Five topics of the final presentation for Math 5281 Partial Differential Equations, Spring 2019

Tianling Jin

March 26, 2019

1 Best constant in the Sobolev inequality

Let $n \geq 3$. Prove that there exists an optimal constant $C>0$ such that

$$
\|u\|_{L^{\frac{2 n}{n-2}}\left(\mathbb{R}^{n}\right)} \leq C\|\nabla u\|_{L^{2}\left(\mathbb{R}^{n}\right)} \quad \text { for all } u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

Moreover, find this optimal constant explicitly.
Present any proof you like, not limited to the following references:

1. G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976) 353-372.
2. T. Aubin, Problemes isopérimétriques et espaces de Sobolev, J. Differential Geometry 11 (4) (1976) 573-598.
3. Elliott H Lieb and Michael Loss, Analysis. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI, 1997.

2 BMO and John-Nirenberg's inequality

Present the following paper:
F. John and L. Nirenberg: On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961) 415-426.

3 Moving plane method

Present the statement and proof of Theorem 1 in the following paper:
James Serrin, A symmetry problem in potential theory. Arch. Rational Mech. Anal. 43 (1971), 304-318.

4 Fractional Sobolev inequality

Present the statement and proof of Theorem 6.5 in the following paper:
Eleonora Di Nezza, Giampiero Palatucci and Enrico Valdinoci: Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012), no. 5, 521-573.

5 Two Gagliardo's theorems on Trace embedding:

$$
W^{1, p}\left(\mathbb{R}^{n}\right) \hookrightarrow W^{1-\frac{1}{p}, p}\left(\mathbb{R}^{n-1}\right) \text { and } \operatorname{tr} W^{1,1}=L^{1}
$$

Present the statements and proofs of Lemma 26, Theorem 25 and Theorem 26 in Chapter 11 of the paper:
Petru Mironescu, Fine properties of functions: an introduction.
Available at: https://cel.archives-ouvertes.fr/cel-00747696/document
See also
Petru Mironescu, Note on Gagliardos theorem " $t r W^{1,1}=L^{1}$ ". Available at: https://hal.inria.fr/hal-01131162/document

