1. Consider the system:

$$x' = 1 - 4x + x^2 y$$
$$y' = 3x - x^2 y$$

Show that the trapezoidal region with vertices $(\frac{1}{4}, 0)$, (13, 0), (1, 12) and $(\frac{1}{4}, 12)$ is a trapping region of the system. Hence, show that there is a (non-trivial) periodic solution to the system using the Poincaré-Bendixson's Theorem.

[Remark: Do verify ALL conditions required by the Poincaré-Bendixson Theorem. You may use the following fact from MATH 4051: an equilibrium point \mathbf{x}^* to an ODE system $\mathbf{x}' = \mathbf{F}(\mathbf{x})$ (where **F** is C^1) is unstable if all eigenvalues of the Jacobian matrix $D\mathbf{F}_{\mathbf{x}^*}$ are positive.]

- 2. Let $\omega(\mathbf{x})$ be the ω -limit set from a point $\mathbf{x} \in \mathbb{R}^n$ of an ODE system which is C^1 on \mathbb{R}^n . Show that $\omega(\mathbf{x})$ must be a closed set. [Reminder: A set K is closed if every converging sequence $\mathbf{x}_n \in K$ must have its limit \mathbf{x}_{∞} in K.]
- 3. Discuss:
 - (a) In the proof of the Poincaré-Bendixson's Theorem, why do we require the trapping region *K* to be closed and bounded? Explain by pointing out where this condition is used in the proof.
 - (b) In the proof of the Poincaré-Bendixson's Theorem, why do we require the trapping region K contains no equilibrium point of the system? Again, explain by pointing out where this condition is used in the proof.
 - (c) The proof of the Poincaré-Bendixson's Theorem is not valid when the system is defined on ℝ³. Explain why.
- 4. (No need to turn in for the *homework*, but can be regarded as a *term project* see next page for detail)
 The purpose of this structured problem is to disprove (using a counter-example) the Poincaré-Bendixson's
 Theorem for systems in ℝ⁴.
 - (a) Find the real general solution of the linear system:

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} 0 & 1\\ -\omega^2 & 0 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix}$$

where $\omega \neq 0$ is a real constant. [Hint: Review your course material in MATH 2351/2352]

- (b) Show that if T > 0 is the period of any non-trivial solution to the system in (a), then $\omega T = 2\pi N$ for some integer *N*.
- (c) Label the coordinates of \mathbb{R}^4 by (x_1, y_1, x_2, y_2) . Consider the following four-dimensional linear system:

$$\begin{bmatrix} x_1' \\ y_1' \\ x_2' \\ y_2' \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\omega_1^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -\omega_2^2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ x_2 \\ y_2 \end{bmatrix}$$

where ω_1 and ω_2 are two non-zero real constants. Show that the real general solution of this four-dimensional system is given by:

$$\begin{bmatrix} x_1 \\ y_1 \\ x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 & 0 \\ \omega_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & \omega_2 & 0 \end{bmatrix} \begin{pmatrix} c_1 \begin{bmatrix} \cos \omega_1 t \\ -\sin \omega_1 t \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} \sin \omega_1 t \\ \cos \omega_1 t \\ 0 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} 0 \\ 0 \\ \cos \omega_2 t \\ -\sin \omega_2 t \end{bmatrix} + c_4 \begin{bmatrix} 0 \\ 0 \\ \sin \omega_2 t \\ \cos \omega_2 t \end{bmatrix} \end{pmatrix},$$

where c_1, \ldots, c_4 are any real numbers.

TO BE CONTINUED ON NEXT PAGE...

- (d) Show that if the ratio $\frac{\omega_1}{\omega_2}$ is irrational, then the four-dimensional system in (c) does not have any (non-equilibrium) periodic solution. [Hint: use (b)]
- (e) Consider the following subset *K* of \mathbb{R}^4 :

$$K = \left\{ (x_1, y_1, x_2, y_2) \in \mathbb{R}^4 : \frac{1}{2} \le \omega_1^2 x_1^2 + y_1^2 + \omega_2^2 x_2^2 + y_2^2 \le 2 \right\}.$$

By carefully picking c_1, \ldots, c_4 in the general solution formula proved in (c), find one solution curve to the four-dimensional system which is completely inside *K* at any time.

[Remark: Note that *K* is a closed and bounded set. From (e), the set *K* traps an entire solution curve of the system. It is easy to see that the only equilibrium point of the system is the origin, which is not inside *K*. Therefore, the set *K* and the system fulfill almost all conditions of the Poincaré-Bendixson Theorem except that the system is on \mathbb{R}^4 . From (d), we know that the system does not have a periodic solution whenever $\frac{\omega_1}{\omega_2}$ is irrational. Therefore, it serves as a counter-example to the Poincaré-Bendixson Theorem in \mathbb{R}^4 .]

Possible project directions:

In class we proved that if φ_t(**x**) is a trajectory trapped inside the closed and bounded set *K*, then take any **y** ∈ ω(**x**), the trajectory φ_t(**y**) is periodic. Since φ_t(**y**) ∈ ω(**x**) provided that **y** ∈ ω(**x**), the trajectory {φ_t(**y**)}_{t≥0} from **y** is then a **subset** of ω(**x**).

Through searching for references, write down and present the proof that the trajectory $\{\varphi_t(\mathbf{y})\}_{t\geq 0}$ is in fact **equal** to $\omega(\mathbf{x})$.

[For the sake of coherence, your report may first include the proof (or sketch of proof) of the Poincaré-Bendixson's Theorem – digest the proof and write in your own style and do not copy words-by-words – then present why $\omega(\mathbf{x}) \subset {\varphi_t(\mathbf{x})}_{t\geq 0}$ from there.]

- Disprove the Poincaré-Bendixson's Theorem in \mathbb{R}^4 by working through Problem #4. However, present your work in *report* format, not *homework* format. Bonus credit will be given if you can also show that if $\frac{\omega_1}{\omega_2}$ is irrational, then $\omega(\mathbf{x}_0)$ is topologically a 2-dimensional torus in \mathbb{R}^4 for any non-zero $\mathbf{x}_0 \in \mathbb{R}^4$.
- In the examples we used to demonstrate the applications of the Poincaré-Bendixson's Theorem, the trapping region *K* are all *annular* regions. There is an explanation to this that is because any periodic trajectory (if it really exists) must enclose an equilibrium point of the vector field **F**. Therefore, in order for the trapping region *K* to fulfill all conditions of the Poincaré-Bendixson, one must drill a hole near the equilibrium point so that *K* becomes an annular region.

The following lecture video, delivered by Professor Steve Strogatz from Cornell University, explains why it is so using Poincaré index theory:

https://www.youtube.com/watch?v=02fcpxLT5wk

Watch the video and write a report on why "any periodic trajectory in an ODE system in \mathbb{R}^2 must enclose an equilibrium point of the system".