 ≤ bk − ε12−(k+1)α. In particular

bk+1 − ak+1 ≤ bk − ak − ε12−(k+1)α ≤ (2α+1 − ε1)2−(k+1)α ≤ 2× 2−(k+1)α.

The estimate (2.7) implies that v is Cα at the origin, with

|v(x)− v(0)| ≤ 4|x|α

for all x ∈ B1. Scaling back to the function u, this means that for all x ∈ B1,

|u(x)− u(0)| ≤ 4(1 + ε−1
1 )C0|x|α ≤ CC0|x|α,

where C,α are two universal positive constants. By a standard translation and covering argu-
ment, we have that u ∈ Cα(B1/2) and

[u]C0,α(B1/2) ≤ C̃C0,

where C̃ differs from C by a universal constant.

13



2.5 Harnack inequality

The following is the so-call weak Harnack inequality.

Theorem 2.13 (Weak Harnack inequality). There exist two positive universal constants p0 and
C such that if u is a nonnegative lower semi-continuous function satisfyingM−(D2u) ≤ C0 in
B2, then

‖u‖Lp0 (B1) ≤ C( inf
B3/2

u+ C0).

Proof. By replacing u with u/(infB3/2
u+C0), we may assume that C0 = 1 and infB3/2

u ≤ 1.
By the Lε estimate in Theorem 2.11, we have

|{u ≥ t} ∩B1| ≤ Ct−ε

for all t > 0. For p0 = ε/2, we have∫
B1

up0 = p0

∫ ∞
0

tp0−1|{u ≥ t} ∩B1|dt ≤ Cp0 + Cp0

∫ ∞
1

tε/2−1−εdt ≤ C.

By scaling back, we have the conclusion.

The following is the so-called local maximum principle.

Theorem 2.14 (Local maximum principle). Suppose u is an upper semi-continuou function such
thatM+(D2u) ≥ −C0 in B2. Then for every p > 0, we have

sup
B1/2

u ≤ C(p)(‖u+‖Lp(B1) + C0),

where C(p) is a positive constant depending only on λ,Λ, n and p.

Proof. By replacing u by u/(‖u+‖Lp(B1)+C0), we may assume thatC0 ≤ 1 and ‖u+‖Lp(B1) ≤
1. Hence, we have

|{u ≥ t} ∩B1| ≤ t−p
∫
B1

(u+)p ≤ t−p ∀ t > 0. (2.8)

Let β ≥ 1, which will be chosen universally in the end. Define hs(x) = s(1−|x|)−β in B1. We
choose the minimum value of s so that hs ≥ u in B1. Consequently, we have

u(x) ≤ hs(x) ∀ x ∈ B1, and there exists x0 ∈ B1 such that u(x0) = hs(x0).

We may also s ≥ 1 since otherwise the conclusion follows immediately. Let

r = (1− |x0|)/2.
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Then
u(x0) = hs(x0) = s(2r)−β ≥ s ≥ 1.

We are going to estimate |{u ≥ u(x0)/2} ∩Br(x0)| in two different ways.
On one hand, from (2.8) we have

|{u ≥ u(x0)/2} ∩Br(x0)| ≤ |{u ≥ u(x0)/2} ∩B1| ≤ 2p(u(x0))−p = 2ps−p(2r)βp. (2.9)

On the other hand, let µ ∈ (0, 1) be a small constant which will be chosen later universally. For
x ∈ Bµr(x0), we have

u(x) ≤ hs(x) = s(1− |x|)−β ≤ s(2r − µr)−β = u(x0)(1− µ/2)−β.

Let

v(x) =
u(x0)(1− µ/2)−β − u(x0 + µrx)

u(x0)(1− µ/2)−β − u(x0)
.

Then v ≥ 0 in B1, v(0) = 1, and it satisfies

M−(D2v) ≤ µ2r2

u(x0)(1− µ/2)−β − u(x0)
≤ µ2

(1− µ/2)−β − 1
in B1, since u(x0) ≥ 1.

Now if we choose µ, β such that

µ2

(1− µ/2)−β − 1
≤ 1, (2.10)

Then we can apply Corollary 2.9 to obtain

|{v ≤M} ∩B1/2| ≥ δ|B1/2|,

where δ,M are the constants in Corollary 2.9. For x ∈ B1/2 such that v(x) ≤M , we have

u(x0 + µrx) ≥ u(x0)(1− µ/2)−β −M(u(x0)(1− µ/2)−β − u(x0)).

If we choose µ, β such that

(1− µ/2)−β −M((1− µ/2)−β − 1) ≥ 1

2
, (2.11)

then we have

{v ≤M} ∩B1/2 ⊂ {x ∈ B1/2 : u(x0 + µrx) ≥ u(x0)/2},

and thus
|{u ≥ u(x0)/2} ∩Bµr/2(x0)| ≥ δ|Bµr/2(x0)| = δωn(µr)n2−n,
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where ωn = |B1|. Together with (2.9), we have

δωn(µr)n2−n ≤ 2ps−p(2r)βp. (2.12)

Now we let β = max(np−1, 1) and we can choose µ sufficiently small such that (2.10) and
(2.11) hold. Consequently, (2.12) holds for β = max(np−1, 1), from which we obtain a univer-
sal upper bound of s. This proves the conclusion.

Proof of Theorem 2.2: The Harnack inequality in Theorem 2.2 follows from Theorem 2.13 and
Theorem 2.14.

3 C1,α estimates

The following proposition follows from Jensen approximation.

Proposition 3.1. Let u be a solution of F (D2u) = 0 in B1. Let h > 0 and e ∈ Rn with |e| = 1.
Then for vh(x) = u(x+ he)− u(x), it satisfies

M−(
λ

n
,Λ, D2vh) ≤ 0 ≤M+(

λ

n
,Λ, D2vh) in B1−h.

Using the difference quotient method, we can obtain C1,α estimate.

Theorem 3.2. Let u be a solution of F (D2u) = 0 inB1. Then u ∈ C1,α(B1/2), and there holds

‖u‖C1,α(B1/2) ≤ C(‖u‖L∞(B1) + |F (0)|),

where α ∈ (0, 1) and C > 0 are universal constants.

Sketch of proof: First of all, we know from Theorem 2.1 that

u ∈ Cα(B1).

Let
vβ =

vh
hβ
.

By Proposition 3.1 and Theorem 2.1 we have that

vα ∈ Cα(B1−h),

and consequently,
u ∈ C2α(B1−h).

By applying Proposition 3.1 and Theorem 2.1 to v2α, we have v2α ∈ Cα, and thus u ∈
C3α(B1−h). We can repeat this process to obtain that u ∈ C0,1. Finally, we apply Proposi-
tion 3.1 and Theorem 2.1 to v1 to obtain that v1 ∈ Cα, and thus u ∈ C1,α.
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Now one may wonder whether solutions of F (D2u) = 0 in general are of C1,1. The answer
is

• yes, when the dimension n = 2. The solutions will be C2,α indeed. The reason is that in
2-D, the linear equation in nondivergence form can be written in divergence form. This is
a very classical results, which may be due to Nirenberg in early 60’s.

• still unknown, when the dimension n = 3 or 4.

• no, when the dimension n ≥ 5 even with F smooth. The counterexamples are found by
Nadirashvili-Vlăduţ in [9] which shows that C1,α is optimal. When n = 9, a counterex-
ample for not C2 solution can be

u(x) = |x|−1 · det

x1 x2 x3

x4 x5 x6

x7 x8 x9

 ,

which will be a solution of some uniformly elliptic equation, but is clearly not C2.

Note that all the known counterexamples have only one isolated singularity at the origin.
One may also ask how big the size of the set of singular points can be. It was shown in [1] that if
we assume F is C1 (instead of Lipschitz) then u is of C2,α for every α ∈ (0, 1) outside a closed
set of Hausdroff dimension at most n− ε for some (small) universal positive constant ε.

However, if we put extra assumption, such as convexity, on F , then it was shown by Evans
and Krylov independently that the solutions will be C2,α. This is the topic in the next section.

4 The Evans-Krylov theorem

Theorem 4.1. Let F be uniformly elliptic and concave, and let u be a viscosity solution of
F (D2u) = 0 in B1. Then u ∈ C2,α(B1/2) and there holds

‖u‖C2,α(B1/2) ≤ C(‖u‖L∞(B1) + |F (0)|),

where C > 0 and α ∈ (0, 1) are universal constant.

In this particular proof presented here as in [4, 5], we will assume that the solutions are
classical and prove the a priori estimates. There is no loss of generality of doing this, since we
can later solve a corresponding Dirichlet problem as long as we have a priori estimate, and the
conclusion follows from the uniqueness of the viscosity solution. Also, one can assume that
F (0) = 0.

The proof of this theorem has two clearly divided parts. These are

‖u‖C1,1(B1/2) ≤ C‖u‖L∞(B1) (4.1)
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and
‖u‖C2,α(B1/2) ≤ C‖u‖C1,1(B1). (4.2)

We will see the proofs of these two estimates separately.

4.1 The assumptions revisited

We said that F is uniformly elliptic. This means by definition that

M−(X − Y ) ≤ F (X)− F (Y ) ≤M+(X − Y ).

We know that at every point D2u(x) is a symmetric matrix for which F (D2u(x)) = 0. Thus

M−(D2u(x)−D2u(y)) ≤ F (D2u(x))− F (D2u(y)) = 0,

M+(D2u(x)−D2u(y)) ≥ F (D2u(x))− F (D2u(y)) = 0.

These two relations mean that the sum of the positive and negative eigenvalues of (D2u(x) −
D2u(y)) are comparable. More precisely,

λ

Λ
tr(D2u(x)−D2u(y))− ≤ tr(D2u(x)−D2u(y))+ ≤ Λ

λ
tr(D2u(x)−D2u(y))− (4.3)

We could rephrase the above as that ‖(D2u(x)−D2u(y))−‖ ≈ ‖(D2u(x)−D2u(y))+‖, since
for positive definite matrices the trace and norm are comparable.

The concavity and translation invariance of F makes the second order incremental quotients
be subsolutions of an equation. More precisely, since F is concave we have that

F

(
D2u(x+ h) +D2u(x− h)

2

)
≥ F (D2u(x+ h)) + F (D2u(x− h))

2
= 0.

Therefore

M+

(
D2u(x+ h) +D2u(x− h)− 2D2u(x)

2

)
≥ F

(
D2u(x+ h) +D2u(x− h)

2

)
− F (D2u(x))

= 0.

Because of the homogeneity ofM+,M+(D2v) ≥ 0 where v(x) is a second order incremental
quotient

v(x) =
u(x+ h) + u(x− h)− 2u(x)

|h|2
.
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Passing to the limit (if u is regular enough) we see that for a second derivative in any direction e
we have

M+(D2∂eeu) ≥ 0.

The computation above can be repeated to obtain

M+(D2(aij∂iju)) ≥ 0, (4.4)

for any positive semidefinite matrix aij . This is because aij∂iju(x) can be approximated with
second order incremental quotients which are a weighted average of values of u in points near x
minus the value of u at x.

The two formulas (4.3) and (4.4) are the basis of the proof of Evans-Krylov theorem.

4.2 The C1,1 a priori estimate

The idea of the C1,1 a priori estimate is simple to say. From (4.4), we know that the second
derivatives are subsolutions to an equation. This will imply that they are all bounded above.
Then, from the equation F (D2u(x)) = 0 and the uniform ellipticity of F , we immediately
conclude that they are bounded below as well.

Step 1: ∆u ∈ L1.

Recall that F is concave on the space S of symmetric matrices. Thus there is a support
hyperplane from above at 0 ∈ S. Suppose that this hyperplane is L(M) = tr(AM), since
F (0) = 0. By change of variables, we may assume that A = I . Then, we have

∆u(x) = L(D2u(x)) ≥ F (D2u(x)) = 0

Let b : B1 → R be a nonnegative smooth function compactly supported inside B1 such that
b ≡ 1 in B1/2, then

‖∆u‖L1(B1/2) ≤
∫
B1

b(x)∆u(x)dx =

∫
B1

∆b(x)u(x)dx ≤ C‖u‖L∞(B1),

where C > 0 is a universal constant.

Step 2: u ∈W 2,2.

From (4.4),M+(D2∆u) ≥ 0, ∆u ≥ 0 in B1, and ∆u ∈ L1
loc(B1). It follows from Step 1

and the local maximum principle in Theorem 2.14 for p = 1 that

0 ≤ ∆u ≤ C in B3/4,

where C > 0 is a universal constant. Using Calderon-Zygmund theory, then D2u(x) ∈
Lp(B1/2) for any p < ∞. For the remainder of the proof we will only use the simplest es-
timate D2u(x) ∈ L2(B1/2).
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Step 3: u ∈ C1,1.

Since we got that every second derivative ∂eeu is in L2
loc(B1) and satisfies (4.4), then by the

local maximum principle in Theorem 2.14, they are all bounded above.
We now use the equation again. From the uniform ellipticity we have that

M−(D2u(x)) ≤ F (D2u(x))− F (0) ≤M+(D2u(x)).

This means that if the positive part ‖D2u(x)+‖ is bounded, then the negative part ‖D2u(x)−‖
must be bounded as well.

This concludes the proof of the C1,1 estimate in (4.1).

4.3 The C2,α a priori estimate

We want to set up an improvement of oscillation iteration for the Hessian D2u. More precisely,
we want to show that for some universal constants C > 0 and θ > 0 such that

sup
B

2−k

‖D2u(x)−D2u(0)‖ ≤ C‖u‖C1,1(1− θ)k.

There is nothing special about the origin, so if we prove the above inequality, we prove the
interior estimate by translating the result. We define P and N to be the sum of positive and
negative eigenvalues of D2u(x)−D2u(0).

P (x) = tr(D2u(x)−D2u(0))+,

N(x) = tr(D2u(x)−D2u(0))−.

We are using the convention that A = A+ − A−, so both P and N are non negative quanti-
ties. Because of (4.3), the quantities P (x), N(x) and ‖D2u(x) −D2u(0)‖ are all comparable
(meaning that the ratio between any two is bounded below and above)

P (x) ≈ N(x) ≈ ‖D2u(x)−D2u(0)‖.

Since all these quantities are comparable, we only have to prove that

sup
B

2−k

P (x) ≤ C‖u‖C1,1(1− θ)k. (4.5)

We will proceed with an iterative improvement of oscillation, as in the proofs of Holder continu-
ity. This time, instead of the oscillation, we are decreasing the maximum of P in B2−k in each
step.

By the standard scaling of the equation, we reduce the problem to unit scale. We must show
that if P ≤ 1 in B1, then P ≤ (1− θ) in B1/2 for some θ > 0.
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The following simple observation is useful. One way to characterize P is

P (x) = max
{aij} orthogonal proj. matrix

aij(∂iju(x)− ∂iju(0)).

Indeed, suppose vk is one normalized eigenvector for the eigenvalue λk of a matrix U . Then

tr(vkv
T
k U) = λk.

Thus the orthogonal projection matrix to realize P is the matrix consisting the normalized eigen-
vectors for the positive eigenvalues of D2u(x)−D2u(0).

Let x0 be the point in B1/2 such that P (x0) = maxB1/2
P (x0). Let aij be the orthogonal

projection matrix to the eigenspace ofD2u(x0)−D2u(0) corresponding to positive eigenvalues.
Thus, we have

P (x0) = aij(∂iju(x0)− ∂iju(0)).

Let
v(x) = aij(∂iju(x)− ∂iju(0)).

We have v(x0) = P (x0) and v(x) ≤ P (x) ≤ 1 in B1. We are going to show that

v(x0) ≤ 1− θ.

We argue by contradiction that
v(x0) > 1− θ. (4.6)

By (4.4), we know thatM+(D2v) ≥ 0 in B1. Then we have that

1− v ≥ 0 in B1

M−(D2(1− v)) ≤ 0 in B1.

By the Lε estimate in Theorem 2.11 that (choosing t = θ−1/2)

|{(1− v) ≥ θ−
1
2 inf
B1/2

(1− v)} ∩B1/4| ≤ Cθε/2.

By the contradiction hypothesis (4.6), we have infB1/2
(1− v) ≤ θ. Then we have

|{(1− v) ≥ θ
1
2 } ∩B1/4| ≤ Cθε/2. (4.7)

Let Ω = {(1− v) < θ
1
2 } ∩B1/4. Then for x ∈ Ω, we have

1− θ1/2 < v(x) ≤ P (x) ≤ 1. (4.8)
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Therefore, for x ∈ Ω,
P (x)− v(x) ≤ θ1/2. (4.9)

Let
bij = I − aij

and
w(x) = bij(∂iju(x)− ∂iju(0)).

Since
∆u = w + v = P −N,

we have for x ∈ Ω

w(x) = P (x)− v(x)−N(x)

≤ θ1/2 −N(x)

≤ θ1/2 − λ

Λ
P (x)

≤ (1 + λ/Λ)θ1/2 − λ/Λ ≤ −λ/(2Λ) := −c0 for θ small enough,

where we used (4.9), (4.3) and (4.8). SinceM+(D2(w + c0)) ≥ 0 in B1, it follows from the
local maximum principle in Theorem 2.14 that

sup
B1/8

(w + c0) ≤ C‖(w + c0)+‖L1(B1/4) = C‖(w + c0)+‖L1(B1/4\Ω).

Since P ≤ 1 in B1, then N ≤ Λ/λ in B1. Hence, w ≤ C in B1. Therefore,

c0 = w(0) + c0 ≤ sup
B1/8

(w + c0) ≤ C|B1/4 \ Ω| ≤ Cθε/2.

This is a contradiction if θ is small. Thus we have shown that if

P ≤ 1 in B1,

then
P ≤ (1− θ) in B1/2 for some θ > 0.

By scaling, we may consider

Pk(x) = (1− θ)−kP (2−kx)

to obtain that
Pk(x) ≤ 1− θ in B1/2
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from which (4.5) follows. This implies that

P (x) ≤ C|x|α for x ∈ B1,

which is equivalent to
‖D2u(x)−D2u(0)‖ ≤ C|x|α.

This finishes the proof of (4.2) as well as Theorem 4.1.

5 W 2,p estimates

Let Ω be a bounded domain in Rn and u is a continuous function in Ω. We define, any every
open set H ⊂ Ω and M ∈ (0,∞] that

GM (u,H)

= GM (H)

= {x0 ∈ H : there exists a concave paraboloid of opening M touching u from below in H}.

Let AM (H) = H \ GM (H), GM (u,H) = GM (−u,H), GM (H) = GM (u,H), AM (H) =
H \GM (H), GM (H) = GM (H) ∩GM (H), AM (H) = H \GM (H).

Lemma 5.1. Let B5 ⊂ Ω,M−(D2u) ≤ f in Ω, u ≥ 0 in Ω, infB1/4
u ≤ 1, ‖f‖Ln(B5) ≤ ε0.

Then
GM (u,Ω) ∩B1 ≥ δ,

where δ, ε0,M are universal constants.

Proof. The proof is the same as the proof of Proposition 2.4. We repeat it here for completeness.
Let x0 ∈ B1/4 be such that u(x0) ≤ 1. For every x ∈ B1/4, let y ∈ B5 be a point where the

minimum of u(z) + 4|z − x|2, which is a function of z, is achieved. This is the same as that we
slide the parabola −4|z − x|2 from the below of u until they touch and y is a touch point. Note
that

• When z ∈ Ω \B1, then u(z) + 4|z − x|2 ≥ 0 + 4|1− 1/4|2 = 9/4.

• u(x0) + 4|x0 − x|2 ≤ 1 + 4|1/4 + 1/4|2 = 2 < 9/4.

Therefore, for every x ∈ B1/4, such minimum point y ∈ B1, and u(y) + 4|y − x|2 ≤ u(x0) +
4|x0 − x|2 ≤ 2. In particular, u(y) ≤ 2. Note that for one value of x, there could be more than
one point y where the minimum is achieved. However, the value of y uniquely determines x,
since we must have

∇u(y) + 8(y − x) = 0, D2u(y) + 8I ≥ 0. (5.1)
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Thus,

x = y +
∇u(y)

8
.

We define this as a map x = m(y) = y + ∇u(y)
8 , which is onto B1/4. Consequently, we have

that

∇m(y) = I +
D2u(y)

8

Since for each y we know u(y) ≤ 2, the domain U of the map m satisfies that U ⊂ {y ∈ B1 :
u(y) ≤ 2}. Thus, we have

|B1/4| ≤
∫
U
|det∇m(y)|dy ≤

∫
U
| det(I +

D2u(y)

8
)|

On the other hand, from the inequalityD2u(y)+8I ≥ 0 in (2.3) and the equationM−(D2u) ≤
f it follows that

|D2u| ≤ C(1 + |f |)

for some positive constant C depending only on λ,Λ, n. Thus, we have

|B1/4| ≤ C|U |+ C‖f‖Ln(B1).

We can choose ε0 universally small, so that |G8(u,Ω) ∩B1| ≥ |U | ≥ δ.

Lemma 5.2. Let B5 ⊂ Ω,M−(D2u) ≤ f in Ω, G1(u,Ω) ∩B1 6= ∅, ‖f‖Ln(B5) ≤ ε0. Then

|GM (u,Ω) ∩B1| ≥ δ

where ε0, δ,M are universal constants.

Proof. This corresponds to Lemma 2.7. Let P be the polynomial of opening 1 touching u at a
point x0 ∈ B1 and u ≤ P in Ω. Let v = u− P . Then v ≥ 0 in Ω, v(x0) = 0 and

M−(D2v) ≤ f + 1 in Ω.

We claim that infB1/8
v(z) ≤M0 for M0 universally large.

We argue by contradiction. If not, then v ≥M0 everywhere in B1/4. Let

ϕ0(x) =
|x|−p − 2−p

8p − 2−p
in Rn \B1/8, and ϕ0 ≡ 1 in B1/8.

For ϕ = C0ϕ0, we can choose C0 and p universally large so that ϕ ≥ 2 in B3/2 and

M−(D2ϕ) ≥ 2 in B4 \B1/8.
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For every x ∈ B1/8, slide ϕ(z − x) from below until it touches v. If we choose M0 large, the
touch point(s) y has to be in B3 \B1/8(x). Then we have

∇v(y) = ∇ϕ(y − x), D2v(y) ≥ D2ϕ(y − x).

Note that for one value of x, there could be more than one point y where the minimum is
achieved. However, the value of y uniquely determines x:

∇v(y) = ∇ϕ(y − x) = C(C0, p)|y − x|−p−2(y − x), |∇v(y)| = C(C0, p)|y − x|−p−1,

and therefore, |y − x| =
(
C(C0,p)
|∇v(y)|

) 1
p+1 ,

x = y − ∇v(y)

C(C0, p)

(
C(C0, p)

|∇v(y)|

) p+2
p+1

=: m(y).

This map y → m(y) is onto B1/8. Let U be the domain of m, i.e., U consists of the touching
points. Then, we have for y ∈ U that

f(y) + 1 ≥M−(D2v)(y) ≥M−(D2ϕ)(y − x) ≥ 2.

This means that f ≥ 1 at those touching points.
Meanwhile, by the equation and D2v(y) ≥ D2ϕ(y − x) , we have

|D2v(y)| ≤ C(|f(y)|+ 1 + |D2ϕ|(y −m(y))) y ∈ U.

Moreover, we have
D2v(y) = D2ϕ(y − x)(I −∇m(y)),

that is,
∇m(y) = I − (D2ϕ(y −m(y)))−1D2v(y).

Then we have again

|B1/8| ≤ C
∫
U
|det∇m(y)| ≤ C

∫
U

(
1 +
|f |+ 1 + |D2ϕ|

|D2ϕ|

)n
≤ C

∫
U
|f |n ≤ Cε0.

This is a contradiction.
Now let w = v/M0 ≥ 0. We have M−(D2w) ≤ f+1

M0
in Ω and infB1/4

w ≤ 1. We can
assume M0 large so that 1/M0 ≤ ε0. Then all the assumptions in Lemma 5.1 are satisfied for
w. So we have

|G8(w,Ω) ∩B1| ≥ δ.

This implies that |G8M0+1(u,Ω) ∩B1| ≥ δ. So we can choose M = 8M0 + 1.
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Proposition 5.3. Under the assumptions of Lemma 5.1, we have

|At(u,Ω) ∩B1| ≤ Ct−µ,

where C, µ are positive universal constants.

Proof. Let

Ak = AMk(u,Ω) ∩B1,

Dk = (AMk(u,Ω) ∩B1) ∪ {x ∈ B1 : m(fn) ≥ (cMk)n},
ak = |Ak|, dk = |Dk|, bk = |{x ∈ B1 : m(fn) ≥ (cMk)n}|.

where c = ε0/6
n and m(g)(x) = supr>0

1
Br(x)

∫
Br(x) |g(y)|dy.

We know from Lemma 5.1 that ak ≤ (1− δ)|B1| for all k ∈ N.
For any ball B = Br(x0) ⊂ B1, if |AMk+1(u,Ω) ∩ B| > (1 − δ)|B|, then we must have

B ⊂ Dk. Otherwise, there exists z0 ∈ Br(x0) such that z0 ∈ GMk(u,Ω) and

sup
r>0

1

|Br(x)|

∫
Br(x)

|f |n ≤ (cMk)n.

Rescaling

ũ(x) =
1

Mkr2
u(x0 + rx), Ω̃ = {(y − x0)/r : y ∈ Ω}.

Then M−(D2ũ) ≤ f(x0+rx)
Mk =: f̃(x) in Ω̃, and G1(ũ, Ω̃) ∩ B1 6= ∅. Note that B5 ⊂ Ω̃.

Moreover, ∫
B5

|f̃(y)|ndy =
1

Mnk

∫
B5

|f(x0 + rx)|ndx

=
1

rnMnk

∫
B5r

|f(x0 + x)|ndx

≤ 1

rnMnk

∫
B6r(z0)

|f(x)|ndx

≤ 6nc

= ε0

if we choose c = ε0/6
n. Therefore, we can apply Lemma 5.2 that

|GM (ũ, Ω̃) ∩B1| ≥ δ|B1|.

This is
|GMk+1(u,Ω) ∩B1| ≥ δ|B1|,
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which contradicts with |AMk+1(u,Ω) ∩B| > (1− δ)|B|.
Applying the growing ink-spots lemma, Lemma 2.10, we have that

ak+1 ≤ (1− cδ)dk.

This implies that

ak ≤ (1− cδ)k +
k−1∑
i=0

(1− cδ)k−ibi.

Since the maximal function is weak type (1,1), we have that bk ≤ C‖fn‖L1(cMk)−n =
CM−kn. Let σ = max(1− cδ,M−n). Then we have

ak ≤ σk +

k−1∑
i=0

σk−iCσi = (1 + Ck)σk ≤ Cσ̃k

if we choose σ̃ = 1+σ
2 .

Theorem 5.4. There exists ε > 0 such that if M−(D2u) ≤ f,M+(D2u) ≥ f in B1 with
f ∈ Ln(B1) then u ∈W 2,ε(B1/2), and

‖u‖W 2,ε(B1/2) ≤ C(‖u‖L∞(B1) + ‖f‖Ln(B1)).

Here the constant C, ε are universal.

Proof. Consider ũ = u− infB1 u instead. It follows from Proposition 5.3 that

|At(u,Ω) ∩B1| ≤ Ct−µ, |At(u,Ω) ∩B1| ≤ Ct−µ.

Therefore,
|At(u,Ω) ∩B1| ≤ Ct−µ.

This finishes the proof.

References
[1] S. Armstrong, L. Silvestre and C. Smart, Partial regularity of solutions of fully nonlinear, uniformly

elliptic equations. Comm. Pure Appl. Math. 65 (2012), no. 8, 1169–1184.
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[9] N. Nadirashvili and S. Vlăduţ, Singular solutions of Hessian elliptic equations in five dimensions.

J. Math. Pures Appl. (9) 100 (2013), no. 6, 769–784.
[10] R.T. Rockafellar, Second-order convex analysis. J. Nonlinear Convex Anal. 1 (2000), no. 1, 1–16.
[11] O. Savin, Small perturbation solutions for elliptic equations. Comm. Partial Differential Equations

32 (2007), no. 4-6, 557–578.

Tianling Jin
Department of Mathematics, Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong
Email: tianlingjin@ust.hk

28


	Introduction
	Hölder regularity and Harnack inequality
	A growth lemma
	A doubling property
	The L estimate
	Hölder continuity
	Harnack inequality

	C1, estimates
	The Evans-Krylov theorem
	The assumptions revisited
	The C1,1 a priori estimate
	The C2, a priori estimate

	W2,p estimates

