# Homework for Math 5281: PDEs, Spring 2019 

Tianling Jin

March 26, 2019

## Deadline: 10 May, 2019.

## Set 2

In this homework set, we always assume the coefficients of the various PDEs are smooth and satisfy the uniform ellipticity condition. Also, $\Omega \subset \mathbb{R}^{n}$ is always an open, bounded set with smooth boundary $\partial \Omega$.

Almost all the problems below are from Evans' book.

1. Consider the Laplacian equation with potential function $c(x)$ :

$$
\begin{equation*}
-\Delta u+c u=0 \tag{1}
\end{equation*}
$$

and the equation in divergence form

$$
\begin{equation*}
-\operatorname{div}(a \nabla u)=0, \tag{2}
\end{equation*}
$$

where the function $a(x)$ is positive.
(a): Show that if $u$ solves (1) and $w>0$ also solves (1), then $v:=u / w$ solves (2) for $a:=w^{2}$. (b): Conversely, show that if $v$ solves (2), then $u:=v a^{1 / 2}$ solves (1) for some potential $c$.
2.A function $u \in H_{0}^{2}(\Omega)$ is a weak solution of this boundary value problem for the biharmonic equation

$$
\left\{\begin{array}{lll}
\Delta^{2} u & =f & \text { in } \Omega  \tag{3}\\
u=\frac{\partial u}{\partial \nu} & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

provided

$$
\int_{\Omega} \Delta u \Delta v d x=\int_{\Omega} f v d x \quad \text { for all } v \in H_{0}^{2}(\Omega)
$$

Given $f \in L^{2}(\Omega)$, prove that there exists a unique weak solution of (3).
3. Assume $\Omega$ is connected. A function $u \in H^{1}(\Omega)$ is a weak solution of the Neumann's problem

$$
\left\{\begin{array}{lll}
\Delta u & =f & \text { in } \Omega  \tag{4}\\
\frac{\partial u}{\partial \nu} & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

if

$$
\int_{\Omega} \nabla u \nabla v d x=\int_{\Omega} f v d x \quad \text { for all } v \in H^{1}(\Omega) .
$$

Suppose $f \in L^{2}(\Omega)$. Prove that (4) has a weak solution if and only if

$$
\int_{\Omega} f d x=0
$$

4. Let $u \in H^{1}\left(\mathbb{R}^{n}\right)$ have compact support and be a weak solution of the semilinear PDE

$$
-\Delta u+c(u)=f \quad \text { in } \mathbb{R}^{n}
$$

where $f \in L^{2}\left(\mathbb{R}^{n}\right)$ and $c: \mathbb{R} \rightarrow \mathbb{R}$ is smooth with $c(0)=0$ and $c^{\prime} \geq 0$. Prove $u \in H^{2}\left(\mathbb{R}^{n}\right)$.
5. Let $u$ be a smooth solution of $L u:=-\sum_{i, j=1}^{n} a^{i j} u_{i j}=0$ in $\Omega$. Assume all the coefficients $a_{i j}$ are smooth and have bounded derivatives. Set $v:=|\nabla u|^{2}+\lambda u^{2}$. Show that $L v \leq 0$ in $\Omega$ if $\lambda$ is large enough. Then prove that

$$
\|\nabla u\|_{L^{\infty}(\Omega)} \leq C\left(\|\nabla u\|_{L^{\infty}(\partial \Omega)}+\|u\|_{L^{\infty}(\partial \Omega)}\right)
$$

6. Assume $\Omega$ is connected. Use (a) energy methods and (b) the maximum principle to show that the only smooth solutions of the Neumann boundary value problem

$$
\left\{\begin{array}{lll}
\Delta u & =0 & \text { in } \Omega \\
\frac{\partial u}{\partial \nu} & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

are constant functions.
7. Assume $u \in H^{1}(\Omega)$ is a bounded weak solution of

$$
-\sum_{i, j=1}^{n}\left(a^{i j} u_{i}\right)_{j}=0 \quad \text { in } \Omega
$$

Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be a convex and smooth function. Set $w=\phi(u)$. Show that $w$ is a weak subsolution, that is,

$$
B[w, v] \leq 0 \quad \text { for all } v \in H^{1}(\Omega), v \geq 0
$$

8. We say that the uniformly elliptic operator

$$
L u:=-\sum_{i, j=1}^{n} a^{i j} u_{i j}+b^{i} u_{i}+c u
$$

satisfies the weak maximum principle if for all $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$

$$
\left\{\begin{array}{lll}
L u & \leq 0 & \text { in } \Omega \\
u & \leq 0 & \text { on } \partial \Omega
\end{array}\right.
$$

implies that $u \leq 0$ in $\Omega$. Suppose that there exists a function $v \in C^{2}(\Omega) \cap C(\bar{\Omega})$ such that $L v \geq 0$ in $\Omega$ and $v>0$ in $\Omega$. Show that $L$ satisfies the weak maximum principle. Note that we do NOT have sign assumption on $c$.
Hint: Find an elliptic operator $M$ with no zeroth order term such that $w:=u / v$ satisfies $M w \leq 0$ in the region $\{u>0\}$. To do this, first compute $\left(v^{2} w_{i}\right)_{j}$. See also the first problem here.
9. Fix $\alpha>0$ and let $\Omega=B(0,1)$ the unit ball centered at the origin. Show that there exists a constant $C$ depending only on $n, \alpha$ such that

$$
\int_{\Omega} u^{2} \mathrm{~d} x \leq C \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x
$$

for all those $u \in H^{1}(\Omega)$ satisfying

$$
|x \in \Omega: u(x)=0| \geq \alpha
$$

10. Let $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ satisfy $\Delta u=0$ in $\Omega$. Assume that $u=\frac{\partial u}{\partial \nu}=0$ on an open, smooth portion of $\partial \Omega$. Prove that $u$ is identically zero.

## Set 1

1. Prove that Laplacian equation $\Delta u=0$ is rotational invariant, that is, if $O$ is an orthogonal $n \times n$ matrix and we define

$$
v(x)=u(O x) \quad x \in \mathbb{R}^{n}
$$

then $\Delta v=0$.
2. Let $B$ be the unit ball centered at the origin in $\mathbb{R}^{n}$. Let $u$ be a smooth solution of

$$
\begin{cases}-\Delta u=f & \text { in } B \\ u=g & \text { on } \partial B\end{cases}
$$

Prove that there exists a positive constant $C$, which depends only on $n$, such that

$$
\max _{B}|u| \leq C\left(\max _{\partial B}|g|+\max _{B}|f|\right) .
$$

3. Let $B^{+}$denote the open half-ball $\left\{x \in \mathbb{R}^{n}:|x|<1, x_{n}>0\right\}$. Assume that $u \in C\left(\overline{B^{+}}\right)$is harmonic in $B^{+}$and $u=0$ on $\partial B^{+} \cap\left\{x_{n}=0\right\}$. For every $x \in B$, set

$$
v(x):=\left\{\begin{array}{l}
u(x) \quad \text { if } x_{n}>0 \\
-u\left(x_{1}, \ldots, x_{n-1},-x_{n}\right) \quad \text { if } x_{n}<0 .
\end{array}\right.
$$

Prove that $v$ is harmonic in $B$.
Note that the above 3 problems are from the main reference book: PDEs by L.C. Evans.
4. Prove that every positive harmonic function in the whole space $\mathbb{R}^{n}$ has to be a constant function.
5. Let $u$ be a harmonic function in an open set $\Omega \subset \mathbb{R}^{n}$ with $n \geq 3$. Let $\xi \in \mathbb{R}^{n}$ and $\lambda>0$. Define

$$
u_{\xi, \lambda}(x):=\left(\frac{\lambda}{|x-\xi|}\right)^{n-2} u\left(\xi+\frac{\lambda^{2}(x-\xi)}{|x-\xi|^{2}}\right) .
$$

This $u_{\xi, \lambda}$ is called the Kelvin transform of $u$. Prove that $u_{\xi, \lambda}$ is also harmonic in its domain.
6. Let $B$ be the unit ball in $\mathbb{R}^{n}$ centered at the origin. Let $u$ be a positive harmonic function in $B \backslash\{0\}$. Prove that there exist a harmonic function $v$ in $B$ and a constant $c \geq 0$ such that

$$
u(x)=\left\{\begin{array}{l}
c|x|^{2-n}+v(x), \quad \text { when } n \geq 3 \\
c|\log | x| |+v(x), \quad \text { when } n=2
\end{array} \quad \text { for all } x \in B \backslash\{0\} .\right.
$$

This theorem can be stated as: Every positive harmonic function in the punctured ball with an isolated singularity has to be a fundamental solution plus a harmonic function in the whole ball.
7. Let $\Omega$ be a smooth bounded domain in $\mathbb{R}^{n}, k \geq 1$ be an integer, and $1 \leq p<\infty$. Let $u \in W^{k, p}(\Omega) \cap L^{\infty}(\Omega)$, and $\Phi \in C^{k}(\mathbb{R})$. Prove that the composition function $\Phi \circ u \in W^{k, p}(\Omega)$.

